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Transforming growth factor b (TGF-b) is a pleiotropic cytokine involved in both suppressive
and inflammatory immune responses. After 30 years of intense study, we have only begun to
elucidate how TGF-b alters immunity under various conditions. Under steady-state condi-
tions, TGF-b regulates thymic T-cell selection and maintains homeostasis of the naı̈ve T-cell
pool. TGF-b inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while
promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue resi-
dence in response to immune challenges. Similarly, TGF-b controls the proliferation, sur-
vival, activation, and differentiation of B cells, as well as the development and functions of
innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulo-
cytes. Collectively, TGF-b plays a pivotal role in maintaining peripheral tolerance against
self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and
in controlling immune responses to pathogens.

In mammals, the innate and adaptive arms of
the immune system orchestrate host–defense

and inflammatory responses. For example, leu-
kocytes of the myeloid cell lineage use germline-
encoded receptors to detect conserved molecu-
lar patterns associated with pathogens, which
allows them to alert and activate the rest of the
immune system, including adaptive immunity.
Alternatively, lymphocytes of the adaptive im-
mune system express antigen-specific receptors
that distinguish small differences in macromol-
ecules and establish long-term immunity by
forming immunological memory. The coupling

of these innate and adaptive recognition path-
ways, and their precise modes of communica-
tion provide a robust mechanism that stimu-
lates immunity and protects the host against
pathogens. Nevertheless, the immune system
tolerates antigens originating from self-, com-
mensal organisms, and the allogeneic fetus. By
maintaining this balance between immunity
and tolerance, the immune system can promote
the physiological well-being of an individual.

A pivotal and pleiotropic regulator of im-
mune responses is transforming growth factor
b (TGF-b), which was first reported to control
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immune cell function three decades ago (Kehrl
et al. 1986b). TGF-b controls the magnitude
and type of immune responses against mi-
crobes, and has fundamentally important roles
in maintaining immune tolerance and homeo-
stasis against self- and benign antigens at steady-
state (Li et al. 2006b; Oh and Li 2013; Travis and
Sheppard 2014). In this review, we discuss how
TGF-b regulates the differentiation and func-
tion of different classes of leukocytes, and how
it modulates immune activities, from concep-
tion to autoimmunity and infection.

TGF-b IN THE IMMUNE SYSTEM

T Cells

Thymic Development

T cells arise from bone marrow–derived precur-
sors that traffic to the thymus, where their de-
velopmental process is completed. In the thy-
mus, T-cell precursors are exposed to a variety
of extrinsic signals, for example, peptides pre-
sented by major histocompatibility complexes
(MHCs), costimulation, and cytokines, which
stimulate molecular changes that cause differ-
entiation into distinct T-cell lineages. The dif-
ferentiation of conventional CD4þ and CD8þ

ab T cells requires T-cell receptor (TCR) en-
gagement that follows the Goldilocks principle,
in which both too little and too much TCR
signaling are detrimental to the successful de-
velopment of mature T cells. T-cell precursors
require appropriate TCR signaling to trigger
their survival and maturation, a process termed
positive selection. “Too little” signaling results
in death of the developing T cells. Yet “too
much” TCR signaling, which reflects strong re-
activity to self-peptide:MHC complexes, can
also cause death of the developing T cell. This
process of negative selection, a key aspect of
central tolerance, eliminates autoreactive T cells
from the T-cell repertoire. However, this process
is not complete, and some autoreactive T cells
mature in the thymus and exit to the periphery,
where they must be kept in check to prevent the
development of autoimmunity. The immuno-
suppressive functions of TGF-b have long been

appreciated, and TGF-b signaling is one mech-
anism by which such “escaped” autoreactive T
cells can be controlled in the periphery, a pro-
cess called peripheral tolerance. Although TGF-
b is well known for its tolerance-inducing
activities in the periphery, its contributions to
T-cell biology clearly extend beyond its role as
an immunosuppressive cytokine. Indeed, TGF-
b also has important functions in the develop-
ment of several T-cell lineages.

In the thymus, the differentiation of con-
ventional CD8þ T cells requires both TCR en-
gagement and signaling through the common
g-chain family cytokine interleukin 7 (IL-7)
(Park et al. 2010). Consequently, maintaining
expression of the IL-7 receptor on CD8þ T-
cell precursors is critical given the role of IL-7
signaling in the specification of the CD8þ T-cell
fate. TGF-b regulates the expression of the IL-7
receptor a-chain (IL-7Ra) in developing CD8þ

T cells (Ouyang et al. 2013), thus supporting IL-
7 signaling, and therefore CD8þ T-cell lineage
commitment. Mechanistically, TGF-b signaling
promotes IL-7Ra expression on CD8þ thymo-
cytes by suppressing the expression of the
transcriptional repressor Gfi-1, a known inhib-
itor of Il7ra expression in CD8þ T cells (Park
et al. 2004). This cross talk between TGF-b
and IL-7 signaling pathways is an essential as-
pect of conventional CD8þ T-cell development
(Fig. 1A).

TGF-b also regulates the development of
multiple subsets of regulatory and innate-like
T cells. Thymus-derived CD4þCD25þFoxp3þ

regulatory T (tTreg) cells, invariant natural kill-
er T (iNKT) cells, and CD8aaþTCRabþ intra-
epithelial lymphocytes (IELs) share a common
thread: their development requires high-affini-
ty interactions with MHC-presenting self-li-
gands, which are referred to as agonist ligands
(Stritesky et al. 2012). Because TGF-b promotes
the survival of precursor populations for each of
these lineages (discussed in more detail below),
it functions as a unifying molecule to promote
the differentiation of T-cell populations that re-
quire strong agonist ligands for their develop-
ment (Fig. 1A).

Treg cells are essential for the maintenance
of immune tolerance (Josefowicz et al. 2012).
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Although Treg cells can be generated in the
periphery by the conversion of conventional
naı̈ve CD4þ T cells, the thymus gives rise to
the majority of Treg cells, which are referred
to as thymus-derived Treg (tTreg) cells (She-
vach and Thornton 2014). The development
of tTreg cells is driven by a combination of
stringent TCR interactions, costimulation,
and cytokine signals. The TGF-b signaling
pathway plays a role in the early development
of tTreg cells, and 3- to 5-day old mice lacking
the TGF-b type I receptor (TbRI) show a dra-

matic reduction in the frequency of Foxp3þ

thymocytes (Liu et al. 2008). Although a con-
served DNA sequence for Smad3 binding is
present in Foxp3 gene regulatory sequences
(Tone et al. 2008), TGF-b signaling is dispen-
sable for the induction of Foxp3 expression in
tTreg cells (Zheng et al. 2010; Schlenner et al.
2012), showing that TGF-b does not promote
tTreg-cell development by directly regulating
Foxp3 expression. Instead, TGF-b signaling
promotes tTreg-cell development by antagon-
izing thymic-negative selection, and therefore
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Figure 1. Regulation of T cells by transforming growth factor b (TGF-b). (A) TGF-b promotes the thymic
development of multiple T-cell lineages. TGF-b supports the survival of thymus-derived Treg (tTreg), invariant
natural killer T (iNKT), and CD8aaþ T-cell precursors, and thus promotes the development of T-cell popu-
lations that are induced by strong agonist ligands. TGF-b also supports the development of conventional CD8þ

T cells by promoting thymocyte expression of interleukin (IL)-7Ra. (B) TGF-b regulates peripheral T-cell
homeostasis by promoting IL-7-dependent survival of low-affinity T cells, through its control of thymocyte
IL-7Ra expression, and by (C) inhibiting T-cell receptor (TCR)-driven activation of autoreactive or high-
affinity T cells. (D) In early stages of CD8þ T-cell differentiation, TGF-b inhibits cytotoxic T lymphocyte
(CTL) development. However, TGF-b also promotes the apoptosis of short-lived effector cells (SLECs) and
the differentiation of CD103-expressing tissue resident memory (TRM) cells. (E) Whereas TGF-b inhibits
T helper 1 (Th1)- and Th2-cell differentiation, TGF-b (in concert with other factors) promotes the development
of peripheral Treg (pTreg), Th17, Th9, and T follicular helper (Tfh) cells.
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promoting the survival of tTreg-cell precursors
(Ouyang et al. 2010).

iNKT cells recognize lipids presented by the
MHC class I–like molecule CD1d, and possess
qualities that are reminiscent of both the innate
and adaptive immune responses. This subset of
lipid-sensing T cells has been shown to play
both beneficial and pathogenic roles in a variety
of inflammatory and disease conditions (Bren-
nan et al. 2013). Strong agonist ligand interac-
tions are also thought to promote iNKT-cell
development (Stritesky et al. 2012), and, as ob-
served with tTreg cells, TGF-b signaling appears
to play a critical role in promoting the survival
of iNKT-cell precursors. T-cell-specific deletion
of the TGF-b type II receptor (TbRII) leads to a
reduction of both thymic and peripheral iNKT
cells (Li et al. 2006a; Marie et al. 2006; Doisne
et al. 2009), which results, in part, from in-
creased apoptosis of immature precursor cells
in the absence of TGF-b signaling (Doisne
et al. 2009).

CD8aaþTCRabþ IELs are innate-like T
cells that play important roles in intestinal ho-
meostasis (Cheroutre et al. 2011). The develop-
ment of these innate-like T cells is thought to
occur both in and outside the thymus, and also
appears to be driven by high-affinity TCR inter-
actions with their selection ligands (Pobezinsky
et al. 2012). In the absence of TGF-b signaling,
the CD8aaþTCRabþ IEL population is de-
creased, which is partially driven by a reduction
in numbers of thymic precursors of these in-
nate-like T cells (Konkel et al. 2011).

