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Introduction
The diagnosis of multiple sclerosis (MS) is based 
upon a clinical assessment; despite significant 
effort, no single biomarker has been found to 
independently confirm the diagnosis. In an 
attempt to assure the highest sensitivity and spec-
ificity, a set of guidelines, referred to as the 
McDonald criteria,1 utilizes magnetic resonance 
imaging (MRI) to provide supportive data to 
facilitate the diagnosis of MS. MRI has been part 
of the International Panel criteria for the diagno-
sis of MS since 2001, and its use has become 
increasingly vital as reflected in the last changes 
by the committee guidelines in 2010.2,3 MRI has 
been elevated to an essential nonclinical tool for 
the detection of early MS, for which it may pro-
vide concomitant criteria of dissemination in time 
and space at an initial clinical event, facilitating 
an established diagnosis of relapsing–remitting 
MS (RRMS) early within the disease course.

Aside from being an invaluable tool for the diag-
nosis of MS, MRI has also become a fundamental 
part of the routine medical management of an 

individual patient with MS. The concept of pre-
dicting disease progression has gained more 
importance, and the impact of T1-hypointense 
lesions, T2-hyperintense lesion load as well as 
regional and general atrophy will be discussed.

Moreover, MRI has developed a crucial role for 
the assessment of treatment response, especially in 
an era with a multitude of new medications with 
varying levels of efficacy. With the introduction of 
different and often very potent immunosuppres-
sive medications, MRI has found a role in moni-
toring for potential safety concerns associated with 
treatment. Lastly, more advanced MRI modalities 
may provide insight into the pathogenesis of the 
disease, novel treatment targets and improved 
diagnostics; the potential applications of noncon-
ventional MRI for MS will be briefly discussed.

The aim of this review is to summarize the latest 
insights into the use of MRI in MS, especially 
with respect to diagnosis and monitoring of dis-
ease activity. Special focus is also put on the eval-
uation of treatment efficacy and safety.
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MRI as diagnostic tool in MS
Utilization of MRI has facilitated the diagnosis of 
MS, and has simplified the decision making as to 
when disease-modifying treatment should be ini-
tiated. However, there remains a need for stand-
ardization of MRI acquisition methods to advance 
patient care and to reach comparable results 
between centers. Improved and updated MRI 
protocols have been proposed by various expert 
panels4,5 and the most recent guidelines were cre-
ated by the MRI in MS (MAGNIMS) consor-
tium in 2015.6–8 The following paragraphs will 
summarize the technical recommendations for 
the diagnostic workup for MS, given by the 
MAGNIMS steering committee.

Various MRI platforms with different magnetic 
field strengths are in use for the diagnosis of MS, 
and the most frequently applied magnet strengths 
are 1.5 Tesla (1.5 T) or 3 T. The latter has been 
shown to have increased sensitivity for the detec-
tion of MS lesions due to improved resolution 
and signal-to-noise ratio;9 however, the use of 
high-field 3 T MRI in comparison to 1.5 T has 
not been shown to improve early diagnosis of 
MS.10 Despite these findings, 3 T MRI is the  
preferred magnet strength in the current 
MAGNIMS criteria, however both field strengths 
are included in the recommendations.6,7 Specific 
MRI sequences have been recommended by 
MAGNIMS as the most appropriate for the diag-
nosis of MS. As per the guidelines, the following 
sequences are mandatory: axial proton density  
or T2-weighted/T2- fluid attenuated inversion 
recovery (FLAIR) spin echo or turbo spin  
echo, sagittal two-dimensional (2D) or three-
dimensional (3D) T2-FLAIR and axial 2D or 3D 
post-contrast T1-weighted spin echo or turbo 
spin echo.7 Optional sequences include unen-
hanced 2D or high-resolution isotropic 3D 
T1-weighted, 2D or 3D dual inversion recovery, 
and axial diffusion weighted imaging (DWI).

