
The Role of Nuclear Receptor–Binding SET
Domain Family Histone Lysine
Methyltransferases in Cancer

Richard L. Bennett, Alok Swaroop, Catalina Troche, and Jonathan D. Licht

Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health
Cancer Center, The University of Florida, Gainesville, Florida 32610

Correspondence: jdlicht@ufl.edu

The nuclear receptor–binding SET Domain (NSD) family of histone H3 lysine 36 methyl-
transferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These
enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin
integrity and gene expression. The growing number of reports demonstrating that alterations
or translocations of these genes fundamentally affect cell growth and differentiation leading
to developmental defects illustrates the importance of this family. In addition, overexpres-
sion, gain of function somatic mutations, and translocations of NSDs are associated with
human cancer and can trigger cellular transformation in model systems. Here we review the
functions of NSD family members and the accumulating evidence that these proteins play
key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer
strategy, understanding the function of NSD family members may lead to the development of
novel therapies.

Histone lysine methyltransferases (HMTases)
catalyze the transfer of up to three methyl

groups to specific lysine (K) residues on the tails
of histones H3 and H4 that are critical for chro-
matin maintenance and the fine regulation of
gene expression. Histone marks created by ly-
sine HMTases are associated with either active
transcription (such as H3K4me or H3K36me2)
or repressed transcription (such as H3K27me or
H2K9me) (Lachner et al. 2003; Barski et al.
2007). The global activities of these enzymes
keep genes in a state poised for rapid activation
or repression. Methylated histones are sensed
and linked to downstream biological functions

by an array of methyllysine-binding proteins.
Thus, lysine HMTases play important roles in
many downstream cellular processes, such as
DNA replication, DNA damage response, cell-
cycle progression, cytokinesis, and transcrip-
tional regulation of important developmental
and tumor-suppressor genes. The human ge-
nome encodes more than 50 predicted lysine
methyltransferases, and for many of these genes
dysregulation has been reported to play a caus-
ative role in human disease (Kouzarides 2007;
Morishita and di Luccio 2011). Here we review
the most recently reported functions of nuclear
receptor–binding SET domain (NSD) family
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members with particular attention paid to their
roles in cancer.

NSD FAMILY MEMBERS ARE STRUCTURALLY
CONSERVED HISTONE H3 LYSINE 36
MONO- AND DIMETHYLTRANSFERASES

The NSD family of HMTases are a phylogeneti-
cally distinct subfamily of lysine-HMTases com-
prised of: NSD1, NSD2 (MMSET/WHSC1),
and NSD3 (WHSC1L1) (Morishita and di Luc-

cio 2011). The full-length members of the NSD
family are large multidomain proteins that con-
tain the evolutionarily conserved catalytic SET
[Su(var)3-9, Enhancer-of-zeste, Trithorax] do-
main that is further subdivided into pre-SET,
SET, and post-SET domains (Fig. 1) (Dillon
et al. 2005; Herz et al. 2013). In addition, full-
length NSD family members have two PWWP
(proline–tryptophan–tryptophan–proline)do-
mains that are critical for binding to methylated
histone H3 as well as DNA and plant homeo-
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Figure 1. Conserved structural domains in the nuclear receptor–binding SET domain (NSD) family of histone
lysine methyltransferases. Protein domain assignments were calculated using a simple modular architecture
research tool (SMART) and the following UniProtKB entries: NSD1-long, Q96L73-1; NSD1-short, Q96L73-2;
NSD2-long, O96028-1; NSD2-short, O96028-3; RE-IIBP, O96028-4; NSD3-long, Q9BZ95-1; and NSD3-short,
Q9BZ95-3. NSD3-WHISTLE domain assignments are from data in Kim et al. (2006).
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domain (PHD) zinc fingers important for in-
teractions with other methylated histones (Fig.
1) (Baker et al. 2008; Pasillas et al. 2011; San-
karan et al. 2016).

NSD1, NSD2, and NSD3 function to mono-
and dimethylate histone H3 on lysine 36
(H3K36) (Kim et al. 2006, 2008; Marango et
al. 2008; Li et al. 2009b; Nimura et al. 2009;
Lucio-Eterovic et al. 2010; Kuo et al. 2011;
Qiao et al. 2011; Rahman et al. 2011). Histone
H3K36 is found in nonmethylated and mono-,
di-, and trimethylated forms (me1, me2, me3,
respectively), and methylation of H3K36 is
associated with transcription of active euchro-
matin (Rao et al. 2005; Wagner and Carpenter
2012). To date, eight different mammalian
H3K36 HMTases have been identified with dis-
tinct preferences for which methylation state
of H3K36 they recognize and modify in vitro
and/or in vivo (Wagner and Carpenter 2012).
In addition, the various methylated forms of
H3K36 may have different biological functions
depending on the organism or cellular context.
In worms and humans, K36me3 has been
shown to link transcription with splicing (Ko-
lasinska-Zwierz et al. 2009; Sims and Reinberg
2009; Spies et al. 2009). In flies, H3K36me3
functions in dosage compensation (Larschan et
al. 2007). In yeast, H3K36me2 and H3K36me3
have been implicated in transcription frequency
and elongation that is coupled to histone acet-
ylation (Kaplan et al. 2003; Carrozza et al. 2005;
Joshi and Struhl 2005; Kizer et al. 2005; Morris
et al. 2005; Shilatifard 2006; Lee and Shilatifard
2007; Xu et al. 2008b; Li et al. 2009a). In Arabi-
dopsis and chicken, H3K36me2 and H3K36me3
mark actively transcribed chromatin (Bannister
et al. 2005; Xu et al. 2008a). In humans, there is a
preference for K36me1 at active promoters, and
this mark is detected in active regions of the b-
globin locus (Kim et al. 2007). Furthermore, at
the human globin genes, H3K36me3 is broadly
associated with transcription (Kim et al. 2007).