Collectively, the studies of tTreg cells, iNKT
cells, and CD8aaþTCRabþ IEL development
highlight the importance of TGF-b signaling in
mediating the survival of a precursor popula-
tion in the ontogeny of multiple T-cell lineages.

Peripheral Homeostasis

An effective immune system must maintain a
diverse pool of naı̈ve T cells within the confines
of a relatively constant number of peripheral T
cells. TGF-b critically contributes to the main-
tenance of an effective naı̈ve T-cell population
by regulating T-cell proliferation, homeostasis,
and repertoire diversity.

TGF-b was first shown to immunoregulate
and reduce proliferation of human T cells
through studies in cell culture (Kehrl et al.
1986b). During priming, TGF-b inhibits T-
cell proliferation by inhibiting transcription of
the Il2 gene and suppressing IL-2 production
(Brabletz et al. 1993; Tzachanis et al. 2001). At
the molecular level, Smad3 mediates this sup-
pression, as both Smad3-deficient CD4þ and
CD8þ T cells are not sensitive to IL-2 inhibition
mediated by TGF-b (McKarns et al. 2004;
McKarns and Schwartz 2005). TGF-b also in-
hibits the expression of several cell-cycle regu-
lators in primary T cells and T-cell lines (Rue-
gemer et al. 1990; Genestier et al. 1999; Nelson
et al. 2003; Wolfraim et al. 2004). However,
whether TGF-b inhibits T-cell priming under
inflammatory conditions in vivo and the exact
mechanism by which this regulation may occur
are unclear.

Befitting the pleiotropic nature of TGF-b,
its ability to regulate T-cell proliferation de-
pends on the status of T-cell differentiation
and the cumulative signaling pathways involved
in cell activation. For example, TGF-b can in-
hibit the proliferation of naı̈ve but not activat-
ed T cells, an effect associated with decreased
TbRII expression on activated T cells (Cottrez
and Groux 2001; Sanjabi et al. 2009). Addition-
ally, in naı̈ve T cells, CD28 engagement sends a
costimulatory signal that abrogates TGF-b in-
hibition of proliferation (Sung et al. 2003), en-
suring that TGF-b does not inhibit the ability
of activated antigen-presenting cells (APCs) to
prime naı̈ve T cells.

T-cell proliferation must be properly regu-
lated to maintain homeostasis under steady-
state conditions and during immune chal-
lenges. The absence of TGF-b signaling alters
homeostasis of both CD4þ and CD8þ T cells.
For example, loss of TGF-b signaling in mice, in
which CD4þ T cells are engineered to express a
single TCR, results in a dramatic reduction of
the peripheral T-cell population (Li et al. 2006a;
Ouyang et al. 2013). TGF-b supports the ho-
meostasis of peripheral CD4þ T cells by pro-
moting IL-7Ra expression in the thymus dur-
ing T-cell development, which allows naı̈ve
peripheral CD4þ T cells to sense IL-7 for their
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survival (Ouyang et al. 2013). Interestingly, this
regulation is particularly important for the sur-
vival of low-affinity CD4þ T cells (Fig. 1B). This
phenomenon was shown in studies using trans-
genic expression of the AND TCR that possesses
a higher affinity for its positive selection ligand
in the MHC H-2k background than that in the
H-2b background (Smith et al. 2001; Ouyang
et al. 2013). In both genetic backgrounds, re-
gardless of high or low affinity for the positive
selection ligand, TbRII-deficient AND T cells
express lower levels of IL-7Ra than their wild-
type counterparts. However, comparison of the
transgenic T cells between the two genetic back-
grounds showed that TbRII-deficient AND T
cells in the high-affinity background (i.e.,
H-2k) express greater levels of IL-7Ra than even
wild-type AND T cells in the low-affinity back-
ground (i.e., H-2b), showing that TGF-b signal-
ing and TCR signal strength both contribute to
IL-7Ra expression. Thus, the absence of TGF-b
signaling causes a more profound defect in
IL-7Ra expression and correspondingly results
in poor peripheral homeostasis in T cells bearing
low-affinity TCRs. Notably, Tgfb12/2 mice
show altered diversity of CD4þ TCRs in the pe-
riphery, but not in the thymus (Robinson and
Gorham 2007), which likely reflects repertoire
changes caused by the preferential loss of low-
affinity CD4þ T cells.

TGF-b signaling is also important for the
regulation of peripheral CD8þ T cells. Defects
in TGF-b signaling result in altered homeostasis
and aberrant activation of CD8þ T cells (Lucas
et al. 2000; Johnson and Jameson 2012; Zhang
and Bevan 2012). However, mice expressing cer-
tain transgenic TCRs do not show changes in
CD8þ T-cell homeostasis on loss of TGF-b sig-
naling (Lucas et al. 2006). These differences may
be explained by differences in the affinity of each
of these transgenic TCRs for self-peptide MHC
complexes. As such, T cells expressing high-af-
finity TCRs undergo greater homeostatic prolif-
eration than T cells expressing low-affinity
TCRs (Kieper et al. 2004). Indeed, homeostatic
proliferation of CD8þ T cells with defective
TGF-b signaling depends on TCR and MHC
class I (Fig. 1C) (Johnson and Jameson 2012).
At its extreme, loss of control of CD8þ T-cell

homeostasis by TGF-b can lead to cell transfor-
mation, as expression of a dominant-negative
form of TbRII (dnTbRII) in T cells causes
mice to develop lymphoma (Lucas et al.
2004). Interestingly, expression of dnTbRII,
but not deletion of TbRII, causes a CD8þ T-
cell lymphoproliferative disorder (Ishigame
et al. 2013a). These findings suggest that either
the dnTbRII exerts a dominant function inde-
pendent of its inhibiting TGF-b signaling, or
that T-cell homeostasis is regulated by TGF-b
signaling in a dose-dependent manner (Ishi-
game et al. 2013a).

CD8þ T cells undergo massive clonal ex-
pansion after becoming activated in response
to pathogens, followed by apoptosis-mediated
contraction on pathogen clearance. TGF-b
plasma levels increase in response to acute Lis-
teria monocytogenes (LM) infection. Mice ex-
pressing OTI TCR transgenic T cells, specific
for MHC I–restricted ovalbumin SIINFEKL
peptide, were crossed to dnTbRII animals and
further crossed to RAG12/2 animals to elimi-
nate V(D)J recombination of endogenous TCR
locus. Naı̈ve T cells from corresponding OTI-
dnTbRII-RAG12/2 and OTI-RAG12/2 ani-
mals were adoptively cotransferred into wild-
type animals that were then infected with a re-
combinant LM-expressing chicken ovalbumin
(LM-OVA). Using this system, it was shown
that TGF-b plays a major role in maintaining
T-cell homeostasis during CD8þ T-cell clonal
expansion by promoting apoptosis of short-
lived effector CD8þ T cells that are enriched
among the cells expressing the killer-cell lec-
tin-like receptor subfamily G member 1
(KLRG1) (Fig. 1D) (Sanjabi et al. 2009). Simi-
larly, adding TGF-b to cultures of human T cells
at 72 h postactivation induces T-cell death (Sil-
lett et al. 2001; Hernandez-Garay and Mendez-
Samperio 2003). However, using a model in
which TbRII expression is specifically inactivat-
ed in CD8þ T cells, it was shown that higher
proliferation rather than less apoptosis was
responsible for expansion of Tgfbr22/2 CD8þ

T cells after pathogenic challenge (Hu et al.
2015). Although both dnTbRII-expressing
and Tgfbr22/2 mouse models show an increase
in the ratio of KLRG1þ short-lived effector T
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cells compared with KLRG12 memory precur-
sor T cells, the exact mechanism of this increase
during effector CD8þ T-cell expansion remains
unclear.

Differentiation

TGF-b broadly inhibits T-cell activation by in-
terfering with TCR signaling (Chen et al.
2003a). It also specifically suppresses cytotoxic
T lymphocytes (CTL) and T helper 1 (Th1) and
T helper 2 (Th2) lymphocyte subset differenti-
ation by inhibiting the expression of lineage-
defining transcription factors such as T-bet
and GATA-3, respectively (Fig. 1D,E) (Gorelik
et al. 2000, 2002; Heath et al. 2000). TGF-b was
also shown to suppress Th1 differentiation by
inhibiting the expression of Stat4 (Lin et al.
2005), a transcription factor whose expression
is activated in response to IL-12 signaling. TGF-
b regulates T-bet and Stat4 expression to con-
trol Th1-cell differentiation in culture at distinct
stages. Indeed, repressing Stat4 activation in-
hibits interferon g (IFN-g) production during
the priming phase, whereas loss of T-bet expres-
sion impairs IFN-g production during the re-
call response, that is, the restimulation of T cells
after initial priming (Lin et al. 2005). Mecha-
nistically, Smad2 and Smad3 transcription fac-
tors may have a redundant role in TGF-b-me-
diated inhibition of Th1-cell differentiation
(Takimoto et al. 2010; Gu et al. 2012). The
Smad pathway also contributes to the inhibition
of Th2-cell differentiation by TGF-b, by induc-
ing the expression of Sox4, a transcription factor
that can bind to GATA-3 (Kuwahara et al. 2012).
Retroviral expression of wild-type Sox4, but not
Sox4 mutants lacking the ability to interact with
GATA-3, inhibits Th2 cytokine production in
CD4þ T cells (Kuwahara et al. 2012).