The new McDonald guidelines highlight the 
importance of lesion location [periventricular, 
juxtacortical (JC), posterior fossa and spinal cord] 
rather than the amount of lesions, and lesions are 
best visualized with T2 and T2-FLAIR sequences. 
T2-weighted sequence has a high utility to iden-
tify chronic lesions in the posterior fossa,11 yet 
lesions close to the ventricles are not easily 
depicted, given the increased signal of cerebrospi-
nal fluid (CSF).12 For this reason, axial and sagit-
tal T2-FLAIR sequences are the preferred 
method for the diagnosis of white matter lesions 

adjacent to the ventricles.6,7 The other mandatory 
sequence for initial diagnostic evaluation of MS is 
T1-weighted imaging, following contrast applica-
tion. A single dose of gadolinium-based contrast 
should be administered (0.1 mmol/kg), and a 
minimum of a 5-min delay until T1 sequence 
acquisition is recommended.13 T1 contrast-
enhanced lesions (T1+) indicate blood–brain 
barrier breakdown, representing active lesions,14 
and are an important parameter for the assess-
ment of dissemination in time (the presence of 
asymptomatic T1+ and T1 lesions on an initial 
MRI) to allow for the early diagnosis of MS. This 
sequence is also commonly used in clinical prac-
tice for subsequent disease monitoring, and has 
been used as a biomarker for phase II studies to 
evaluate the response to disease-modifying ther-
apy (DMT).15,16

The diagnostic value of spinal cord lesions has 
become increasingly more evident and is appar-
ent in the most recent changes in the diagnostic 
criteria. Approximately 50–90% of patients with 
MS have spinal cord lesions,5,7,17 and imaging of 
the spine has evolved to a more important part of 
the diagnostic workup. The value of spinal cord 
imaging is not as well established as brain imag-
ing, but emphasis is put on spine imaging in cer-
tain clinical circumstances and depending on the 
results from brain MRI. For example, spine imag-
ing is important at disease onset to detect not only 
symptomatic but also clinically silent lesions and 
to exclude other pathological processes causing a 
spinal cord syndrome.7 The presence of an 
asymptomatic spinal cord lesion in patients with 
asymptomatic white matter changes, referred to 
as radiologically isolated syndrome (RIS), 
increases the likelihood of future progression to 
clinical isolated syndrome (CIS) or MS.17,18

The recommended magnet strength for spinal 
cord imaging is at least 1.5 T,19 and mandatory 
sequences include sagittal dual-echo (proton den-
sity and T2 weighted) conventional or fast-spin 
echo, short T1 inversion recovery (STIR) (as  
an alternative to a proton-density-weighted 
sequence) and post-contrast T1-weighted spin 
echo. Optional sagittal sequences are phase-sensi-
tive inversion recovery (PSIR) (as an alternative 
to STIR). In addition, optional axial sequences 
are recommended such as 2D or 3D T2-weighted 
fast spin echo. MRI of the spinal cord is more 
challenging, given its thin structure, low volume 
and its anatomic localization, surrounded by CSF 
and vasculature,20 which can limit the detection 
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of clinically silent lesions. Breathing motions as 
well as CSF and blood vessel pulsation increase 
the occurrence of artifacts. Spin echo sequences 
can decrease vessel pulsation, however given the 
longer acquisition time, there is an increased like-
lihood of motion artifacts.21 T2-hyperintense 
lesions are more common in the cervical than the 
thoracic cord, and classically span the length of 
two or fewer vertebrae.5,22–25

The increased use of MRI has led to a number of 
patients diagnosed with incidental white matter 
lesions. These findings, when suggestive of MS in 
an asymptomatic patient, are referred to as RIS. 
Diagnostic criteria for RIS were proposed in 2009 
and include the number, shape and location of 
the brain lesions.26 Lesions are ovoid and well cir-
cumscribed with a size greater than 3 mm, show 
dissemination in space, and can be juxtaposed to 
the corpus callosum. Lesions should not follow a 
vascular distribution and do not account for any 
other pathologic processes. Within the first docu-
mented cohort, radiologic progression was identi-
fied in 59% of all patients over a median time 
period of 2.7 years, but only a quarter of the fol-
lowed patients converted to either CIS or definite 
MS, with a median time of 5.4 years.26 
Subsequently, a larger cohort was evaluated to 
assess the 5-year risk for developing a clinical 
event.27 Involvement of spinal cord, younger age 
and male sex at RIS identification were associated 
with a higher risk of developing neurological 
symptoms. In cases when MS is suspected and 
the brain MRI is suggestive but not diagnostic, 
the presence of spinal cord lesions can be helpful 
in confirming suspicion of MS. Although these 
patients are identified with MRI, there is a need 
for standardized treatment guidelines at that 
stage. Discovery of patients with RIS may present 
an opportunity to treat at the earliest stages of the 
disease and potentially to alter the disease course, 
however we lack the evidence to confirm this.27 
Given the adverse events associated with DMTs, 
the benefits of exposing patients to medications 
might not outweigh the risks. More and especially 
predictive studies are warranted to assess the con-
version from RIS into MS as well as to evaluate 
the benefits from treatment initiation at the time 
point of RIS detection.