Evidence suggests that NSD1, NSD2, and/
or NSD3 normally play nonredundant roles
during development because genetic deletion
of either NSD1 or NSD2 is lethal in mice (Raya-
sam et al. 2003; Nimura et al. 2009). Thus, alter-
ations or amplifications of NSD1, NSD2, and/

or NSD3 that dysregulate H3K36 methylation
marks have profound effects on cell growth
and differentiation and are linked to numerous
developmental defects. In addition, overexpres-
sion, gain of function somatic mutations, and
translocation of NSDs have been reported to
frequently occur in a variety of cancers.

IDENTIFICATION AND FUNCTION
OF NSD

The human nuclear receptor SET domain-con-
taining 1 (NSD1, KMT3B) gene is comprised of
24 exons on chromosome 5q35. NSD1 has two
protein isoforms: a predominant 2427 amino
acid (aa) short form and a less abundant 2696
aa long form that occurs by retention of the
intron between exons 2 and 3 (Fig. 1) (Lucio-
Eterovic et al. 2010). NSD1 was originally iden-
tified to contain two nuclear steroid receptor
interaction domains that regulate the function
of retinoic acid, thyroid, retinoid X, and estro-
gen nuclear receptors (Huang et al. 1998). Sub-
sequent studies revealed that the SET domain of
NSD1 methylated H3K36 and H4K20 in vitro
(Rayasam et al. 2003). However, more recent
experiments suggest that the enzyme is specific
for H3K36 (Bender et al. 2006; Bell et al. 2007;
Stabell et al. 2007; Li et al. 2009b). Importantly,
reports using defined nucleosome substrates
with various forms of methylated histone H3
at lysine 36 show that NSD1 is a dimethylase
specific for H3K36 (Li et al. 2009b; Qiao et al.
2011). Furthermore, depletion of NSD1 re-
duced the levels of H3K36me1, 2, and 3, sug-
gesting that NSD1 is a mono/dimethylase and
that this modification serves as a substrate for
trimethylation by the HMTase SETD2 (Lucio-
Eterovic et al. 2010). In addition, depletion of
NSD1 reduced RNA polymerase II (RNAPII)
promoter occupancy and inhibited the transition
of RNAPII from an initiation to an elongation-
competent state (Lucio-Eterovic et al. 2010).

The crystal structure for NSD1 has been
solved and serves as a model for the other
NSD family proteins (Qiao et al. 2011; Graham
et al. 2016). This structure reveals that an auto-
inhibitory loop blocks binding of NSD1 to the
histone peptide as well as the entrance to the
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lysine-binding channel. As nucleosomal DNA
contacts the NSD1 post-SET loop, the active
conformation is stabilized. This may explain
the preference of NSD family members for nu-
cleosomal H3K36 substrates compared to oc-
tamers and why NSD family HMTases methyl-
ate histone lysine residues other than H3K36
when octamers, recombinant histones, or pep-
tides are used as substrates (Li et al. 2009b; Ku-
dithipudi et al. 2014; Morishita et al. 2014).

NSD1 is critical for normal murine embry-
onic development. Homozygous loss-of-func-
tion embryos are able to gastrulate and initiate
mesoderm formation but fail at embryonic day
6.5 (Rayasam et al. 2003). Defects of NSD1 are
linked to Sotos syndrome (aberrant NSD1 ex-
pression is present in 80% of patients) as well as
unique variants of Weaver or Beckwith–Wiede-
mann syndrome (Kurotaki et al. 2002; Douglas
et al. 2003; Baujat et al. 2004; Gibson et al. 2012).
Characterized as overgrowth disorders, these pa-
tients experience pre-/postnatal overgrowth,
enhanced bone age, neurodevelopmental delay,
and an enhanced risk forcancer (Rahman 2005).
A genomic analysis of 435 Sotos patient samples
revealed nonsense, deletion/insertion/duplica-
tion, splice site, and missense NSD1 mutations
(Waggoner et al. 2005). Although half of the
point mutations (nonsense and missense) oc-
curred at CpG sites, missense mutations were
primarily in exons that code for functional do-
mains (i.e., PHD, PWWP, and SET domains)
(Waggoner et al. 2005). Although not experi-
mentally confirmed, there is evidence of NSD1
gene-dosage effects linked to significant pheno-
typic outcomes beyond Sotos syndrome. Micro-
deletions lead to bone overgrowth/macro-
cephaly, whereas microduplications are mirrored
by stunted growth and microcephaly (Dikow
et al. 2013; Rosenfeld et al. 2013). NSD1 knock-
out mouse are embryonic lethal (Rayasam et al.
2003). However, mice carrying a heterozygous
1.5-Mb deletion of 36 genes on mouse chromo-
some 13 that corresponds to the human chro-
mosome 5q35.2-q35.3 region where NSD1 is
located have been characterized (Migdalska
et al. 2012). Although these mice did not show
the phenotypic overgrowth observed in Sotos
syndrome, they did display impaired long-

term memory and renal abnormalities (Migdal-
ska et al. 2012).

In addition to histone H3, nonhistone
targets of NSD1 have been reported. The car-
boxyl-terminus of NSD1 contains a unique
PHD finger region termed the PHDvC5HCH
domain that interacts with the transcription
repressor NIzp1, and mutations in the NSD1
PHDvC5HCH domain may interfere with
NIsp1 transcription repression (Nielsen et al.
2004; Berardi et al. 2016). Also, on activation of
NF-kB, NSD1 has been reported to coimmuno-
precipitate with the NF-kB p65 subunit, and be
required for inducible p65 methylation at lysine
residues K218 and K221 (Lu et al. 2010). How-
ever, whether p65 is a direct substrate of NSD1
has yet to be confirmed in vitro. These functions
may contribute to the overgrowth phenotype
observed when NSD1 is mutated in Sotos syn-
drome.