In contrast to its role in inhibiting Th1
and Th2-cell differentiation, TGF-b promotes
the development of peripheral regulatory T
(pTreg), Th17, Th9, and Tfh (follicular helper
T) cells (Fig. 1E). Suboptimal stimulation of
T cells, for example, using an altered peptide
ligand (Windhagen et al. 1995), low-dose anti-
gen (Gunnlaugsdottir et al. 2005; Kohyama et
al. 2005), or absence of complement signaling

(Strainic et al. 2012), stimulates TGF-b produc-
tion and converts CD4þ T cells into Treg cells.
Indeed, TGF-b promotes regulatory activity
in naı̈ve CD4þ T cells (Yamagiwa et al. 2001)
by inducing Foxp3 expression (Chen et al.
2003b; Selvaraj and Geiger 2007) and pTreg-
cell differentiation. Foxp3 then provides a pos-
itive feedback loop in TGF-b signaling by
down-regulating TGF-b-induced expression of
the inhibitory Smad7 (Fantini et al. 2004).

TGF-b plays both direct and indirect roles
in Foxp3 expression. The Foxp3 gene contains
an enhancer element that allows for direct bind-
ing of Smad3 and nuclear factor of activated T
(NFAT) cells (Tone et al. 2008) to a conserved
DNA sequence (Xu et al. 2010; Zheng et al.
2010). TGF-b also promotes locus activation
by opposing the recruitment of a DNA methyl-
tranferase to the Foxp3 locus (Josefowicz et al.
2009). As an indirect mechanism, TGF-b in-
duces expression of the adaptor Nedd4 family
interacting protein 1 (Ndfip1), which promotes
JunB degradation through the E3 ubiquitin
ligase Itch, and suppresses IL-4 production to
support pTreg-cell differentiation (Beal et al.
2011). However, the presence of inflammatory
cytokines and strong costimulatory signals po-
tently inhibits Foxp3 induction by TGF-b (Wei
et al. 2007; Molinero et al. 2011; Battaglia et al.
2013). These findings show that pTreg-cell dif-
ferentiation is modulated by the microenviron-
ment, with highly inflammatory conditions fa-
voring effector over Treg-cell generation.

TGF-b also regulates Th17-cell differentia-
tion (Bettelli et al. 2006; Veldhoen et al. 2006a;
Li et al. 2007; Manel et al. 2008; Yang et al. 2008;
Gutcher et al. 2011). Th17 cells express the
lineage-specific transcription factor RAR (reti-
noic acid receptor)-related orphan receptor C
(RORC) in humans (and RORgt in mice) and
produce many cytokines, including IL-17A, IL-
17F, IL-21, IL-22, and granulocyte-macrophage
colony-stimulating factor (GM-CSF) (Ivanov
et al. 2006; Korn et al. 2009). RORgt expression
is induced by IL-21 or IL-23, and TGF-b togeth-
er with IL-6 amplifies RORgt-dependent Th17-
cell differentiation (Zhou et al. 2007). Although
RORgt expression is activated independently of
Smad2 and Smad3 (Takimoto et al. 2010),
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Smad2 has been shown to directly associate
with RORgt to enhance Th17-cell differentia-
tion (Martinez et al. 2010). In addition, TGF-b
promotes Th17-cell differentiation by inhibit-
ing the expression of the transcription factors
Stat4 and GATA-3 (Das et al. 2009), Eomeso-
dermin (Eomes) (Ichiyama et al. 2011), and
growth factor independent 1 (Gfi-1) (Zhu
et al. 2009), thus preventing Th1- and Th2-
cell differentiation. TGF-b also represses the
expression of Blimp-1, a transcription factor
that limits Th17-cell differentiation (Salehi et
al. 2012). Thus, TGF-b promotes the differen-
tiation of Th17 cells both directly and indirect-
ly by inhibiting T-cell differentiation into other
cell lineages.

Th17 cells can be both immunoregulatory
and pathogenic (Sharma et al. 2013). Genera-
tion of regulatory Th17 cells is promoted by the
combination of TGF-b and IL-6 (Esplugues
et al. 2011; Chalmin et al. 2012; Zhao et al.
2012). Pathogenic Th17 cells, however, require
further stimulation with IL-23 (McGeachy et al.
2007; Chikuma et al. 2012; Lee et al. 2012).
Pathogenic Th17 cells can also be induced in
cell culture without TGF-b, in the presence of
IL-6, IL-1b, and IL-23 (Ghoreschi et al. 2010;
Lee et al. 2012). At low concentrations, TGF-b
synergizes with IL-6 and IL-21 to promote
IL-23 receptor expression and Th17-cell differ-
entiation, whereas high TGF-b concentrations
repress IL-23 receptor expression and promote
Treg-cell differentiation (Zhou et al. 2008). In
Th17 cells, TGF-b also differentially regulates
IL-22 and IL-17 expression. In the absence of
TGF-b, IL-6 induces IL-22 (Basu et al. 2012);
however, in the presence of TGF-b, expres-
sion of cMaf, a repressor of Il22 gene expression,
is induced (Rutz et al. 2011). Such oppos-
ing effects of TGF-b on Th17-associated cyto-
kines may contribute to the regulatory or
pathogenic functions of these cells. Intriguing-
ly, Th17 cells transdifferentiate into regulatory
T cells in a TGF-b- and aryl hydrocarbon re-
ceptor (AhR)-dependent manner at the resolu-
tion of inflammation (Gagliani et al. 2015),
thus further showing the role of TGF-b in the
plasticity and switch between immunity and
tolerance.

TGF-b cooperates with the Notch pathway
and IL-4 to induce IL-9þIL-10þTh9 cells. These
cells have effector rather than regulatory func-
tion, despite their ability to produce abundant
levels of IL-10 (Dardalhon et al. 2008; Elyaman
et al. 2012). They also play a critical and non-
redundant role in host-protective type 2 immu-
nity against gastrointestinal infection with par-
asitic worms (Licona-Limón et al. 2013). The
ability of TGF-b and IL-4 to promote Th9-cell
differentiation is enhanced by OX40 costimu-
lation, which activates TRAF6 (the ubiquitin
ligase tumor necrosis factor [TNF] receptor-as-
sociated factor 6) and, in turn, the noncanoni-
cal nuclear factor (NF)-kB pathway (Xiao et al.
2012). Additionally, Smad2 and Smad3 cooper-
ate with IL-4-induced interferon regulatory
factor 4 (IRF4) at the Il9 locus, where they dis-
place binding of enhancer of zeste homolog
2 (EZH2), causing derepression of chromatin
modification in the locus (Tamiya et al. 2013;
Wang et al. 2013). The exact contribution
of TGF-b signaling to the various biological
functions of Th9 cells remains to be further ex-
plored.

Tfh cells are an important component of
humoral immunity as they help B cells generate
antigen-specific antibody responses, and their
differentiation depends on the transcription
repressor Bcl6 (Crotty 2011). Together with
IL-12 and IL-23, TGF-b is an important cofac-
tor for the early differentiation of human Tfh
cells in cell culture (Schmitt et al. 2014). Inter-
estingly, TGF-b signaling in mouse CD4þ

T cells was also shown to be required for Tfh-
cell development, although by using a different
mechanism than what was shown in human
cells. In response to influenza infection, TGF-
b suppressed the expression of the high-affinity
IL-2 receptor on virus-specific CD4þ T cells,
and dampened IL-2-induced Stat5 signaling
and mammalian target of rapamycin (mTOR)
activation in Tfh precursor cells (Marshall et al.
2015).

TGF-b plays an active role in the develop-
ment and maintenance of IELs that reside in the
epithelial layer of the mucosal lining and have
immediate effector functions. As already dis-
cussed, TGF-b signaling is required for the thy-
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mic development of CD8aaþTCRabþ IELs,
and also maintains CD8a expression on periph-
eral T cells (Konkel et al. 2011). Once in the
epithelium, IELs are maintained by the interac-
tion between the cell-surface proteins CD103
(aEb7) and epithelial (E)-cadherin (Cepek
et al. 1993; Schon et al. 1999). CD103 shares
the b7 subunit with a4b7, an integrin required
for lymphocyte migration to the gut. TGF-b
induces the expression of aE and enhances
the constitutive expression of b7, leading to in-
creased CD103 expression at the surface of IELs
(Suzuki et al. 2002; Kang et al. 2011).

One subset of IELs, tissue-resident memory
T cells (TRMs), are noncirculating memory
cells that are maintained in the mucosal tissue,
near the site of the first antigen encounter (Cau-
ley and Lefrancois 2013; Schenkel and Masopust
2014). Most TRMs express CD69 and CD103
(Casey et al. 2012; Mackay et al. 2013; Skon
et al. 2013). Environmental cytokines, includ-
ing TGF-b, IL-33, and TNF, induce repression
of Krüppel-like factor 2 (KLF2) expression and
its target gene S1pr1. Thus, repressing sphingo-
sine-1-phosphate receptor 1 (S1P1) and en-
hancing CD69 and CD103 expression allows
the maintenance of TRMs in the tissue (Mackay
et al. 2013; Skon et al. 2013). TGF-b is a potent
inducer of CD103 expression by CD8þ T cells
(Fig. 1D) (El-Asady et al. 2005; Casey et al.
2012). Inactivation of TbRII expression in
CD8þ T cells results in a defect in the retention
of intestinal TRMs in the IELs, most likely a
result of the lack of CD103 expression (Zhang
and Bevan 2013). In an oral model of LM infec-
tion, TGF-b signaling in CD8þ T cells was re-
quired for the rapid generation of memory pre-
cursor cells that give rise to TRMs in the gut
(Sheridan et al. 2014). In another oral infection
study with Yersinia pseudotuberculosis, TGF-b
signaling was required for the generation of
the CD103þ TRMs, but dispensable for the
generation of CD1032 TRMs that reside in the
lamina propria and cluster with CD4þ T and
CX3CR1þmyeloid cells (Bergsbaken and Bevan
2015). Additionally, the development of TRMs
in the skin depends on TGF-b-mediated repres-
sion of T-bet and loss of Eomes expression,
while forced expression of these transcription

factors reduces TbRII and CD103 expression.
A residual amount of T-bet is required for
expression of IL-15R and IFN-g, thus promot-
ing TRM survival and effector function, respec-
tively (Mackay et al. 2015). A deeper under-
standing of how TRMs are developed and
maintained long term in various tissues will
shed more light on the exact contribution of
TGF-b signaling to the development and func-
tion of these memory cells.