Despite the significant improvements in the most 
recent changes to the McDonald criteria, there 
are a few aspects that have provoked criticism. 
Importantly, simplification of the criteria has 
made them less restrictive, which may lead to an 

overdiagnosis of MS.7,28 In addition, collection 
and interpretation of CSF is not required accord-
ing to the most recent guidelines. Caution is 
therefore needed when McDonald criteria are 
used to differentiate MS from other potential cen-
tral nervous system (CNS) pathologies. In unclear 
cases, CSF might be required to increase diag-
nostic specificity. The most common condition 
that mimics MS lesions is neuromyelitis optica 
(NMO), which can present with brain lesions in 
up to 70% of cases.29,30 The diagnosis of NMO 
can be supported by antibody findings against 
aquaporin 4; however, the relatively low sensitiv-
ity of this test can make a definite diagnosis of 
NMO or NMO spectrum disorder more difficult 
than that of MS.31 Furthermore, microvascular 
disease also needs to be considered and excluded 
as a potential differential diagnosis; age, risk fac-
tors and spinal cord images are particularly 
important. Other autoimmune, genetic or infec-
tious disorders with a demyelinating component 
can also cause inflammatory changes on MRI and 
need to be ruled out.

One of the commonly experienced differential 
diagnostic dilemmas is the differentiation of white 
matter lesions from other white matter patholo-
gies such as vascular lesions. More recent in vivo 
and ex vivo studies have established that MS 
lesions are oriented around a central vein and 
these findings are referred to as central vein sign 
(CVS).32 These lesions are present periventricu-
larly and in deep grey matter and are seen in all 
forms of MS;33 however, further investigations 
are needed to evaluate the presence of the CVS in 
cortical, subcortical and spinal cord lesions. 
Susceptibility-weighted imaging (SWI) has been 
proposed as a sequence for better diagnostic val-
ues and SWI at 7 T has shown remarkable detec-
tion of central veins.34,35 Other studies have 
shown that the utilization of FLAIR in combina-
tion with T2* at 3 T also has diagnostic accuracy 
to depict perivenular inflammatory lesions. Once 
validated, this would present a highly useful tool 
in the clinical setting to distinguish MS from 
other white matter pathology.36 These new meas-
ures would facilitate the differential diagnosis of 
MS and support the depiction of demyelinating 
lesions associated with MS.

The 2010 McDonald criteria are based on imag-
ing studies that were obtained in mostly European 
and North American white adults. Expanded 
studies within the past 5 years, evaluating the 
specificity and sensitivity in Asian and South 
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American countries, have demonstrated that the 
guidelines can be applied to patients from these 
continents.37–39 Published data on the applicabil-
ity of the McDonald criteria for the African 
American population are missing. However, a 
study in an African American pediatric cohort 
comparing 2005 with 2010 McDonald criteria 
showed a higher diagnostic rate of MS when the 
parameters from 2010 were used.40 African 
American children with MS were also diagnosed 
faster than European children, suggesting that the 
new McDonald criteria is an appropriate tool for 
the diagnosis of MS in African American pediat-
ric patients. In regards to the general pediatric 
population, the 2010 McDonald criteria are most 
appropriate for children above the age of 11.41

Moreover, it needs to be stressed that the above 
presented measures are predominantly used for 
the diagnosis of RRMS and have limitations for 
the diagnosis of primary progressive MS (PPMS). 
The committee agreed that a similar set of criteria 
can be applied for PPMS to facilitate diagnosis. 
These criteria focus on dissemination of lesions in 
space within the brain as well as in the spinal 
cord, where at least two focal lesions are war-
ranted. In addition, contrary to the guidelines for 
RRMS, analysis of CSF is recommended. Thus, 
the diagnosis of PPMS can be challenging, par-
ticularly in patients with normal brain MRI and 
inconclusive spinal cord findings.