NSD1 ROLE IN CANCER

Aberrant NSD1 expression has been associated
with many cancer pathologies, and tumors oc-
cur in 3% of patients diagnosed with Sotos syn-
drome (Tatton-Brown et al. 2005). In addition,
NSD1 was inactivated via CpG island–promot-
er hypermethylation in neuroblastomas and gli-
omas (Berdasco et al. 2009). This transcription-
al silencing was associated with diminished
methylation of H3K36 and H4K20. In prostate
tumors, enhanced NSD1 expression was as-
sociated with metastases, whereas reduced ex-
pression was associated with cancers having
biochemical recurrence (Bianco-Miotto et al.
2010). Also, NSD1 expression was up-regulated
in patient-derived metastatic melanoma cell
lines compared to primary epidermal melano-
cytes. However, during the progression from
nonmetastatic to metastatic melanoma, expres-
sion of NSD1 was down-regulated (de Souza
et al. 2012). Furthermore, a transposon screen
for frequently occurring mutations in skin tu-
mors of mice revealed that NSD1 is among
those genes with significantly decreased expres-
sion during tumor development (Quintana
et al. 2013). Taken together, these studies sug-
gest that increased NSD1 expression may pro-
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mote oncogenic initiation through enhanced
methylation of H3K36, which activates genes
normally silenced by H3K27me3 (e.g., MEIS1
and Hox) (Wang et al. 2007; Berdasco et al.
2009). Subsequently, metastatic progression
may activate negative feedback of NSD1 in a
tissue and/or stage-specific manner. Further
studies are required to elucidate these potential
roles of NSD1 in cancer.

An NUP98-NSD1 fusion protein has been
observed in childhood acute myeloid leukemia
(AML) (Jaju et al. 2001; Cerveira et al. 2003; La
Starza et al. 2004). This recurrent translocation
at t(5;11)(q35;p15.5) contains the FG-repeat
domain of NUP98, a nucleoporin protein fam-
ily member that can interact with the histone
acetyltransferase CBP/p300 and the carboxyl
terminal of NSD1 that retains the five PHD fin-
gers, the Cys-His-rich domain (C5HCH), one
PWWP domain, and the catalytic SET domain.
NUP98-NSD1 is the most frequent (4%–5% of
cases) fusion reported in pediatric AML and is
associated with poor prognosis (Shiba et al.
2013). Retroviral infection of NUP98-NSD1 en-
hanced expression of HoxA7, HoxA7, HoxA9,
and Meis1 proto-oncogenes (Wang et al. 2007).
In addition, marrow progenitors transduced
with NUP98-NSD1-induced AML when trans-
planted into lethally irradiated mice (Wang et
al. 2007). Mechanistically, the NUP98-NSD1
fusion drives methylation of H3K36 and his-
tone acetylation. This persistent methylation
prevents transcriptional repression of the Hox-
A locus by EZH2 causing progenitor immor-
talization (Wang et al. 2007). Although the
NUP98-NSD1 fusion protein occurs in a low
percentage of patients, the incidence of concur-
rence between NUP98-NSD1 and FLT3 (FMS-
like tyrosine kinase 3) internal tandem duplica-
tion (ITD) mutants is high (70%) in human
AML cases (Thanasopoulou et al. 2014). Co-
infection of progenitor cells expressing both
NUP98-NSD1 and FLT3-ITD mutation re-
sulted in a strikingly decreased latency of devel-
opment of AML in mice compared to those
reconstituted with NUP98-NSD1 alone (Tha-
nasopoulou et al. 2014). Furthermore, ex-
periments using immortalized bone marrow
progenitor cells show that NUP98-NSD1 pro-

motes the expression and activation of FLT3-
ITD, suggesting a potent cooperation between
NUP98-NSD1 and FLT3-ITD during leukemic
transformation that may be therapeutically tar-
geted with SET domain or FLT3 inhibitors
(Thanasopoulou et al. 2014).

In summary, NSD1 is an H3K36-specific
mono- and dimethyltransferase that promotes
transcription and is critical for normal growth
and development. Aberrant expression of NSD1
drives the pathobiology of Sotos syndrome and
tumorigenesis. Although much work has been
performed regarding the structure and function
of NSD1, questions remain. For instance, where-
as normal and cancer cell lines endogenously
express both the short and long form of NSD1
the specific functions of these protein isoforms
have not been well characterized. In addition,
work remains to determine what cellular con-
text or mechanisms regulate the oncogenic
properties of NSD1 and how transcription of
NSD1 may be altered during metastasis.

IDENTIFICATION AND FUNCTION OF NSD2

NSD2 (also known as WHSC1 and MMSET)
was identified by its presence in a chromosomal
region found to be deleted in the Wolf–Hirsch-
horn syndrome (WHS) (Stec et al. 1998), and
separately by its rearrangement with the immu-
noglobulin locus in a subset of cases of the plas-
ma cell malignancy, multiple myeloma (Chesi
et al. 1998). Since then, NSD2 has been found
to play a role in many facets of development
and malignancy. This 90-kb, 25-exon gene on
chromosome 4p16.3 encodes two main iso-
forms, NSD2-short (MMSET-I) and NSD2-
long (MMSET-II), and an intronic transcript
that encodes response element II–binding pro-
tein (RE-IIBP). The 1365 amino acid full-length
species is composed of two PWWP domains, a
high-mobility group (HMG) DNA-binding do-
main, four PHD zinc fingers, and a SET domain
(Fig. 1), whereas the 647 amino acid short spe-
cies lacks all but the initial PWWP and HMG
domains (Stec et al. 1998).

