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Reduced global brain metabolism but
maintained vascular function in amnestic
mild cognitive impairment
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Abstract

Amnestic mild cognitive impairment represents an early stage of Alzheimer’s disease, and characterization of physio-

logical alterations in mild cognitive impairment is an important step toward accurate diagnosis and intervention of this

condition. To investigate the extent of neurodegeneration in patients with mild cognitive impairment, whole-brain

cerebral metabolic rate of oxygen in absolute units of mmol O2/min/100 g was quantified in 44 amnestic mild cognitive

impairment and 28 elderly controls using a novel, non-invasive magnetic resonance imaging method. We found a 12.9%

reduction (p¼ 0.004) in cerebral metabolic rate of oxygen in mild cognitive impairment, which was primarily attributed

to a reduction in the oxygen extraction fraction, by 10% (p¼ 0.016). Global cerebral blood flow was not found to be

different between groups. Another aspect of vascular function, cerebrovascular reactivity, was measured by CO2-inhal-

ation magnetic resonance imaging and was found to be equivalent between groups. Therefore, there seems to be a global,

diffuse diminishment in neural function in mild cognitive impairment, while their vascular function did not show a

significant reduction.
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Introduction

Amnestic mild cognitive impairment (MCI) is thought
to represent an early stage of Alzheimer’s disease
(AD)1,2 and is postulated to be an ideal stage for AD
intervention.3–8 Many studies have investigated ima-
ging biomarkers of MCI. Glucose metabolism mea-
sured by fluorodeoxyglucose (FDG) positron emission
tomography (PET) has been used extensively in AD
and, to some extent in MCI patients as a marker of
neurodegeneration.7,9–12 However, FDG PET cannot
provide absolute quantification of brain metabolism
without arterial blood sampling, thus usually only esti-
mates relative metabolism using cerebellum or pons as
a reference. It is therefore unclear how absolute metab-
olism of the brain as a whole may alter in MCI.
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Furthermore, FDG PET measurement is associated
with ionizing radiation and is not suitable for the pur-
pose of routine screening.

Cerebral blood flow (CBF) can be quantitatively
measured without ionizing radiation. Since CBF is
often tightly coupled with cerebral metabolism,13,14 it
has been used as a surrogate marker of neurodegenera-
tion in AD and MCI.15–18 However, CBF can also be
altered by physiological changes other than cerebral
metabolism, including vascular risk factors that are
common in Alzheimer’s patients. Indeed, several stu-
dies of cerebrovascular reactivity (CVR) have provided
evidence of a vascular dysfunction in AD and MCI
patients,17,19 and some are predictive of cognitive
impairment.20,21 Therefore, in order to differentiate
the effects of neurodegeneration from vascular deficits,
it is useful to evaluate metabolism and blood flow
separately.

Our laboratory has recently developed, and vali-
dated a technique to measure the brain’s global metab-
olism with magnetic resonance imaging (MRI).22,23 The
technique does not require any exogenous tracer, can
be completed within 5min on a standard 3T, has a test-
retest variability of less than 4%, and has recently been
evaluated in a multi-site setting.24,25 Furthermore, this
method can provide absolute values of global brain
metabolism in physiological units of mmol O2/min/
100 g brain tissue, an advantage over the FDG measure
of a ratio index only. Therefore, the present work rep-
resents the first study to apply this novel imaging tech-
nique to examine absolute brain metabolic rate in MCI
patients and is different and complementary to earlier
work using FDG PET which is more focused on rela-
tive changes in localized brain regions.9,10,12

Another advantage of this technique, which includes
a T2-Relaxation-Under-Spin-Tagging (TRUST) MRI
and a phase-contrast (PC) MRI, is that global oxygen
extraction fraction (OEF) and CBF can be obtained in
the same measurement. This is useful because they pro-
vide some causal insight as to whether changes in brain
metabolism is due to insufficient blood supply or
because the tissue itself has (partly) lost the ability to
extract and consume oxygen. This can shed some light
on the neural versus vascular origin of the metabolic
change.

In the present study, we measured several physio-
logical parameters related to brain oxygen utilization,
specifically cerebral metabolic rate of oxygen (CMRO2),
OEF, and CBF, in MCI individuals using completely
non-invasive MRI methods. The results were compared
with those from age-matched, cognitively intact controls.
In addition to these baseline measures, we also evaluated
cerebrovascular reserve of the participants using a novel
CO2-inhalation technique,26 which provided further
information on the vascular function of the MCI patients.

Methods

Participants

This study was approved by the Institutional Review
Boards of the University of Texas Southwestern
Medical Center and Texas Health Presbyterian
Hospital of Dallas. The study was performed in accord-
ance with the ethical guidelines of the Belmont Report.
All participants gave informed written consent before
participating in the study. Forty-four volunteers with
amnestic MCI (including both early and late MCI as
defined in ADNI-GO8) and 28 cognitively normal eld-
erly control (EC) volunteers were recruited using local
newspaper advertisements, from senior centers, and the
University of Texas Southwestern Medical Center’s
Alzheimer’s Disease Center. The demographic informa-
tion of the participants is summarized in Table 1.
All participants underwent extensive health screening
and had no contraindications to MRI scanning (pace-
maker, implanted metallic objects, and claustrophobia)
and were generally in good health with no major or
unstable medical conditions based on medical history
data and physical exams. Subjects were excluded if they
had any cardiovascular (e.g., uncontrolled hyperten-
sion, Type 2 diabetes) or cerebrovascular diseases
(e.g., history of stroke, transient ischemic attack),
major psychiatric or neurological disorders, chronic
inflammatory diseases, dementia or substance abuse.