Overall, the use of MRI has become a well estab-
lished tool for diagnostic purposes and facilitates 
the early diagnosis of MS. This offers the opportu-
nity to start immune-modulatory treatment early. 
Yet different pathologies need to be carefully 
assessed and excluded before a patient is commit-
ted to long-term treatment. In summary, the 
McDonald criteria have a high sensitivity but are 
not as specific for the diagnosis of MS and caution 
is still required when confirming the MS diagnosis.

MRI as a prognostic tool in MS
MRI plays an important role for the prognosis of 
disease development and monitoring of disease 
progression. Several studies have put special focus 
on the predictive value of T2-hyperintense 
lesions, T1-hypointense lesions, so-called black 
holes, as well as the implication of overall atrophy 
seen on MRI on the progression of disease. These 
individual modalities were used for the prediction 
of developing MS from CIS, RIS, as well as for 
the general prediction of long-term disability.

T2-hyperintense lesions
Initial studies on T2-hyperintense lesions showed 
minimal clinical correlation with disease burden, 
seen on MRI, leading to the term ‘clinico-radio-
logical paradox’.12,42,43 High lesion load was asso-
ciated with neither disease duration nor functional 
status. Longitudinal studies, however, were able 
to demonstrate that an increased number of 
T2-hyperintense lesions and the higher lesion vol-
ume were associated with increased disability.44 
The number of new T2-hyperintense lesions 
within the first 5 years was the strongest predictor 
of increased Expanded Disability Status Scale 
(EDSS) at 14 years and the follow-up study con-
firmed an association between early lesion accu-
mulation and subsequent 20-year disability.45 
Moreover, T2-hyperintense lesions can also be 
used to predict short-term disability,46 wherein 
baseline T2-hyperintense lesion volume is predic-
tive for worsening EDSS.47,48 Despite the com-
monly observed lower lesion load of patients with 
PPMS, the number of new T2-hyperintense 
lesions is also modestly predictive for the disease 
outcome in these patients.49

Lesion location has been associated with disabil-
ity and in particular periventricular, brainstem 
and spinal cord lesions correlate with progression 
of disease;50–58 interestingly, the relationship has 
been reported to be stronger in patients with 
PPMS than in patients with RRMS.59 The impact 
of infratentorial lesions in long-term prognosis 
has been evaluated in patients with CIS and 
brainstem rather than cerebellar lesions were 
responsible for increased disability. Recent stud-
ies, quantifying cord lesions, have found that 
especially cervical lesions were associated with 
disability in both relapsing and progressive forms 
of MS and a higher lesion load was seen in patients 
with progressive MS.60 As in RIS, spinal lesions 
are predictive of developing clinically definite MS 
from CIS, wherein two thirds of patients with ini-
tial nonspinal CIS, having concomitant spinal 
cord lesions, developed MS after 5 years.50

T1-hypointense lesions
T1-hypointense lesions, so-called ’black holes’, 
are hypointensities that are persistent for 6 months 
after the initial enhancement61 and show signifi-
cant demyelination and axonal loss.62 Chronic 
T1-hypointense lesions are closely linked to neu-
rodegeneration and are known to correlate with 
disability in patients with MS.63 There is increased 
interest in the predictive value of T1-hypointense 
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lesions, which are utilized more often as an end-
point for clinical studies.64 A 10-year follow-up 
study showed that the number of T1 hypointensi-
ties at baseline and the increase in T1-hypointense 
lesion volumes predicted worsening EDSS. New 
or enlarging T1-hypointense lesion number and 
total lesion volume also correlated with EDSS 
change.65 It is important to note that the compari-
son of newer 3D gradient echo (GE) sequences 
with previously used spin-echo T1-hypointense 
lesions demonstrates an increased number of 
detected T1 hypointesities.66 Therefore, the 3D 
GE sequences increase the sensitivity for detec-
tion of T1-hypointense lesions with a potential 
sacrifice of specificity for pathological damage.