NSD2 catalyzes the mono- and dimethyla-
tion of H3K36 (Martinez-Garcia et al. 2011;
Morishita et al. 2014). The first amino-terminal
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PWWP domain of NSD2 specifically binds to
H3K36me2 to stabilize NSD2 at chromatin, and
the catalytic SET domain of NSD2 propagates
this gene-activating mark to adjacent nucleo-
somes (Waggoner et al. 2005; Kuo et al. 2011;
Martinez-Garcia et al. 2011; Morishita et al.
2014; Sankaran et al. 2016). Similar to NSD1,
the NSD2 post-SET domain is attached to the
catalytic SET domain via an autoinhibitory
loop region and inhibition is relieved on nucle-
osome binding (Qiao et al. 2011; Poulin et al.
2016a). Furthermore, NSD2 has been reported
to preferentially catalyze H3K36 dimethylation
compared to H3K36 monomethylation (Li et al.
2009b; Kuo et al. 2011; Poulin et al. 2016b).

NSD2 is broadly expressed and its impor-
tance in development is highlighted by its in-
volvement in Wolf–Hirschhorn malformation
syndrome (WHS). The full syndrome is charac-
terized by brain defects associated with devel-
opmental delay and epilepsy as well as cranio-
facial anomalies, growth delay, heart defects,
and midline fusion abnormalities (Stec et al.
1998; Bergemann et al. 2005). Variable deletions
in the short arm of chromosome 4 (4p16.3) are
typical of WHS and NSD2 is the only gene in
this region that is deleted in almost every case.
Partial or full hemizygosity of NSD2 appears to
be necessary but not sufficient for the develop-
ment of WHS, as the deletion of other genes
nearby contributes to the constellation of ab-
normalities that make up the syndrome (Berge-
mann et al. 2005; Andersen et al. 2013). Mice
with a homozygous NSD2 SET domain deletion
do not survive past 10 days of age, and hetero-
zygous mice develop significant developmental
defects that imitate WHS (Nimura et al. 2009).
Furthermore, chromatin immunoprecipitation
(ChIP) experiments on embryonic stem (ES)
cells of these mice revealed that NSD2 binds to
several genes associated with development in-
cluding Sall1, Sall4, and Nanog. Additionally,
WHS patients often have antibody deficiencies,
suggesting a role for NSD2 in B-cell develop-
ment. This theory is supported by the ability
of NSD2 to recruit the DNA-damage-respon-
sive, p53-binding protein 1 (53BP1), which is
critical for class switch recombination and also
implicates NSD2 in DNA repair (Hajdu et al.

2011; Pei et al. 2011). Indeed, it was recently
reported that NSD2 regulates the expression of
DNA repair genes and may play a critical func-
tion in multiple myeloma chemoresistance
(Shah et al. 2016). Cancer cells expressing high
levels of NSD2 repaired DNA damage at a much
faster rate than cells with low levels of NSD2,
allowing them to survive and proliferate even
while being treated with DNA-damaging che-
motherapy.

NSD2 ROLE IN CANCER

NSD2 was initially described as a gene re-
arranged and linked to regulatory sequences
of the immunoglobulin heavy chain gene in
t(4;14) multiple myeloma (Chesi et al. 1998;
Stec et al. 1998); NSD2 and its translocations,
amplifications, and mutations were subsequently
identified in a wide spectrum of malignancies.
In multiple myeloma, the t(4;14) translocation
is present in 15%–20% of cases, resulting in
overexpression of NSD2 and FGFR3 (Chesi
et al. 1998; Stec et al. 1998; Finelli et al. 1999).
However, NSD2 is purported to be the primary
oncogenic driver, as approximately 30% of cases
harboring this translocation have normal ex-
pression of FGFR3 alongside NSD2 overex-
pression (Santra et al. 2003). Furthermore,
knockdown of NSD2 expression in t(4;14)þ

multiple myeloma cell lines reduces prolifera-
tion, cell-cycle progression, and DNA repair,
while increasing apoptosis and adhesion (Lau-
ring et al. 2008; Brito et al. 2009; Martinez-Gar-
cia et al. 2011; Huang et al. 2013; Shah et al.
2016). These phenotypic changes are driven
by redistribution of activating and repressive
chromatin marks that, in turn, affect gene ex-
pression. Overexpression of NSD2 globally in-
creases levels of H3K36 dimethylation (Marti-
nez-Garcia et al. 2011; Zheng et al. 2012;
Popovic et al. 2014; Sankaran et al. 2016). Inter-
estingly, NSD2 also affects enhancer of zeste ho-
molog 2 (EZH2), which is responsible for the
reciprocal repressive chromatin mark, histone 3
lysine 27 trimethylation (H3K27me3). The
spread of H3K36me2 from NSD2 overexpres-
sion leads to global reduction in H3K27me3
and restricts EZH2 to small islands of chroma-
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tin where it then hypermethylates H3K27me3
(Zheng et al. 2012; Popovic et al. 2014). The
transcriptional disturbance that results from
NSD2 overexpression primarily involves inap-
propriate activation of genes, but there are some
genes that are inappropriately repressed because
of these pockets of EZH2. This effect appears
to be important for the survival of cells over-
expressing NSD2, as they are sensitive to inhi-
bition of EZH2. One contribution to this sensi-
tivity is that inhibition of EZH2 decreases
c-MYC protein levels, a fundamentally up-reg-
ulated gene in multiple myeloma (Popovic et al.
2014). In t(4;14)þ, multiple myeloma cells
EZH2 represses miR-126, a microRNA that tar-
gets the MYC transcript (Min et al. 2012).
Therefore, EZH2 inhibitors derepress miR-
126, allowing it to reduce c-MYC protein levels
and slow proliferation. However, c-MYC is not
the sole cause of high NSD2-mediated onco-
genesis. Transcriptional profiling of t(4;14)þ

multiple myeloma indicates that NSD2 regu-
lates the expression of genes in apoptosis,
DNA repair, cell-cycle control, and cell motility.