Tolerance

Mice with impaired or total loss of TGF-b sig-
naling in T cells develop severe autoimmunity,
which shows the importance of TGF-b in con-
trolling T-cell tolerance (Gorelik and Flavell
2000; Li et al. 2006a; Marie et al. 2006). The
breach of tolerance that occurs without TGF-b
signaling is not solely caused by altered activity
of Treg cells (Li et al. 2006a; Marie et al. 2006),
suggesting that a major mechanism by which
TGF-b maintains tolerance is by directly regu-
lating autoreactive T cells. This direct regulation
is evident in a transgenic diabetes mouse model
in which loss of TGF-b signaling in activated
diabetogenic CD4þ T cells, but not Treg cells,
induces disease (Ishigame et al. 2013b). In ad-
dition, in the intestine, TGF-b signaling limits
tissue damage by diverting pathogenic CD4þ T
cells to a nonpathogenic phenotype (Reis et al.
2013). Moreover, the control of autoreactive T
cells by Treg cells in vivo may also occur through
TGF-b signaling. Activated human and murine
Treg cells express the glycoprotein A repetitions
predominant (GARP) protein, which associ-
ates with the latent form of TGF-b, resulting
in cell-surface expression of TGF-b on Treg cells
(Stockis et al. 2009; Tran et al. 2009; Wang et al.
2009; Edwards et al. 2013). Indeed, active TGF-
b can be generated from the membrane-bound
complex of GARPand latent TGF-b (Wang et al.
2012). The activation of latent complexes of
TGF-b has been reviewed (Robertson and Rif-
kin 2016).

Interestingly, recent studies indicate that
loss of TGF-b signaling in mature T cells is
not sufficient to induce autoimmunity. In stark
contrast to mice in which Tgfbr2 inactivation
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occurs during the double-positive thymocyte
stage of T-cell maturation (Li et al. 2006a; Marie
et al. 2006), Tgfbr2 deletion at later stages, using
the distal Lck-Cre or a tamoxifen-induced Cre
in mature CD4þ T cells, does not induce devel-
opment of overt autoimmunity (Zhang and
Bevan 2012; Sledzinska et al. 2013). However,
in both models, autoimmunity can be induced
in Rag-deficient animals, suggesting that an
added insult of extreme lymphopenia in com-
bination with the absence of TGF-b signaling is
required for the loss of tolerance. Notably, TGF-
b signaling in double-positive thymocytes in-
duces IL-7Ra expression, which serves a partic-
ularly important role in promoting the homeo-
static survival of low-affinity TCR CD4þ T cells
(Ouyang et al. 2013). Thus, in the CD4-Cre
model of Tgfbr2 deletion, the absence of TGF-
b signaling in developing T cells may create a
lymphopenic environment, with preferential
loss of low-affinity T cells, which favors activa-
tion of higher affinity autoreactive T cells. In
addition, TGF-b-supported survival of low-af-
finity CD4þ T cells may play an essential role in
the maintenance of a novel regulatory popula-
tion of CD4þ T cells, termed “deletor” T cells,
which contributes to the control of T-cell rep-
ertoire diversity and homeostasis. These deletor
T cells limit the expansion of T-cell clones in a
TCR-specific manner by outcompeting other T
cells for subthreshold TCR ligands (e.g., positive
selection ligands) that likely promote survival
signals without causing overt T-cell activation
(Singh et al. 2012).

B Cells

Proliferation and Survival

Early studies showed that TGF-b inhibits pro-
liferation of mature human and immature mu-
rine B cells (Kehrl et al. 1986a; Petit-Koskas et al.
1988; Warner et al. 1992). Mechanistically, TGF-
b induces growth arrest of B cells, which has
been associated with decreased expression of
the cell-cycle regulator cyclin A and inactivation
of the cell-cycle-dependent kinase Cdk2 (Bou-
chard et al. 1997). TGF-b also regulates B-cell
survival, as TGF-b signaling induces apoptosis
in the murine B-cell line WEHI (Warner et al.

1992). Furthermore, TGF-b can promote B-cell
death by inducing expression of the transcrip-
tional E protein antagonist Id3 to stimulate ap-
optosis in B-cell progenitors (Kee et al. 2001).

Studies in mice with B-cell-specific loss of
TGF-b signaling verified the cell-culture obser-
vations that TGF-b regulates B-cell proliferation
and survival. Splenic B cells deficient in TbRII
expression show increased BrdU incorporation
when compared with wild-type B cells, con-
firming an important role for TGF-b in control-
ling B-cell proliferation in vivo (Cazac and Roes
2000). Mice with B-cell-specific deficiency in
TGF-b signaling also show an expanded popu-
lation of innate-like B cells, termed B1 cells (Ca-
zac and Roes 2000). Interestingly, TbRII-defi-
cient B1 cells are not characterized by increased
BrdU incorporation, suggesting that their accu-
mulation may be caused by enhanced survival
in the absence of TGF-b signaling.

Activation and Differentiation

TGF-b regulates B-cell activation by inhibiting
immunoglobulin synthesis and class switching
to the majority of IgG isotypes (Kehrl et al.
1986a, 1991). Although mice with a B-cell-spe-
cific deficiency in TGF-b signaling do not show
signs of overt autoimmunity, these cells show a
more activated phenotype, are hyperresponsive
to normally weak immunogens, and produce
anti-dsDNA antibodies (Cazac and Roes 2000).

In contrast to TGF-b inhibiting IgG class
switching, TGF-b promotes B-cell production
of IgA antibodies (Coffman et al. 1989; Sonoda
et al. 1989; Kim and Kagnoff 1990; Lebman et al.
1990; Ehrhardt et al. 1992; van Vlasselaer et al.
1992), which provide an important defense
mechanism at mucosal barriers (Fig. 2) (Cerutti
et al. 2011). Induction of IgA class switching by
TGF-b is associated with increased transcrip-
tion of a-germline transcripts (Lebman et al.
1990; Shockett and Stavnezer 1991) because of
binding of activated Smads and Runx3 to a tan-
dem-repeat element in the a-germline tran-
script promoter (Lin and Stavnezer 1992; Shi
and Stavnezer 1998; Hanai et al. 1999; Pardali
et al. 2000; Zhang and Derynck 2000; Park et al.
2001). Mice with B-cell-specific loss of TGF-b
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signaling also show dramatic reductions in se-
rum and mucosal IgA levels (Cazac and Roes
2000; Borsutzky et al. 2004). Interestingly,
whereas Smad3-deficient mice show relatively
normal IgA production (Yang et al. 1999), B-
cell-specific inactivation of Smad2 expression
recapitulates the reduction in IgA observed in
mice with TbRII-deficient B cells. This finding
indicates that Smad2 has a nonredundant role
in controlling responses of TGF-b-regulated
IgA (Klein et al. 2006).

Dendritic Cells

Dendritic cells (DCs) are important effectors of
both tolerogenic and pathogenic functions of
TGF-b activity (Fig. 3A). Mice with myeloid
or DC-specific loss of the av integrins, which
play key roles in integrin-mediated activation of
TGF-b, develop colitis, showing that DCs play
an important role in T-cell tolerance mediated
by TGF-b (Lacy-Hulbert et al. 2007; Travis
et al. 2007). A subset of mucosal CD103þ DCs
also specifically promote tolerance by inducing
pTreg-cell differentiation (Coombes et al. 2007;
Sun et al. 2007) likely by enabling integrin-me-
diated activation of TGF-b (Paidassi et al. 2011;
Worthington et al. 2011). From a pathogenic
perspective, DC-mediated activation of latent
TGF-b also contributes to Th17-cell differenti-
ation in vivo and the development of experi-
mental autoimmune encephalomyelitis (EAE)
(Acharya et al. 2010; Melton et al. 2010).

In addition to a role for DCs in maintaining
T-cell tolerance through integrin-mediated ac-
tivation of TGF-b, studies show that DCs them-
selves can acquire a tolerogenic phenotype on
exposure to TGF-b in cell culture. TGF-b pro-
motes the tolerogenic properties of plasma-
cytoid DCs (pDCs) by inducing pDC expres-
sion of the tryptophan-catabolizing enzyme
indoleamine 2,3 dioxygenase (IDO) (Pallotta
et al. 2011). TGF-b appears to induce expres-
sion of this enzyme in pDCs through activation
of noncanonical NF-kB signaling, which pro-
motes IDO expression in DCs (Tas et al. 2007).
Besides TGF-b, culture of pDCs with IFN-g
also induces IDO expression (Mellor and
Munn 2004). However, although pDCs treated
with IFN-g and TGF-b together show short-
term tolerogenic functions, only pDCs cultured
with TGF-b alone show long-term IDO-depen-
dent tolerogenic activity (Pallotta et al. 2011).