Brain atrophy
Brain atrophy during the course of MS has 
become a well recognized phenomenon.45, 67–71 
Brain atrophy has the strongest correlation with 
clinical disease progression and increased atrophy 
over time is thought to predict worsening ambu-
latory and cognitive function.72 Brain atrophy is 
known to occur in normal aging with an annual 
loss of brain volume of approximately 0.2–0.5%.73 
In patients with MS, the atrophy rate is estimated 
to be 0.5–1.3% per year,74 probably driven by 
predominantly gray matter loss. Commonly the 
dimension of brain atrophy appears to be more 
prominent in patients with progressive MS than 
in those with RRMS. Yet several studies have 
shown that significant volume loss can already 
occur in patients with early RRMS68,75 and in 
patients with CIS.76 More recently, a parenchy-
mal loss of 0.4% per year was proposed as the 
‘pathological atrophy rate’ to define patients with 
MS72 and had a high correlation with increase in 
EDSS. Given the better understanding and inter-
pretation of brain volume loss and its correlation 
with disability, more consistent use of brain atro-
phy measures has been suggested as a parameter 
for clinical studies. However, it needs to be taken 
into consideration that initiation of treatment 
acutely reduces CNS inflammation. This can 
mimic a decrease in brain volume and regular sta-
bilization thereafter and has been described as 
‘pseudoatrophy’.72

Besides the loss of whole-brain volume, regional 
cerebral atrophy is now known to contribute to 
disease progression.77,78 Regional white matter 
atrophy, specifically, the involvement of white 
matter tracts and decreased volume of the corpus 
callosum at baseline, has been found to be 

predictive for developing MS.79 Similarly, regional 
cortical and deep gray matter atrophy has been 
associated with a conversion to clinically defined 
MS and suggestive of early ongoing neurodegen-
erative process.65 Multiple studies have deter-
mined that thalamic volume loss has a strong 
correlation with disease progression.77,78,80 
Interestingly, thalamic atrophy has been consist-
ently detected early in the disease course and 
closely linked to cognitive dysfunction, depres-
sion and fatigue.81,82 Other gray matter regions, 
including the precentral gyrus, superior frontal 
gyrus and putamen have shown volume loss in 
patients with MS compared with healthy age-
matched controls, however the significance of 
atrophy in these particular regions has yet to be 
established.65,83

MRI has traditionally been used as a potent tool 
for the monitoring of lesion load and new disease 
activity in clinical practice, as discussed in the 
next section. Despite promising results from the 
aforementioned brain atrophy studies, the imple-
mentation of a standardized postprocessing pro-
tocol for the evaluation of brain volume is 
currently not clinically feasible. However, a future 
goal for the MS field would be the development 
of validated and efficient volumetric tools to be 
used in conjunction with the standard clinic read.

The use of MRI in the assessment of optimal 
treatment response
Most clinical trials investigating treatment effi-
cacy use MRI findings as a secondary outcome 
measure and focus on changes in the amount and 
size of T2-hyperintense and contrast-enhanced 
T1-hypointense lesions. One recent meta-analy-
sis of various trials evaluated the effect of treat-
ment on lesion burden in treatment studies. It 
showed that treatment effects on MRI lesions 
over short time periods (6–9 months) can also 
predict the effects on relapses over longer follow-
up periods (12–24 months).84 The overall analy-
sis of these 31 studies demonstrated that new or 
enlarging T2-hyperintense lesions and contrast-
enhanced T1-hypointense lesions were associated 
with the number of relapses and the use of MRI 
was proposed as a primary endpoint for treatment 
trials.