In addition to multiple myeloma, NSD2
overexpression is detected in gastric, colon,
lung, and skin cancer (Hudlebusch et al.
2011a). It may play a major role in neuroblasto-
ma and breast, bladder, and prostate tumors,
where overexpression is associated with worse
prognosis (Hudlebusch et al. 2011b). In many
of these cancers, NSD2 expression is positively
correlated with EZH2 expression, and as op-
posed to the situation in t(4;14)þ multiple
myeloma, global levels of H3K27me3 and
H3K36me2 are both increased (Asangani et al.
2013). In prostate cancer, EZH2 functions up-
stream of NSD2, repressing several microRNAs,
including miR-203, miR-26, and miR-31, that
target NSD2 (Asangani et al. 2013). However, it
is the knockdown of NSD2 that abrogates the
ability of prostate cancer cells to proliferate,
form colonies, migrate, and invade (Ezponda
et al. 2012). Furthermore, enforced expression
of NSD2 in nontransformed prostate epithelial
cells promotes migration and invasion and leads
to epithelial–mesenchymal transition (EMT).
NSD2 directly binds the TWIST1 locus and
up-regulates expression of this EMT factor,

which plays a key role in the aggressive biological
behavior of advanced prostate cancer.

THE NSD2 E1099K POINT MUTATION
IN LYMPHOID MALIGNANCIES

In cases of t(4;14)þ multiple myeloma and
some acute lymphoblastic leukemia (ALL) in
which TWIST1 is also overexpressed, NSD2 har-
bors a recurrent point mutation in the SET do-
main (Oyer et al. 2014). The significance of the
guanine to alanine substitution that results in a
glutamic acid to lysine switch at amino acid
1099 (E1099K) of NSD2 was first noted follow-
ing examination of the Broad Institute’s Cancer
Cell Line Encyclopedia (CCLE) that revealed
numerous ALL cell lines with the mutation,
which has since been identified in 10%–20%
of relapsed pediatric ALL, 10% of mantle cell
lymphoma (MCL), and 10% of chronic lym-
phocytic leukemia (CLL) (Fabbri et al. 2011;
Barretina et al. 2012; Beà et al. 2013; Loh et al.
2013; Oyer et al. 2014). Rare mutations are
found in glioblastoma, lung cancer, and multi-
ple myeloma. Although the mechanism remains
to be determined, the E1099K mutation was
revealed to result in hyperactive NSD2, lead-
ing to increased H3K36me2 and decreased
H3K27me3, similar to the epigenetic profile of
t(4;14)þ multiple myeloma (Oyer et al. 2014).
Because of the common occurrence of this mu-
tation in relapsed pediatric ALL, especially cases
harboring other oncogenic lesions, such as the
TEL-AML1 and E2A-PBX1 fusions, E1099K ap-
pears to be an important factor in progression
of these malignancies rather than initiation
(Jaffe et al. 2013; Loh et al. 2013).

In summary, NSD2 plays a significant role
in normal development and malignancy. Hap-
loinsufficiency of NSD2 leads to severe develop-
mental defects, such as cardiac lesions and mid-
line abnormalities associated with WHS. In
malignancy, NSD2 has prolific effects resulting
from translocation, overexpression, and activat-
ing mutations of the gene. The t(4;14) translo-
cation in multiple myeloma has been extensive-
ly characterized and indicates that high levels of
NSD2 drive oncogenic phenotypes by spreading
H3K36me2 throughout the genome and alter-
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ing gene-expression profiles. The relationship
between NSD2 and EZH2 is crucial in myeloma
as the reciprocal H3K27me3 mark deposited by
EZH2 is reduced and restricted to certain re-
gions by NSD2 overexpression. In other malig-
nancies, such as prostate cancer, this relation-
ship is different as EZH2 appears to function
upstream of NSD2, although it is no less impor-
tant. Inhibition or knockdown of NSD2 or
EZH2 in both situations abrogates critical on-
cogenic pathways and phenotypes. However,
there is still much to learn about NSD2 in these
malignancies. Although NSD2 itself is already
an attractive therapeutic candidate, thoroughly
characterizing its binding partners will tell us
how NSD2 functions both endogenously and
in malignancy and provide more targets for de-
signing therapies for NSD2-misregulated can-
cers. The recurrent E1099K mutation that
results in a hyperactive NSD2 is also not fully
understood. Its global effects on chromatin
mimic NSD2 overexpression, but it must be in-
vestigated further to identify its local effects on
chromatin, gene expression, and oncogenicity.
Additionally, as it appears that this mutation is
more likely to contribute to relapse after thera-
py, it will be important to understand its role in
drug resistance. Finally, we must understand the
mechanism by which E1099K and other activat-
ing mutations alter the function of NSD2 to
design directed therapies.

IDENTIFICATION AND FUNCTION
OF NSD3

Using database searches for sequences similar to
NSD1 and NSD2, NSD3 (also named Wolf–
Hirschhorn syndrome candidate 1–like 1,
WHSC1L1) was independently identified by
two groups in 2001 (Angrand et al. 2001; Stec
et al. 2001). The NSD3 gene contains 24 exons
that span approximately 112 kb of genomic
DNA on chromosome 8p11.2 and is predicted
to have 12 transcript variants. Three protein
products of NSD3 have been reported and char-
acterized to date: Long, Short, and WHISTLE.