TGF-b also has an inhibitory effect on DC
function. Indeed, exposure of DCs to TGF-b in
culture represses the antigen presentation capa-
bilities and maturation status of developing
DCs (Nandan and Reiner 1997; Yamaguchi
et al. 1997; Piskurich et al. 1998; Geissmann
et al. 1999; Zhang et al. 1999b). TGF-b may
also exert control over DC function in part
by regulating DC responses to inflammatory
stimuli. Whereas TGF-b treatment of human
monocyte-derived DCs that are not exposed
to other inflammatory stimuli has no effect
on DC-induced T-cell proliferation, human
monocyte–derived DCs exposed to TGF-b be-

IgA
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R-Smad
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Figure 2. Regulation of IgA class switching by transforming growth factor b (TGF-b). TGF-b promotes the
production of IgA antibodies by increasing the transcription of a-germline transcripts. Activated Smad3 in
complex with Smad4, and Runx3 bind to Smad-binding elements (SBEs) and Runx-binding elements (RBEs),
respectively, which are found in the promoter of the constant heavy chain a (Ca).
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fore lipopolysaccharide (LPS) stimulation in-
duce a lower degree of T-cell proliferation
than LPS-only-treated counterparts (Fogel-
Petrovic et al. 2007). Furthermore, human
monocyte-derived DCs pretreated with TGF-b
also produce reduced levels of a variety of
inflammatory mediators in response to Toll-
like receptor (TLR) or cytokine stimulation
(Fogel-Petrovic et al. 2007). Notably, the ability
of TGF-b to modulate the activation of a DC
is determined by the stimulation conditions.
Although TGF-b can inhibit DC maturation
induced by cytokines, TLR ligands, or Fc-recep-
tor engagement, engagement of the costimula-
tory CD40 receptor overrides the suppressive
effect of TGF-b on DC maturation (Geissmann
et al. 1999).

Efforts to unravel how TGF-b signaling reg-
ulates DC function in vivo have yielded less clear
conclusions. Despite evidence supporting the
inhibitory effects of TGF-b on DC function in
culture, TbRII-deficient splenic DCs showed no
difference in their activation status, based on the

expression of MHC class II and costimulatory
molecules when compared with their wild-type
counterparts (Ramalingam et al. 2012). Yet,
mice with CD11c-Cre-mediated deletion of
Tgfbr2 in DCs succumbed to a systemic auto-
immune disorder, the major manifestation of
which is gastritis. Gene-expression analyses of
TbRII-deficient splenic and mesenteric lymph
node DCs indicated some changes in cytokine,
chemokine, and chemokine receptor expression
patterns, but whether and how these phenotyp-
ic alterations contribute to the manifestation of
autoimmunity remains unknown. In addition,
how TGF-b signaling affects DCs in nonlym-
phoid tissues, such as the stomach or intestines,
has not been examined, and a major question
that remains is whether the sensitivity of DCs to
TGF-b regulation is determined by the identity
and/or location of DCs.

TGF-b plays an important role is the biol-
ogy of Langerhans cells, which are specialized
DCs of the epithelia that possess important im-
munological and tolerogenic functions (Roma-

TCR

LAP:
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APC
αvβ8

TolerogenicA

B

Pathogenic

TGF-β

Th17pTreg

Epidermis
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TGF-β
TGF-β-dependent 
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Figure 3. Regulation of dendritic cells by TGF-b. (A) Dendritic cells (DCs) are key effectors of TGF-b activity.
TGF-b is produced in a latent form in which the mature TGF-b is noncovalently associated with the latency-
associated peptide (LAP). Release of TGF-b from its association with LAP is a critical step in activation of the
cytokine. Integrin-mediated activation of TGF-b by DCs promotes the generation of peripheral Treg (pTreg)
cells that possess important tolerogenic functions, and induces the differentiation of pathogenic Th17 cells.
(B) Langerhans cells are specialized DCs of the epithelia that depend on TGF-b for their development and
maintenance. Autocrine TGF-b signaling is required for the maintenance of this cell population.
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ni et al. 2010). TGF-b was first implicated as
a regulator of Langerhans cells by the observa-
tion that mice with global inactivation of Tgfb1
expression lack this specific DC population
(Borkowski et al. 1996). Cell-culture studies
subsequently showed that TGF-b induces Lan-
gerhans cell differentiation of a variety of hu-
man-derived precursor cells (Strobl et al. 1996;
Geissmann et al. 1998; Zhang et al. 1999b). The
role of TGF-b in Langerhans cell biology is fur-
ther supported by studies using mouse lines
with conditional deficiency of TbRI or TbRII,
which established that TGF-b directly regulates
the development and maintenance of Langer-
hans cells (Kaplan et al. 2007; Kel et al. 2010;
Zahner et al. 2011). Additionally, mice in which
TbRII or TGF-b1 were deleted specifically in
Langerhans cells phenocopied each other,
showing that this pathway, and specifically au-
tocrine TGF-b signaling, is critical for the de-
velopment or maintenance of Langerhans cells
(Fig. 3B) (Kaplan et al. 2007). In addition, TGF-
b signaling increases recruitment of the tran-
scription factor PU.1 to the promoter and in-
tronic regions of the Runx3 gene (Chopin et al.
2013), which encodes a critical transcription
factor in Langerhans cell development (Fainaru
et al. 2004).

It has been proposed that, in the intestinal
lamina propria, a combination of TGF-b and
bacterial sensing regulates the tolerogenic prop-
erties of gut DCs, largely by controlling DC pro-
duction of TGF-b, which is suggested to direct
pTreg-cell generation (Kashiwagi et al. 2015).
Notably, although autocrine TGF-b signaling
confers enhanced TGF-b expression in DCs,
the TGF-b-activated Smads appear to play
opposing roles in this regulation with Smad3
promoting and Smad2 inhibiting TGF-b pro-
duction. DCs that lack only Smad2 express
higher levels of mRNA for TGF-b1 and IL-10,
and lower levels of mRNA for inflammatory cy-
tokines, for example, TNF-a, IL-6, and IL-12,
and show tolerogenic activity. However, despite
the indication that autocrine TGF-b signaling
promotes TGF-b production in DCs, whether
DCs represent the critical source of TGF-b for
pTreg-cell differentiation, as proposed (Kashi-
wagi et al. 2015), remains to be validated by

genetic methods, for example, using CD11c-
Cre-mediated deletion of floxed Tgfb1. Indeed,
it has been shown that T cells themselves are the
essential source of TGF-b for Th17 differentia-
tion (Li et al. 2007; Gutcher et al. 2011).

NK Cells

TGF-b has a general inhibitory effect on the
development and function of NK cells. In neo-
nates, blocking TGF-b signaling on NK cells
promotes faster NK maturation and reduces
susceptibility of neonates to viral infection
(Marcoe et al. 2012). In adults, TGF-b inhibits
IFN-g and T-bet expression in NK cells, thus
inhibiting type 1 immunity (Laouar et al.
2005; Yu et al. 2006). Reciprocally, proinflam-
matory cytokines can down-regulate TbRII ex-
pression and inhibit TGF-b signaling in NK
cells (Yu et al. 2006). Additionally, TGF-b ex-
pressed by T cells may inhibit proliferation of
NK cells in vivo after they become activated by
infection with acute lymphocytic choriomenin-
gitis virus (LCMV) (Su et al. 1991, 1993), or by
hepatitis B virus (HBV) infection in humans
(Sun et al. 2012). NK cells express activating
receptors at their surface, including NKG2D
and NKp30, whose expression is suppressed
by TGF-b (Castriconi et al. 2003; Lee et al.
2004; Crane et al. 2010). The expression of
NKG2D at the cell surface requires its associa-
tion with the intracellular adaptors DAP10 or
DAP12 to stabilize the complex. Although IL-2
signaling stabilizes the cell-surface expression of
activating NKG2D–DAP10 receptor complex-
es, TGF-b prevents this interaction by inhibit-
ing the expression of DAP10 (Park et al. 2011;
Sun et al. 2012). TGF-b also induces miR-183
expression to repress DAP12 expression, which
destabilizes the NKG2D receptors at the surface
of NK cells and inhibits their downstream sig-
nals (Donatelli et al. 2014).

Monocytes and Macrophages

Early work examining TGF-b regulation of my-
eloid cells showed that TGF-b largely inhibits
the proinflammatory response of macrophages
activated by TLR ligands or cytokine stimula-
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tion (Li et al. 2006b). However, stimulation with
TGF-b alone, in the absence of TLR ligands or
other cytokines, promotes myeloid cell produc-
tion of several inflammatory cytokines (Wahl
et al. 1987; Chantry et al. 1989; Musso et al.
1990; Turner et al. 1990). TGF-b also induces
migration of monocytes and macrophages iso-
lated from human peripheral blood (Wahl et al.
1987), and enhances the adherent properties of
monocytes (Bauvois et al. 1992; Wahl et al.
1993b). The distinct effects of TGF-b on mye-
loid cell function, which depend on the specific
nature of the activating conditions, reflect the
complex and pleiotropic nature of this cytokine.
Furthermore, the regulation of myeloid cells by
TGF-b appears to be influenced by the identity
of the cell. For example, depending on their
anatomic origin, some subsets of macrophages
show more sensitivity to TGF-b signaling than
others (Fan et al. 1992). In addition, in chemo-
taxis studies, blood monocytes, but not intesti-
nal macrophages, were found to traffic in re-
sponse to TGF-b signaling (Smythies et al.
2006). Nevertheless, determining whether and
how TGF-b regulates distinct myeloid cell pop-
ulations in vivo remains elusive.

The intestine may be an anatomic location
where regulation of myeloid cells by TGF-b is of
particular importance. The intestine is a unique
tissue in which the maintenance of resident
macrophages relies on continuous input from
circulating monocytes (Ginhoux and Jung
2014). In this context, TGF-b may induce traf-
ficking of monocytes and promote their differ-
entiation into noninflammatory macrophages
that reside in the tissue. Indeed, after prolonged
exposure to TGF-b, human blood monocytes
begin to acquire a less activated phenotype, il-
lustrated by down-regulation of innate response
receptor expression and reduced cytokine pro-
duction (Smythies et al. 2005). Notably, this
altered phenotype resembles the less inflamma-
tory profile that characterizes human intestinal
macrophages. These macrophages produce no
or only limited amounts of inflammatory cyto-
kines in response to a variety of stimuli, despite
maintaining their phagocytic and bacteriocidal
functions (Smythies et al. 2005). The ability of
these macrophages to perform the functions

needed for tissue health, while tightly regulat-
ing inflammatory cytokine secretion, is likely
an essential feature in maintaining intestinal
tolerance and homeostasis. Indeed, mice with
expression of dnTbRII from the CD68 promot-
er, which is primarily expressed in monocytes
and macrophages, show loss of TGF-b inhibi-
tion of LPS-induced cytokine production.
These mice are also more susceptible to dextran
sulfate sodium (DSS)-induced colitis, showing
that TGF-b controls monocytes and/or macro-
phages to regulate intestinal inflammation
(Rani et al. 2011).