MRI has been used in a number of observational 
studies to identify patients at high risk for treat-
ment failure as measured by clinical disease pro-
gression. The most common evaluated treatment 
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in these studies was interferon β (Table 1).44,85–91 
Overall disease activity was lower in interferon β 
treated patients, however patients with new 
T2-hyperintense lesions at 1-year follow up had 
much higher risk of poor response to interferon 
treatment.86 Long-term results revealed that per-
sistent disease activity, measured again in 
increased lesion burden, predicted disability.92,93 
More specifically, three or more new 
T2-hyperintense lesions or new enhanced lesion 
within the first 2 years predicted worse disease 
progression and follow-up after 15 years con-
firmed these findings.92 Given the availability of 
more effective therapeutic options, an emphasis 
has been made on achieving multi-metric disease 
stability or ‘no evidence of disease activity’ 
(NEDA). The definition of NEDA is based on 
the absence of new activity on MRI, as well as on 
absence of relapses and disability, and has been 
utilized to assess positive treatment response for 
patients with RRMS after 2 years.94 The original 
criteria are now referred to as NEDA3, given the 
recent proposed expansion to NEDA4, which 
includes brain atrophy and has been suggested as 
an improved metric for disease stability.95 It needs 
to be taken into consideration that NEDA is still 
an evolving measure and there are conflicting 
studies regarding the prognostic potential of 
NEDA3 for long-term disease stability.96,97 
However, the availability of new treatment 
modalities offers a more aggressive ‘treatment to 
target’ approach and might provide an opportu-
nity to achieve NEDA.

The presence of new activity on MRI is an impor-
tant marker for the clinical setting, which can be 
interpreted as a suboptimal treatment response 
and a change of treatment should be considered 
on a case-by-case basis. No current guidelines are 
available as to when imaging should be obtained 
for best objective assessment and the following 
recommendations are based on the literature as 
well as protocols used in our MS center (Figure 
1). A baseline MRI (with and without gadolin-
ium) of the entire CNS axis (brain, cervical and 
thoracic spine) should be completed prior to the 
initiation of DMT. Follow-up scans, including 
brain and potentially spine imaging if patients 
have initial active spine disease, are recommended 
3–6 months after starting therapy to ensure an 
early response is achieved. Further MRIs should 
then be obtained in 6–12 months; subsequently, 
in the case of stable disease, an annual MRI is 
warranted to monitor disease activity and optimal 
treatment response.8,42,98 A brain MRI with and 

without contrast is recommended every year and 
a cervical spine MRI should be considered at least 
biannually. In patients with disease present within 
the spine, we recommend obtaining both brain 
and cervical spine MRIs on an annual basis.

If a patient presents with new clinical symptoms, 
MRI should be obtained to determine the extent 
of disease activity and based upon the imaging 
result a change in DMT may be considered. 
Alternatively, if a patient is clinically stable and 
new lesions are seen on a routine MRI, closer fol-
low up with repeat imaging, generally obtained at 
3–6 months, is recommended to ensure disease 
stability. Depending on the extent of disease 
activity found on the routine MRI (or follow-up 
MRI), a change in DMT may be discussed with 
the patient. In both of the aforementioned cases, 
subsequent MRIs would be obtained at 6–12 
months to ensure treatment response and then 
once again move to annual scans.

In patients with RRMS on DMT with long dis-
ease durations who are clinically and radiographi-
cally stable or patients with longstanding 
progressive MS, further imaging should be tai-
lored on the basis of individual circumstances. A 
new MRI can be indicated every 2–5 years and 
more frequent imaging is especially recommended 
for younger patients with progressive disease. 
New lesions might occur in patients with progres-
sive MS and adjusting therapy can be considered. 
Patients with untreated CIS should be scanned 
every 1–3 months for the initial 6 months and if 
stable repeating MRIs every 6–12 months is rec-
ommended, unless new clinical symptoms occur. 
Overall these imaging recommendations allow 
close monitoring in order to assess disease activity 
and treatment response to achieve NEDA.

MRI in the monitoring of adverse effects 
associated with treatment
In recent years, the use of MRI has gained more 
relevance for the detection of adverse effects asso-
ciated with available newer treatment options. 
Important is the monitoring of immune- 
suppressive medication and the associated disease 
progressive multifocal leukoencephalopathy 
(PML).42,99–103 Among MS treatments, the inci-
dence of PML is greatest with natalizumab, but 
there have been cases reported with newer oral 
medications, such as dimethyl fumarate and fin-
golimod. Obtaining regular MRIs for patients on 
these types of treatments is crucial as it may be 
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possible to detect PML on imaging prior to fulmi-
nant clinical symptoms. Differentiation between 
PML and new MS lesions can be difficult, espe-
cially if clinical signs are lacking; however, early 
detection of PML has been shown to increase 
survival.100 One recent study evaluated survival of 
patients with PML after natalizumab treatment; 
poor functional outcome was associated with 
higher age, higher JC titers in CSF, and more 
extensive PML lesions on initial MRI.100 Thus 
regular monitoring with MRI, to ensure early 
detection of pathological changes attributed to 
PML, is important.