The NSD3-long transcript encodes a 1437–
amino acid protein containing two PWWP do-
mains, five PHD-type zinc-finger motifs, a SET-

associated Cys-rich (SAC) domain, and a SET
domain (Fig. 1) (Angrand et al. 2001; Stec et al.
2001). NSD3-long is highly expressed in brain,
heart, and skeletal muscle and to a lesser degree
in liver and lung (Angrand et al. 2001). The se-
quence of NSD3-long from amino acids 703 to
1409 is highly conserved between NSD1 (68%
identical) and NSD2 (55% identical) and con-
tains the PHD, second PWWP, and SET domain
(Angrand et al. 2001). Similar to NSD1 and
NSD2, the carboxy-terminal region of NSD3-
long that contains the catalytic pre-SET, SET,
and post-SET domains is able to recognize and
methylate histone H3 and H4 targets in vitro
(Allali-Hassani et al. 2014; Morishita et al.
2014). However, unlike NSD2, a clear HMG
box is missing from NSD3-long and the fourth
PHD-type zinc fingercontains an insertion of 49
amino acids (Stec et al. 2001). In addition, evi-
dence suggests that the conserved PHD5 domain
of NSD3-long is functionally distinct in its his-
tone-binding properties from the PHD5 do-
main of NSD1 or 2 and targets NSD3 to specific
genomic regions in vivo (He et al. 2013). The
NSD3-short transcript encodes a protein of
645 amino acids (Stec et al. 2001). NSD3-long
and NSD3-short have an identical amino-termi-
nal 620–amino acid sequence, but NSD3-short
lacks a catalytic SET domain and only contains
the amino-terminal PWWP domain that binds
to histone H3 when it is methylated on lysine 36
(Stec et al. 2001; Vermeulen et al. 2010; Wu et al.
2011). The NSD3-long and NSD3-short tran-
scripts are coexpressed in many tissues (Stec
et al. 2001).

WHISTLE (WHSC1-like 1 isoform 9 with
methyltransferase activity to lysine) was identi-
fied by homology searching and functional as-
say to be the shortest isoform of NSD3 to retain
a SET domain and methyltransferase activity
(Kim et al. 2006). WHISTLE consists of 506
amino acids and was found expressed in testis
and in bone marrow mononuclear cells of AML
and ALL patients (Kim et al. 2006). It contains
the PWWP, SET, and post-SET domains and
was reported to facilitate transcription repres-
sion by promoting methylation of histone
H3K4 and H3K27 (Kim et al. 2006; Allali-Has-
sani et al. 2014).
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NSD3 has been identified as an essential
methyltransferase for neural crest gene expres-
sion during specification (Jacques-Fricke and
Gammill 2014). NSD3 is expressed in premigra-
tory and migratory neural crest cells and is nec-
essary for expression of the neural plate border
gene Msx1, as well as the key neural crest tran-
scription factors Sox10, Snail2, Sox9, and
FoxD3 (Jacques-Fricke and Gammill 2014). In
addition, recent reports indicate that neuronal
ten-eleven translocation (TET) hydroxylase 3
interacts with and activates NSD3 to stimulate
H3K36 trimethylation and transcription of
neuronal genes in retinal cells (Perera et al.
2015). Thus, NSD3 may promote context-spe-
cific chromatin remodeling and gene activation
that is necessary for neural crest migration and
retinal network formation during development.

NSD3 ROLE IN CANCER

Since its discovery, amplification and overex-
pression of NSD3 has been a consistently identi-
fied feature in many cancer types (Angrand et al.
2001; Mahmood et al. 2013). For example, inte-
grated DNA-RNA analyses of regional amplifi-
cations and deletions coupled with gene-expres-
sion profiling and have identified the 8p11-12
NSD3 locus as an amplicon commonly ex-
pressed in both pancreatic ductal adenocarcino-
ma and non-small-cell lung cancer (Tonon et al.
2005). In addition, a bioinformatics screen to
identify putative cancer driver genes amplified
across TCGA datasets discovered frequent NSD3
amplifications in bladder, breast, liver, lung,
ovarian, head and neck, and colorectal cancer
samples (Chen et al. 2014). Amplification of
the 8p11-12 region has also been reported to be
present in about 15% of primary human breast
cancer samples, which correlates with histologi-
cal grade and is associated with poor prognosis
(Angrand et al. 2001; Yang et al. 2010; Chen et al.
2014). Furthermore, NSD3 expression and pro-
tein level are increased in breast, lung, pancreatic,
and colorectal cell lines, and immunohistochem-
ical analysis indicates that NSD3 is increased
in primary breast carcinoma, bladder cancer,
lung cancer, and liver cancer (Kang et al. 2013;
Mahmood et al. 2013; Chen et al. 2014).

Mounting evidence suggests that NSD3 ac-
tivates signaling pathways that promote cell-
cycle progression and proliferation. Although
an NSD3 knockout mouse has not yet been re-
ported, NSD3 has been identified to cooperate
with oncogenic KRAS to drive tumorigenesis
in a pancreatic cancer model mouse (Mann
et al. 2012). Furthermore, transduction of either
NSD3-short or NSD3-long into the mammary
epithelial cell line MCF10A cells has been re-
ported to increase proliferation, soft agar colony
formation, and cause abnormal acini formation
(Yang et al. 2010). In contrast, knockdown of
NSD3 reduced proliferation and promoted
cell death in 8p11-12-amplified breast cancer
cells and significantly decreased anchorage-de-
pendent and anchorage-independent growth of
pancreatic adenocarcinoma and small-cell lung
cancer–derived cell lines (Yang et al. 2010;
Mahmood et al. 2013). In addition, knockdown
of NSD3-expression induced G2/M cell-cycle
arrest and suppressed proliferation of breast,
bladder, and lung cancer cell lines (Zhou et al.
2010; Kang et al. 2013). Expression profile anal-
ysis showed that NSD3 affected the expression
of a number of genes known to play crucial roles
in cell-cycle progression (Kang et al. 2013).