The exact mechanism by which TGF-b reg-
ulates the inflammatory response of myeloid
cells in vivo remains largely unknown. However,
TGF-b may promote suppression of TLR sig-
naling. For example, in myeloid cells, TGF-b
induces and maintains expression of Axl (Bauer
et al. 2012), a member of the Tyro3, Axl, and
Mer (TAM) receptor tyrosine kinase family that
inhibits innate immune inflammatory respons-
es (Sharif et al. 2006; Rothlin et al. 2007). In-
deed, blocking Axl increased cytokine produc-
tion after TLR stimulation (Bauer et al. 2012).

In addition, several cell-culture studies in-
dicate that TGF-b may also control myeloid cell
activation by directly inhibiting NF-kB signal-
ing activated by innate receptors or cytokines
(Naiki et al. 2005; Choi et al. 2006; Hong et al.
2007; Lee et al. 2011). TLR engagement is a
major pathway of microbial recognition, and
multiple adaptor proteins, including MyD88
(myeloid differentiation primary response pro-
tein 88), TRIF (Toll/IL-1R [TIR] domain-con-
taining, adaptor-inducing interferon-b), and
TRAM (TRIF-related adaptor molecule) medi-
ate signal transduction downstream from these
innate receptors. Studies using the RAW macro-
phage cell line show that TGF-b represses
MyD88-dependent, but not TRIF- or TRAM-
dependent, TLR signaling (Naiki et al. 2005).
TGF-b inhibits this pathway by promoting the
ubiquitylation and degradation of MyD88
(Naiki et al. 2005; Lee et al. 2011), which in-
volves Smad6 and the E3 ubiquitin ligases
Smurf1 and Smurf2 (Lee et al. 2011). TGF-b
also impedes NF-kB activation by sequestering
the adaptor protein pellino-1 and, consequent-
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ly, disrupting the formation of a signaling com-
plex containing IRAK1 (IL-1-receptor-associat-
ed kinase 1), TRAF6, and MyD88 downstream
from IL-1R/TLR activation (Choi et al. 2006).
Both Smad6 and Smad7 can interact with
pellino-1 through discrete sequences in their
respective MH2 domains, which allows simul-
taneous interactions with the adaptor protein
(Choi et al. 2006; Lee et al. 2010). In addition
to controlling the responses of receptors that
recognize microbial patterns, TGF-b inhibits
NF-kB activation downstream from TNF-a sig-
naling by promoting interactions between
Smad7 and the adaptor proteins TAB2 (TAK1
binding protein 2) and TAB3. These compo-
nents are part of the signaling complex that
forms after activation of the TNF-a pathway
(Hong et al. 2007). These findings indicate im-
portant cross talk between TGF-b and NF-kB
signaling. How these interactions shape mye-
loid cell biology in vivo remains to be deter-
mined.

Granulocytes

Granulocytes are innate immune cells that are
identified by the presence of dense granules in
their cytoplasm, and are also termed polymor-
phonuclear leukocytes for their distinctly
shaped nuclei. This subset of innate immune
cells has important functions in infection and
inflammation, and includes neutrophils, eosin-
ophils, and basophils. TGF-b induces chemo-
taxis of both neutrophils (Brandes et al. 1991;
Fava et al. 1991; Reibman et al. 1991) and
eosinophils (Luttmann et al. 1998). At the mo-
lecular level, Smad3 may be required for TGF-
b-induced neutrophil migration, as Smad32/2

neutrophils show impaired chemotactic re-
sponses (Yang et al. 1999). However, TGF-b
can also inhibit neutrophil migration by sup-
pressing TNF-a–induced endothelial cell
production of IL-8, a known neutrophil chemo-
attractant (Smith et al. 1996). Under some con-
ditions, TGF-b may also promote neutrophil
oxidant production (Brandes et al. 1991; Bala-
zovich et al. 1996). Alternatively, TGF-b can act
as a negative regulator of granulocytes, and in-
hibits the survival of human eosinophils by

promoting apoptosis and inhibiting cytokine
production (Alam et al. 1994). Despite these
observations, the extent to which TGF-b regu-
lates the granulocytic arm of the innate immune
system remains poorly understood.

Mast Cells

Mast cells have been predominantly associated
with allergy responses, but a growing under-
standing of mast cell functions has identified
additional roles for these cells in wound healing,
tissue repair, and infections. Similar to other
innate immune cells, TGF-b can induce chemo-
taxis and enhance the adherent properties of
mast cells (Gruber et al. 1994; Olsson et al.
2000; Rosbottom et al. 2002). TGF-b has been
reported to promote or suppress mast cell func-
tion. As part of its negative regulatory func-
tions, TGF-b inhibits the expression of the
high-affinity IgE receptor Fc1RI, a mechanism
that activates mast cells (Gomez et al. 2005).
TGF-b was also reported to inhibit mast cell
proliferation, degranulation, and production
of several effector molecules (Broide et al.
1989; Bissonnette et al. 1997; Gebhardt et al.
2005; Gomez et al. 2005). However, in mast
cells, TGF-b can also promote expression of
inflammatory mediators, such as IL-6 and lym-
photactin (Rumsaeng et al. 1997; Miller et al.
1999; Ganeshan and Bryce 2012).

TGF-b CONTROLS IMMUNE RESPONSES

Fetal–Maternal Tolerance

Treg cells are essential for suppressing destruc-
tive alloantigenic immunity during pregnancy
(Zenclussen 2006; Munoz-Suano et al. 2011;
Robertson et al. 2013). These cells are peripher-
ally induced, as their differentiation depends on
both paternal antigens and the conserved non-
coding sequence-1 (CNS1) enhancer element
that contains a Smad-binding site at the Foxp3
locus (Zheng et al. 2010; Rowe et al. 2012; Sam-
stein et al. 2012). Female mice that lack CNS1
have higher rates of embryo resorption when
mated with allogeneic, but not syngeneic,
males, confirming that pTreg cells modulate
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maternal immune responses to paternal allo-
antigens during pregnancy (Samstein et al.
2012). In addition, during secondary pregnan-
cy, these fetal-specific Treg cells are maintained
as a memory pool with accelerated expansion,
which provides more resistance to embryo
resorption if Treg cells are partially ablated
(Rowe et al. 2012). The importance of pTreg-
cell generation in fetal–maternal tolerance has
prompted much interest in understanding the
biological source of TGF-b in this process.

The female reproductive tract (FRT) is a
rich environment for TGF-b production and
responsiveness (Zhao et al. 1994; Polli et al.
1996). TGF-b production is regulated by ovar-
ian sex hormones and enables several aspects of
immunosuppression in the FRT at different
stages of the menstrual cycle (Chegini et al.
1994; Takahashi et al. 1994; Wira and Rossoll
2003; Kim et al. 2005; Maurya et al. 2013).
Accordingly, hormone-regulated fluctuations
occur in systemic and uterine Treg-cell popula-
tions, with an estrogen-regulated increase at
the time of ovulation (Arruvito et al. 2007).
Additionally, in vaginal cells, estradiol regulates
tolerance induction and antigen presentation
by mediating the local production of TGF-b
(Wira et al. 2002; Wira and Rossoll 2003). Fur-
thermore, endogenous TGF-b in the human
endometrium suppresses the activity of uterine
NK cells (Eriksson et al. 2004, 2006).

Several studies have linked Treg-cell expan-
sion in early pregnancy with exposure to male
seminal fluid. Semen provides both male allo-
antigens and immunomodulatory factors that
sufficiently exert biological influences in the
FRT, such as activating cytokine gene expression
and eliciting changes in the abundance and
behavior of infiltrating leukocyte populations.
These responses promote tolerance and recep-
tivity for embryo implantation (Robertson
2005; Robertson et al. 2013). The mechanisms
underlying immunological suppression by se-
men are not clearly defined but appear related,
at least in part, to extremely high concentrations
of TGF-b and prostaglandin (PG)E2 (Robert-
son et al. 2002, 2009b). Seminal plasma con-
tains high concentrations of TGF-b, nearly
500 ng/ml, which is approximately fivefold

higher than that of serum (Saito et al. 1993;
Nocera and Chu 1995; Loras et al. 1999). In
seminal fluid, TGF-b induces Treg-cell expan-
sion and promotes tolerance to paternal alloan-
tigens in mice (Robertson et al. 2009a). Exoge-
nous TGF-b delivered at conception also boosts
the numbers of vaginal Treg cells and helps re-
duce fetal loss in the CBA/J � DBA/2J sponta-
neous abortion model (Clark et al. 2008). Thus,
seminal TGF-b has been implicated as a key
factor in initiating the remodeling events and
immunological changes that occur in the uterus
during the preimplantation period of pregnan-
cy (Robertson et al. 2002, 2013).