Distinguishing MS lesions from PML can be 
challenging, however there are specific features 
that may aid in differentiating the two disease 
entities on MRI. Cortical involvement can be 
seen in about half of the cases of PML and these 
lesions tend to involve U fibers and often extend 
into the gyrus compared with MS lesions.  
Another typical finding of PML are punctate 
T2-hyperintense lesions in close proximity to the 

main lesion.104 Recent MRI criteria were pro-
posed to have a strong predictive value to differ-
entiate between MS disease progression and 
PML. The presence of punctate T2-hyperintense 
lesions, cortical grey matter involvement, JC 
white matter involvement, the pattern of contrast 
enhancement, ill-defined lesion borders and 
lesion size of more than 3 cm were all associated 
with PML rather than MS lesions.103 Interestingly, 
the classic understanding is that the presence of 
contrast enhancement is not found in PML,104 
yet gadolinium enhancement can be detected in 
PML lesions associated with natalizumab-treated 
patients. This finding was incorporated into 
guidelines, proposed as consensus-based criteria 
by McGuigan and colleagues. Typically, contrast 
enhancement is homogenous or rim enhancing in 
MS lesions, whereas the pattern of contrast 
uptake in PML in patients with MS is patchy or 
punctate in appearance. However, given the 
known accumulation of gadolinium contrast 
within the CNS,105 postcontrast T1 scans are not 
recommended for frequent surveillance MRIs 

Table 1. Summary of prospective studies evaluating the use of MRI after initiation of treatment.

Authors (study 
publication year)

Investigated 
medication

Number of 
patients

Disease 
type

Study duration 
(years)

Responder classification

Rudick et al.93

Bermel et al.92
Intramuscular 
IFNβ-1a

172 RRMS 2 ⩾3 new T2 lesions or new enhanced lesion 
(at year 1 and 2) predicted worse disease 
progression over 2 years; follow up at 15 years 
confirmed findings

Kinkel et al.
(2014)

IFNβ 383 CIS 2 Active Gd+ or new T2 lesions at 6 months 
predicted CDMS in IFNβ-1a but not placebo 
patients

Pozzilli et al.88 IFNβ 242 RRMS 4 101 of 242 patients had MRI data. Gd+ lesions 
or new T2 lesions 1 year after beginning IFNβ 
with higher likelihood of relapses in the 4-year 
observation period

Tomassini et al.89 IFNβ 68 RRMS 6 Gd+ lesions at 1 year after beginning IFNβ 
therapy predicted relapse or disability at 6 
years

Rio et al.90 IFNβ 152 RRMS 2 >2 active lesions at 1 year was the primary 
factor predicting sustained EDSS progression 
at 2 years

Durelli et al.91 IFNβ 147 RRMS 2 Gd+ or T2 lesions 6 months after starting 
treatment predicted relapse or sustained EDSS 
increase in the next 18 months

Prosperini et al.86 IFNβ 394 RRMS 4.8 ⩾1 new T2 lesion after 1 year of starting IFNβ 
was best predictor of sustained disability at 5 
years

CDMS, clinically defined multiple sclerosis; EDSS, Expanded Disability Status Scale; Gd, gadolinium; IFNβ, interferon β; MRI, magnetic resonance 
imaging; RRMS, relapsing–remitting multiple sclerosis.
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and are recommended only for the further evalu-
ation of suspected disease. PML has a higher like-
lihood of being detected on DWI than are MS 
lesions; therefore, DWI is recommended as an 
additional sequence for the assessment of acute 

PML lesions as well as surveillance for subclinical 
disease.106

Patients treated with natalizumab, despite a posi-
tive JC titer (antibody titer above 0.4), should 

Table 2. MRI recommendations for patients starting natalizumab.