Although the mechanism by which NSD3
regulates the mechanism governing the cell cy-
cle and proliferation is not well characterized,
evidence suggests that NSD3 amplification may
promote transcription of a subset of genes in-
volved in proliferation pathways. NSD3 can
form complexes with H3K4-specific demeth-
ylase LSD2 and H3K9-specific methyltransferase
G9a and may cooperate with these enzymes to
coordinate the dynamics of H3K4 and H3K36
methylation to promote transcription elonga-
tion for a subset of genes (Fang et al. 2010).
NSD3 promoted expression of transcription
factors Iroquois homeobox 3 (IRX3) and
TBIL1X known to regulate WNT signaling
(Yang et al. 2010). Furthermore, knockdown
of NSD3 in MCF10A cells or breast cancer cell
lines with amplified 8p11-12 resulted in in-
creased expression of SRFp1, a negative regula-
tor of WNT-signaling, and decreased expression
of TGFBI leading to profound loss of growth
and survival of these cells (Yang et al. 2010).
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Taken together, these results suggest that NSD3
is a putative cancer driver gene.

In addition to amplification, chromosomal
translocations resulting in NSD3 fusion prod-
ucts have been described in myelodysplastic
syndrome (MDS), AML, and nuclear protein
in testis (NUT) carcinoma. NUP98-NSD3 fusion
transcripts associated with t(8;11)(p11.2;p15)
have been reported in one patient with AML,
one patient with therapy-related MDS, and one
patient with radiation-associated MDS, and
both NSD3-long and NSD3-short isoforms
have been detected to be fused to NUP98 in
leukemic cell lines (Rosati et al. 2002; Romana
et al. 2006; Taketani et al. 2009). In addition,
NSD3 was detected as a fusion oncoprotein
with the NUT gene in the rare and aggressive
NUT midline carcinoma (NMC) (French et al.
2014; Harms et al. 2015; Kuroda et al. 2015;
Suzuki et al. 2015). A t(8;15)(p12;q15) translo-
cation was identified as responsible for the
NSD3-NUT fusion in a patient-derived NMC
cell line, and knockdown of the NSD3-NUT
fusion revealed that this fusion protein func-
tioned to block differentiation and promote
proliferation (French et al. 2014).

NSD3 AS AN EFFECTOR OF BRD4 IN CANCER

The bromodomain and extraterminal domain
(BET) family of transcriptional activators are
promising therapeutic targets for cancers, par-
ticularly AML, because of their role in maintain-
ing the expression of key oncogenes (Dawson
et al. 2011; Mertz et al. 2011; Zuber et al.
2011). NSD3 can bind the ET domain of
BET proteins and associates with BRD4 in
nuclear lysates (Rahman et al. 2011; French
et al. 2014; Crowe et al. 2016). The ET domain
of BRD4 interacts with amino acids 100–263
of NSD3, a region immediately before the ami-
no-terminal PWWP domain located at amino
acids 270–333 (Fig. 2) (Shen et al. 2015). The
corresponding regions in NSD1 and NSD2 have
significant homology with NSD3, suggesting
this may be a common element responsible for
BRD4 interaction with NSD family members
(Fig. 2). In addition, the NSD3-NUT fusion
binds to BRD4 and BRD bromodomain inhib-

itors induce differentiation and arrest prolifer-
ation of t(8;15)(p12;q15) cells (French et al.
2014). Recent evidence suggests that interac-
tion with NSD3-short may be required for
the AML maintenance function of BRD4
(Shen et al. 2015). The NSD3-short isoform
has been reported to be an adaptor protein
that links BRD4 to the CHD8 chromatin re-
modeler. BRD4, NSD3, and CHD8 colocalize
across the AML genome, and each is released
from super-enhancer regions on treatment
with BET inhibitors such as JQ1 (Shen et al.
2015). Furthermore, genetic targeting of NSD3
or CHD8 mimics the phenotypic and tran-
scriptional effects of pharmacological BRD4
inhibition (Shen et al. 2015). Thus, BET inhib-
itors may function by evicting BRD4–NSD3–
CHD8 complexes from chromatin to suppress
transcription.

CONCLUDING REMARKS

The NSD HMTases are key regulators of devel-
opment. Mutations, amplifications, or translo-
cations of these genes lead to developmental
defects and cancer. Differences between the
function and tissue specificity of the many iso-
forms of each NSD family member are poorly
understood, and additional research remains
critical to improve our understanding of how
dysregulation of NSD family members may
lead to cancer. For instance, NSD family mem-
bers have no known sequence-specific DNA-
binding properties, and the precise mechanism
that directs these lysine-HMTs to specific chro-
matin loci is unclear. Thus, identification of
partner proteins that may guide NSD family
members to specific promoter/enhancer re-
gions is important to understanding how these
proteins may be directed to specific functional
contexts. The recent report that BRD4 may di-
rect NSD3 to chromatin as well as other reports
indicating NSD2 associates with BRD4 raises
the intriguing possibility that bromodomains
(acetyllysine side chains) on histone H3 may
recruit BET family members such as BRD4 to
enhancer and promoter regions that, in turn,
recruit NSD family proteins to direct H3 K36
methylation, inhibit EZH2-mediated H3 K27
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methylation, and promote transcription initia-
tion and elongation (Fig. 3) (Min et al. 2012;
Shen et al. 2015). In addition, identifying
how activating mutations such as E1099K in
NSD2 may alter enzymatic activity to drive in-
creased H3K36 dimethylation is critical to un-
derstanding the biological effect of this muta-
tion in oncogenesis. Preliminary epigenetic and
transcriptional profiling of E1099K in ALL cells
indicates there are both similarities and differ-
ences between E1099K NSD2 and overexpres-
sion of NSD2 (unpublished data). Elucidating
the downstream effects of E1099K may provide
new insight into the mechanism by which
aberrant lysine HMTase activity promotes tu-
morigenesis.