Mucosal Immune Responses

Development of the Gut Barrier

After leaving the sterile intrauterine environ-
ment, neonates enter a world full of innocuous
environmental antigens, as well as harmful
pathogens. Gradual and age-dependent matu-
ration of the immune system fulfills several de-
mands, such as preparing the skin and intestine
for colonization by commensal bacteria, toler-
izing the host for exposure to food and environ-
mental antigens, and protecting against patho-
genic infections (PrabhuDas et al. 2011). TGF-b
preserves the intestinal barrier function (Plan-
chon et al. 1994, 1999; Jarry et al. 2008), and its
production in the intestine is age-dependent
(Zhang et al. 1999a; Maheshwari et al. 2011).
For example, rodent pups initially produce low
levels of endogenous intestinal TGF-b, which
increase during the weaning period (Penttila
et al. 1998).

Although still controversial, mammalian
milk is thought to provide an important exog-
enous source of TGF-b to the infant until it can
fully produce endogenous TGF-b (Prokesova
et al. 2006; Oddy and Rosales 2010; Penttila
2010). In mammalian milk, TGF-b is present
at high concentrations and may be a key immu-
noregulatory factor for promoting intestinal
maturation (Rautava et al. 2012), IgA produc-
tion, and tolerance induction (Letterio et al.
1994; Hawkes et al. 1999; Kalliomaki et al.
1999; Lebman and Edmiston 1999; Donnet-
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Hughes et al. 2000; Saarinen et al. 2000; Ogawa
et al. 2004; Verhasselt et al. 2008; Verhasselt
2010; Arnold et al. 2011).

Microbiome

The composition of the intestinal microbiota
regulates the balance between Th17 and Treg
cells in the lamina propria and influences intes-
tinal homeostasis (Honda and Littman 2012).
Treg-cell numbers are increased in the colonic
lamina propria compared with other organs,
and these numbers are reduced in germ-free
or antibiotics-treated mice, suggesting that the
nature of the microbiota affects colonic pTreg-
cell differentiation (Atarashi et al. 2011; Honda
and Littman 2012). A cocktail of 17 strains of
bacteria, belonging to the clusters of Clostridi-
um species, isolated from the stool of a healthy
human provided bacterial antigens and a TGF-
b-rich environment to support the expansion
of Treg cells in germ-free mice (Atarashi et al.
2013). Th17 cells are also induced in the small
intestinal lamina propria in the presence of
members of the cytophaga–flavobacter–bac-
teroides phylum, which requires TGF-b activity
(Ivanov et al. 2008).

Inflammatory Bowel Disease

IL-10 and TGF-b play nonredundant roles in
maintaining intestinal homeostasis (Fiocchi
2001; Izcue et al. 2009; Feagins 2010; Jarry
et al. 2011; Biancheri et al. 2014). IL-10 func-
tions both upstream and downstream in TGF-b
signaling (Fuss et al. 2002; Kitani et al. 2003).
For example, IL-10 can induce TGF-b expres-
sion and secretion in T cells of the lamina pro-
pria (Zhou et al. 1998; Fuss et al. 2002). Addi-
tionally, it cooperates with TGF-b to promote
differentiation of Treg cells (Weiner 2001; Di
Giacinto et al. 2005), which produce more
TGF-b and IL-10 (Harrison and Powrie 2013).
Mutations in genes encoding components of
TGF-b and IL-10 signaling pathways have
been implicated in human inflammatory bow-
el disease (IBD) (Glocker et al. 2009; Franke
et al. 2010; McGovern et al. 2010; Naviglio
et al. 2014). Indeed, when both of these path-

ways are simultaneously genetically blocked,
mice develop severe fulminant ulcerative colitis
caused by the microbially induced proinflam-
matory cytokines IFN-g and TNF-a (Kang et al.
2008).

Similarly, in IBD patients, Smad7 overex-
pression in mucosal T cells inhibits TGF-b sig-
naling, causing uncontrolled production of
inflammatory cytokines (Fiocchi 2001; Monte-
leone et al. 2001). In IBD patients, Smad7 pro-
tein is more highly stabilized by p300-mediated
posttranslational acetylation compared with
healthy controls (Monteleone et al. 2005), po-
tentially making the cells more resistant to Treg-
cell-mediated suppression (Fantini et al. 2009).
Indeed, overproduction of TGF-b has been re-
ported (Feagins 2010), which may cause the loss
of protective cells that produce IL-22 (Leung
et al. 2014). Regardless of the abundance of en-
vironmental TGF-b, high Smad7 levels block
TGF-b signaling in pathogenic T cells (Fiocchi
2001). IL-25 can limit proinflammatory cyto-
kine production and chronic intestinal inflam-
mation (Owyang et al. 2006). TGF-b induces,
whereas TNF-a inhibits, IL-25 production in
the human gut, and knockdown of Smad7 in-
creases IL-25 production (Fina et al. 2011). Oral
administration of Smad7 antisense oligonucle-
otides can restore TGF-b signaling and amelio-
rate inflammation in hapten-induced colitis
(Boirivant et al. 2006), suggesting that blocking
Smad7 may be a promising and safe method to
dampen inflammation in IBD patients (Monte-
leone et al. 2008, 2012; Marafini et al. 2013).

Autoimmune Diseases

Arthritis

Rheumatoid arthritis (RA) is an inflammatory
disorder that targets the joints and is driven by
aberrant responses in T and B cells. The effects
of TGF-b on RA development appear to be de-
termined by the anatomical context of cytokine
signaling, as local versus systemic modulation
of TGF-b activity has opposing effects on dis-
ease development in rodent models of RA. For
example, injecting TGF-b into the joints of
Lewis rats induces synovial inflammation and
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joint swelling associated with macrophage infil-
tration and increased expression of IL-1b (Allen
et al. 1990). Correspondingly, administering a
TGF-b blocking antibody into a joint amelio-
rates group A streptococci–induced arthritis
(Wahl et al. 1993a). In contrast, studies in the
collagen-induced arthritis model indicate that
systemic TGF-b signaling protects against dis-
ease development (Kuruvilla et al. 1991; Thor-
becke et al. 1992). These protective effects are, in
part, mediated by direct regulation of T cells,
as mice with T-cell-specific expression of the
dnTbRII subunit develop more severe arthritis
(Schramm et al. 2004).

Diabetes

Type 1 diabetes mellitus (T1D) is a chronic au-
toimmune disease driven by immune-mediated
destruction of pancreatic islet b cells. Multiple
models of pancreas-specific overexpression of
active TGF-b show that TGF-b inhibits diabetes
development (King et al. 1998; Moritani et al.
1998; Grewal et al. 2002). Protection against
T1D is associated with the induction of tolero-
genic T-cell responses, suggesting that TGF-b
regulates diabetogenic T cells to prevent disease
(King et al. 1998; Moritani et al. 1998). Indeed,
coadministering a TGF-b blocking antibody re-
verses the protective effects of CD3-specific an-
tibody treatment in the nonobese diabetic
(NOD) model (Belghith et al. 2003). Studies
using a model of diabetes in which CD4þ T cells
express a transgenic TCR that recognizes a pan-
creas-specific peptide clearly show the impor-
tance of TGF-b in directly regulating the re-
sponse of effector T cells to prevent diabetes
(Ishigame et al. 2013b). Whereas deleting TbRII
expression in activated effector T cells induces
diabetes development, Treg-cell-specific loss of
TGF-b signaling has no effect on disease path-
ogenesis (Ishigame et al. 2013b).

Multiple Sclerosis

EAE is the animal model system that is com-
monly used to study the central nervous system
disorder multiple sclerosis (MS). Administering
TGF-b has a protective effect in several murine

models of EAE (Johns et al. 1991; Kuruvilla et al.
1991; Racke et al. 1991), suggesting that TGF-b
inhibits disease development. Indeed, two
models of EAE showed that suppression of dis-
ease by tolerogenic CD4þ T cells depends on
TGF-b activity (Chen et al. 1994, 2008). In ac-
cordance, T-cell lines derived from patients with
stable MS produce more TGF-b than those
from patients with active MS, suggesting that
disease severity may associate inversely with
levels of TGF-b production (Mokhtarian et al.
1994).

Interestingly, TGF-b signaling also pro-
motes differentiation of Th17 cells that induce
EAE development. CD4þ T cells that express a
dnTbRII do not differentiate into Th17 cells,
and mice expressing a dnTbRII under the con-
trol of the CD4 promoter are resistant to EAE,
indicating that TGF-b signaling is critical for
the in vivo generation of pathogenic Th17 cells
and EAE development (Veldhoen et al. 2006b).
Furthermore, genetic studies show that auto-
crine TGF-b signaling is required for in vivo
Th17 differentiation, as mice with T-cell-specif-
ic deletion of Tgfb1 do not develop Th17 cells
and are resistant to EAE (Li et al. 2007; Gutcher
et al. 2011). In contrast, cell-culture studies sug-
gest that treatment of CD4þ T cells with TGF-
b1 produces nonpathogenic Th17 cells that fail
to induce EAE (McGeachy et al. 2007; Ghoreschi
et al. 2010), whereas treatment with TGF-b3 in-
duces a pathogenic Th17 population that causes
disease (Lee et al. 2012). However, the ability of
TGF-b3 to induce pathogenic Th17 cells in vivo
(e.g., by using T-cell-specific Tgfb3 knockouts)
has not been explored.

Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a chron-
ic autoimmune disorder characterized by au-
toantibody production that affects multiple
organs. Administering a vector that encodes
TGF-b1 enhances survival and ameliorates dis-
ease severity in a murine model of lupus, sug-
gesting that TGF-b plays a protective role in
disease (Raz et al. 1995). In general, SLE pa-
tients produce lower levels of TGF-bwhen com-
pared with healthy individuals (Ohtsuka et al.
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1998, 1999; Becker-Merok et al. 2010). Total
TGF-b levels were lowest in hospitalized pa-
tients with active disease, suggesting that TGF-
b production may be associated with disease
severity (Ohtsuka et al. 1999). This is supported
by a survey of 102 SLE patients in which TGF-b
levels associate inversely with disease severity
(Becker-Merok et al. 2010).