Time Initial 12 months After 12 months

Patient with continuously 
negative JC antibody

No additional safety monitoring within the 
first 12 months. Obtain regular MRIs to 
monitor treatment effects

Obtain MRIs every 12 months

Patient becomes positive 
for JC antibody (titer <1.5)

No additional safety monitoring within the 
first 12 months required. Obtain regular 
MRIs to monitor treatment effects

Obtain MRI surveillance scans 
every 6 months (minimum)
(minimum sequences: T2, DWI 
and FLAIR)

Patient becomes positive 
for JC antibody (titer >1.5)

No additional safety monitoring within the 
first 12 months required. Obtain regular 
MRIs to monitor treatment effects

Obtain MRI scans every 3–4 
months
(minimum sequences: T2, DWI 
and FLAIR)

These recommendations do not take into consideration the prior use of immune-suppressant medications. More data 
are required for the use of natalizumab beyond 2 years. These tests are recommended in addition to close clinical 
monitoring.
DWI, diffusion weighted imaging; MRI, magnetic resonance imaging; FLAIR, fluid attenuated inversion recovery.

Figure 1. Flowchart for suggested magnetic resonance imaging (MRI) to monitor patients with multiple 
sclerosis (MS) or clinically isolated syndrome (CIS).
DMA, disease-modifying agent.
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undergo surveillance scans on a regular basis. It 
has been recommended that patients with a JC 
antibody positive titer of less than 1.5 should 
undergo the regular 12-month scan and then start 
surveillance scans every 6 months. With a JC titer 
higher than 1.5, surveillance scans should also be 
started after 12 months of treatment, but should 
be obtained every 3–4 months (Table 2). All 
PML monitoring scans should include T2, 
FLAIR and DWI sequences. It is important to 
mention that absence of new findings on MRI 
does not exclude PML. If the clinical suspicion 
for PML is high, CSF should be obtained and the 
patient should be monitored closely.104

Introduction of new MRI sequences and 
future utilization
Gray matter lesions have so far not been included 
in the latest McDonald criteria, yet the presence 
of gray matter pathology is well known and impor-
tant for the assessment of long-term cognitive 
decline.107 Additional sequences such as double 
inversion recovery or PSIR can help with the 
detection of gray matter lesions.108,109 Yet the sen-
sitivity is not ideal and therefore caution is still 
required before the presence of gray matter lesions 
can be reliably assessed and added to the diagnos-
tic guidelines.

Newer drugs, targeting remyelination, require 
advanced imaging modalities to assess longitudinal 
myelin changes. The modalities that have been 
most extensively studied to assess myelin content 
include myelin water fraction,110–120 magnetization 
transfer ratio (MTR)121–123 and diffusion tensor 
imaging.124,125 There are several more advanced 
modalities that show significant promise, however 
they still remain in clinical development; these 
include quantitative MTR (qMT),126,127 diffusion 
basis spectrum imaging128 and g-ratio weighted 
imaging,129 just to name a few. Quantitative sus-
ceptibility mapping (QSM) can be used to visual-
ize iron within the basal ganglia and MS 
lesions.112,130 The presence of iron is suggestive of 
microglia activity, and positive signal has been 
associated with chronic active MS lesions.34,131–141 
Longitudinal QSM studies, conducted in our 
center, showed that lesion susceptibility increased 
as the lesion evolved from contrast enhanced to 
nonenhanced, indicating that it could be used as a 
biomarker.142–144 All of these advanced magnetic 
resonance modalities require further validation in 
larger cohorts of patients and over a longitudinal 
time span. In addition, many of these sequences 

remain too cumbersome for clinical MRI proto-
cols, given the long acquisition times, or require 
extensive postprocessing. However, these tech-
niques are highly promising measures to investi-
gate mechanisms of MS disease pathogenesis, 
facilitate the development of novel treatments as 
well as potentially improving diagnostic certainty 
and prognostication.

Conclusion
MRI has become an established tool for the diag-
nosis and monitoring of MS and has advanced the 
field of MS significantly. The great potential of 
MRI for atrophy measures and cortical lesions has 
been increasingly appreciated, yet there remains a 
need for refined MRI sequences and new tech-
niques. With respect to treatment efficacy and 
treatment safety monitoring, MRI has gained 
more importance and is crucial for the assessment 
of optimal treatment response, or treatment fail-
ure, and is invaluable for the early diagnosis of 
PML. In regards to new sequences, there has been 
substantial advancement of knowledge in the field 
of imaging, which has generated great research 
interest in the utilization of these modalities to 
advance our knowledge of MS and potentially fos-
ter in a new generation of treatment targets.
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