The prominent role of translocations, up-
regulation, and activating mutations of NSD
family members in driving tumor progression
and aggressiveness, suggests that specific lysine-
HMTase inhibitors are a promising therapeutic

approach to suppress cancer growth. In support
of this, abolition of the methyltransferase
activity of NUP98-NSD1 by point mutation
suppresses Hox-A gene activation and myeloid
progenitor immortalization (Wang et al. 2007).
In addition, knockdown of NSD2 in several
model systems has indicated the potential utility
of NSD2 inhibitors for down-regulating critical
tumor cell phenotypes. Targeting the SET do-
main is an attractive strategy for development
of NSD family inhibitors, because the lysine
HMTase activity is considered most likely to
drive oncogenic reprogramming (Kuo et al.
2011; Martinez-Garcia et al. 2011). Recently, a
high throughput luminescence-based assay us-
ing the NSD1 SET domain was used to screen for
specific inhibitors of NSD1 (Drake et al. 2014).
The HMTase inhibitor suramin was identified in
this screen but had minimal selectivity for NSD1
over other histone methyltransferases and other
compounds identified by this screen inactivated

NSD3

BRD4 interaction region (aa 100–263)

NSD3
NSD2
NSD1

145–178
116–149
130–163

Consensus P * * * * * * *K NG S P E LI K I T K T N G L F E S S CG D A * V * * * *S S K P E S R

E EKR K ** * * S N K * D S S E* * * * * *L S * * * * * * * * * * * *P PS Q S T

E EIK
100%

Conservation
0%

NSD3
NSD2
NSD1

179–193
150–164
204–218

Consensus
100%

Conservation
0%

NSD3
NSD2
NSD1

209–236
181–210
268–291

Consensus

– –

–

– –

100%

Conservation

E E HSR K K I P K
K

L E QEP E N R
S S KDP S K I
I N QFL S D D

P N DVE R T V S E
P A SEK K C P N T
P D STS S T L GN

QG AEL V A L V S I
L N SE EQ

0%

NSD3
NSD2
NSD1

194–208
166–180
235–249

Consensus
100%

Conservation
0%

NSD3
NSD2
NSD1

238–248
211–222
312–323

Consensus
100%

Conservation
0%

– –

– –

– –

P
P
P

I
K

S
K
K

C
N
T

N
G
G

N
S
S

S
P
P

P
E
E

E
I
I

L
K
K

Q
L
L

V
K
K

K
K
R

F
P
E

L
L
L

H
F
F

F
E
E

E
S
S

N
S
S

F
I C
L

T

C

C
G
G

V
D S
D

D

L

D D
A A
L N 

K
D
E

V A
V S
VQ

M
Q
A

G
S
S

S E
E
E

E
E

E
N K
S

S
E
H

Q
N
T

D
G
K

S
Q
S

T
K
K R

RP
P
H

A
K
K

K

K R
R

K K S N

N
S I

K
K
K

E
Y
H

V
D
D

D
S E

E

S

G
L
S S

S
L
R

N
N
K

R
R

K
R
K

T
R
E

Q QN

D H
P

P V L

L
L L

S
K
K

K
Y
E

Y
N
E A

E
V
V

E V

D
E

K
E

K
G
P

P

P R K L K Y* * * *

R
R

K TK

Y
I

I
M
Q

K
N
N

N
G
G

G
I
I

V
T
T

T
T
T

T

Figure 2. Sequence alignment of the region of nuclear receptor–binding SET domain 3 (NSD3) required for
BRD4 interaction with NSD1 and NSD2 reveals conserved regions amino terminal to the first PWWP domain.
The region in NSD3 identified as being required for interaction with BRD4 (amino acids 100-263) was found to
have significant homology with the corresponding region in NSD1 and NSD2. Sequence analysis was performed
using CLC Sequence Viewer (Qiagen).
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NSD1 through nonspecific mechanisms. Alter-
natively, targeting domains outside of the cata-
lytic SET domain may be a useful strategy for
developing NSD inhibitors. The PHD zinc fin-
gers 2, 3, and 4, as well as PWWP domain 2 of
NSD2 are critical for the H3K36me2 up-regula-
tion in t(4;14)þ multiple myeloma (Popovic
et al. 2014). The fourth PHD finger plays a role
in the NSD2/EZH2 interplay, as its deletion ab-
rogates the reduction of H3K27me3 typically
observed with NSD2 overexpression in myelo-
ma. Furthermore, recent reports that BET in-
hibitors evict NSD3-BRD4 from chromatin
raise the attractive hypothesis that these com-
pounds may also inhibit interactions between
other BRD and NSD family members to sup-
press aberrant gene activation and limit tumor
growth. Although evidence suggests that genet-
ic and epigenetic alterations cooperate in the
stepwise initiation and progression of cancers,
only epigenetic aberrations can be reversed.
Thus, as we work to further our understanding
of NSD family members, we are hopeful that
inhibition of these epigenetic regulators will
play a central role in the next generation of
cancer therapy.
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