Infection

Bacterial

The route by which a pathogen infects its host
can determine the arm of protective immunity
that the host elicits against that pathogen. For
example, oral infection with Yersinia entero-
colitica promotes Th17-mediated immunity,
whereas systemic infection promotes Th1-me-
diated immunity (DePaolo et al. 2012). Vaginal
Neisseria gonorrhoeae induces TGF-b produc-
tion, which inhibits a protective Th1-cell re-
sponse while promoting a Th17 response (Liu
et al. 2012). Other mucosal pathogens, such as
Citrobacter rodentium, induce Th17-cell re-
sponses by promoting apoptosis of intestinal
epithelium, and producing TLR-containing
apoptotic cells that induce both IL-6 and
TGF-b production (Torchinsky et al. 2009;
Brereton and Blander 2010). However, without
normal production of inflammatory cytokines,
high TGF-b levels produced by infected intesti-
nal epithelium can also lead to defects in proper
activation of T cells against mucosal pathogens,
as apparent during Helicobacter pylori infection
(Beswick et al. 2011).

Viral

Influenza virus neuraminidase activates latent
TGF-b (Schultz-Cherry and Hinshaw 1996),
which protects the host from influenza patho-
genesis and virus-mediated pathology in the
lung (Carlson et al. 2010). Although TGF-b
protects against excessive pathology during
acute viral infections, it can have a detrimental
effect on T-cell immunity during chronic viral
infections. For example, during LCMV infec-
tion, sustained TGF-b expression and Smad2
activation cause apoptosis of virus-specific
CD8þ T cells, and genetic blockade of TGF-b

signaling using dnTbRII rapidly eradicates the
virus (Tinoco et al. 2009). However, blocking
the TGF-b receptor during the early memory
phase failed to substantially enhance the antivi-
ral T-cell response or reduce viral titers in vivo
(Boettler et al. 2012), suggesting that TGF-b
may exert its apoptotic effect on clonally ex-
panding effector cells rather than on exhausted
T cells (Sanjabi et al. 2009; Tinoco et al. 2009).
Therapeutically blocking TGF-b signaling be-
fore viral infection significantly increases viral-
specific T cells; however, it also fails to improve
T-cell function or the ability of T cells to clear
chronic LCMV infection. These findings sug-
gest that the inflammatory environment and
the potential difference in T-cell repertoire in
mice expressing a dnTbRII in T cells may con-
tribute to their ability to clear chronic viral in-
fection, as originally reported by Tinoco et al.
(2009). In a fourth study of chronic LCMV in-
fection, TbRII expression was increased in
CD8þ T cells, but conditionally inactivating
Tgfbr2 expression in peripheral T cells de-
creased the expansion of CD8þ T cells yet did
not affect their function or exhaustion (Zhang
and Bevan 2013). Thus, the exact role of TGF-b
signaling on the expansion, function, and ex-
haustion of CD8þ T cells during chronic viral
infection remains unclear.

In human studies, serum TGF-b levels are
increased in patients with HBV or hepatitis C
virus (HCV), which contributes to the liver fi-
brosis often seen with these chronic viral infec-
tions (Alatrakchi et al. 2007; Khorramdelazad
et al. 2012; Karimi-Googheri et al. 2014). Fur-
thermore, TGFB1 genetic polymorphisms have
been associated with higher systemic TGF-b
levels and worse outcome in hepatic viral in-
fections (Dai et al. 2008; Pereira et al. 2008).
Viral-specific proteins have also been shown
to enhance TGF-b production and its cellular
activity. The HBV-encoded pX oncoprotein
enhances transcriptional activity of TGF-b by
stabilizing the Smad complex on the transcrip-
tional machinery (Lee et al. 2001), whereas the
HCV nonstructural protein 4 (NS4) induces
TGF-b expression in monocytes (Rowan et al.
2008). The HCV core protein can also activate
TGF-b, and mice that overexpress HCV core
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protein through transgenic expression in the
liver, show deregulated expression of TGF-b tar-
get genes (Benzoubir et al. 2013). Finally, TGF-
b produced by hepatic cells can induce Treg-cell
generation, which can further dampen antiviral
immunity and contribute to chronic hepatic
viral infections (Dunham et al. 2013; Karimi-
Googheri et al. 2014).

TGF-b1 expression is also increased in HIV-
infected patients and correlates with disease
progression (Lotz and Seth 1993; Wiercinska-
Drapalo et al. 2004). HIV tat protein has been
linked to high TGF-b secretion in infected cells
(Wahl et al. 1991; Zauli et al. 1992; Lotz et al.
1994; Sawaya et al. 1998; Reinhold et al. 1999).
The association of viral gp160 with CD4 on
monocytes can also induce TGF-b production
(Hu et al. 1996). TGF-b induces C-X-C chemo-
kine receptor type 4 (CXCR4) expression on
macrophages, contributing to enhanced tro-
pism of HIV for both CD4 T cells and macro-
phages (Chen et al. 2005). TGF-b1 production
by monocytes may also cause HIV-induced ap-
optosis of CD4þ T cells and consequent deple-
tion in vivo (Wang et al. 2001). Conversely,
TGF-b represses CD4 and C-C chemokine re-
ceptor type 5 (CCR5) expression, and inhibits
NF-kB activation, thus limiting HIV replication
in intestinal macrophages (Shen et al. 2011).
Interestingly, TGF-b induces the expression of
CD169, which is a main HIV-1 receptor ex-
pressed on mucosal DCs that captures virus
and transmits it to target cells; thus, TGF-b
found in semen may contribute to sexual trans-
mission of the virus (De Saint Jean et al. 2014).
Infecting human CD4þ T cells with HIV in-
duces TGF-b production that further promotes
Treg-cell generation specific to the gp120 sur-
face viral antigen (Amarnath et al. 2007; Stev-
ceva et al. 2008). However, infection of Treg cells
with HIV represses Foxp3 expression, reduces
the generation of TGF-b, and increases IL-4
production, thus limiting Treg-cell function
(Pion et al. 2013) and likely contributing to
chronic inflammation seen in HIV-infected pa-
tients. TGF-b produced in the mucosal lymph
nodes during HIV infection can also induce
apoptosis of activated CD8þ T cells (Cumont
et al. 2007), whereas promoting the generation

of NKT cells, which share properties of both T
cells and NK cells, which produce IL-17 (Cam-
pillo-Gimenez et al. 2010). Furthermore, the
HIV envelope protein gp120 can bind to a4b7
integrins on naı̈ve B cells to induce TGF-b and
Fc receptor-like 4 (FcRL4) expression, which
causes B-cell dysfunction and inhibits their
proliferation (Jelicic et al. 2013). Furthermore,
TGF-b is an important mediator of pathologi-
cal fibrosis, and promotes collagen deposition
in lymphoid organs in response to HIV- or SIV
(simian immunodeficiency virus)-induced in-
flammation. This effect disrupts IL-7 produc-
tion in lymph nodes, which can eventually con-
tribute to depletion of CD4þ T cells (Estes et al.
2007; Zeng et al. 2011).

When rhesus macaques are infected with
SIV, they develop AIDS-like syndromes that
are accompanied by massive inflammation,
similar to HIV-infected patients; however, Afri-
can green monkeys (AGM) infected with SIV
remain healthy and do not show this chronic
inflammation (Chahroudi et al. 2012). SIV-in-
fected AGMs show early and strong increases in
IL-10, TGF-b, and Foxp3 expression, which op-
pose findings in infected macaques that show
diminished sensitivity to TGF-b signaling in T
cells (Kornfeld et al. 2005; Ploquin et al. 2006).

One of the hallmarks of AIDS is HIV-medi-
ated immunodeficiency against other patho-
genic and nonpathogenic organisms. TGF-b
may play an active role in this process. In HIV
and HCV coinfections, HIV-induced TGF-b
expression promotes both HCV replication
and advanced liver fibrosis (Lin et al. 2008).
Similarly, HIV-infected macrophages produce
high levels of TGF-b and permit the survival
and multiplication of otherwise nonpathogenic
parasites (further discussed below) (Barreto-
de-Souza et al. 2008).

Parasitic

During acute Trypanosoma cruzi and Leishman-
ia infection, TGF-b production inhibits macro-
phage function, including IFN-g production
and increased pathogen replication (Silva et al.
1991; Barral-Netto et al. 1992; Barral et al.
1993). Conversely, malaria infection leads to ac-
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tivation of latent TGF-b, whose production cor-
relates with protective immune responses. This
effect results in slowed parasite growth early on,
and less pathology late in infection (Omer and
Riley 1998; Omer et al. 2003). TGF-b-mediated
induction of Treg-cell differentiation is also as-
sociated with higher rates of parasite growth
after malaria infection in humans (Walther
et al. 2005; Scholzen et al. 2009), and inhibiting
TGF-b activity results in more robust CD8þ T-
cell responses and protection against reinfection
in mice (Ocana-Morgner et al. 2007). As hel-
minth parasites stimulate TGF-b production
and Treg-cell induction, they may, in fact, pro-
tect the host from allergic diseases (Dittrich
et al. 2008; Grainger et al. 2010).

CONCLUDING REMARKS

Studies in the past three decades have revealed
the remarkably diverse and important functions
of TGF-b in the immune system, and its pene-
trating control of immune responses under
pathophysiological conditions. These discover-
ies support the notion that immune regulatory
mechanisms, established by coopting cell sig-
naling pathways that are evolutionarily con-
served, work in concert with mechanisms of
both innate and adaptive immune recognition
to ensure well-ordered immune activities. Fu-
ture investigations will define the precise cellu-
lar and molecular mechanisms of immune reg-
ulation by TGF-b, and will explore targeting
this pleiotropic cell signaling pathway for ther-
apies to treat pathogenic immune disorders.
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