The diagnosis of amnestic MCI was based on the
protocol described by the ADNI study (http://adni-
info.org). Briefly, all MCI volunteers had a Clinical
Dementia Rating (CDR) scale27 score of 0.5 and a
delayed logical memory (LM) of 1–1.5 SD below the
population mean. All EC volunteers had a CDR score
of 0. The Mini-Mental-State-Exam (MMSE)28 scores
did not differ between groups (p¼ 0.71) as shown in
Table 1.

MRI experiment

Experiments were performed on a 3 Tesla MRI scanner
using an 8-channel head coil (Philips Healthcare, Best,
The Netherlands). A body coil was used for RF trans-
mission. Foam padding was placed around the head to
minimize motion during MRI scan acquisition.

The following functional MRI biomarkers were
measured from all study participants: global CMRO2

and the associated OEF and CBF, and CVR to CO2

inhalation.

Global CMRO2

Global CMRO2 was measured based on the widely used
Fick principle and was described previously.29–31 Briefly,
CMRO2 (in unit of mmol O2/min/100 g brain tissue)
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was quantified based on arterio-venous difference in
oxygen content32 and can be written as

CMRO2 ¼ CBF�OEF� Ca ¼ CBF� Ya � Yvð Þ � Ca

ð1Þ

where CBF represents the amount of blood supply to
the brain, Ya is the arterial blood oxygen saturation
fraction (in %), Yv is the venous oxygen saturation
fraction (in %), and OEF (¼Ya � Yv) is the OEF.
Ca is a constant representing the oxygen carrying cap-
acity of unit volume of blood and is 8.97mmol O2/mL
blood based on literature.33

In this study, Ya was measured with a pulse oxim-
eter, and the other two parameters were measured with
MRI. The scan duration of a complete set of CMRO2

measurement was 4min. The measurement of Yv is
traditionally a bottleneck for MR techniques. In the
present study, we used a recently developed and vali-
dated technique, TRUSTMRI, to non-invasively meas-
ure the global venous oxygenation in the sagittal
sinus.22 The details of the technique have been exten-
sively described previously.22,34 The main advantage of
the TRUST method is that it accounts for partial
voluming between blood and tissue by using the
spin tagging principle, through which the static tissue
signals are canceled out. Furthermore, structural
changes in sinus size are not expected to affect the esti-
mation because the oxygenation assessment in
TRUST is based on T2 relaxation time rather than
the signal strength itself. It used the following imaging

parameters: single-shot echo-planar imaging acquisi-
tion in the axial plane, voxel size¼ 3.44� 3.44� 5mm3,
field-of-view (FOV)¼ 220� 220� 5mm3, repetition
time (TR)¼ 6800ms, echo time (TE)¼ 3.6ms, inversion
time (TI)¼ 1022ms, labeling slab thickness¼ 80mm,
gap between the imaging slice and labeling slab¼ 20mm,
and four different T2 weightings, with eTE¼ 0ms, 40ms,
80ms, and 160ms, corresponding to 0, 4, 8, and 16
refocusing pulses during the T2 preparation in the
pulse sequence. Global CBF was determined by measur-
ing the flux in the four major feeding arteries of the
brain, left/right internal carotid and left/right vertebral
arteries, using a PC MRI technique. Imaging parameters
for the PC scan are as follows: single-slice acquisition,
voxel size 0.45� 0.45� 5mm3, FOV¼ 230� 230�
5mm3, maximum velocity encoding¼ 80 cm/s, and
scan duration¼ 30 s.

Global CMRO2 data were processed with in-house
MATLAB (Math-works, Natick, MA, USA) scripts.29,35

For the PC data, four regions of interest (ROI) were
drawn on the left and right internal carotid arteries
and on the left and right vertebral arteries, on the mag-
nitude image. Masks were then created for the arteries
using the ROIs. This mask was then applied to the
phase image (velocity map) to obtain whole-brain
blood flow in the units mL/min. CBF in unit volume
of brain tissue (mL/100g/min) was obtained by normal-
izing the total CBF to the brain volume (sum of gray
matter and white matter volume), which was obtained
from the high-resolution T1-weighted magnetization-
prepared-rapid-acquisition-of-gradient-echo (MPRAGE)
image, using functions from the Functional Magnetic

Table 1. Demographic, neuropsychological, and vascular risk factor information of the study participants.

MCI EC p value

Demographic Age (years) 64.0� 6.6 65.6� 6.8 p¼ 0.339 (n.s.)

Age range (years) 55–78 55–80 –

Gender 18M/26F 13M/15F –

Education (years) 16.0� 2.1 16.1� 2.3 p¼ 0.808 (n.s.)

Cognitive MMSE 28.9� 1.4 29.0� 1.0 p¼ 0.706 (n.s.)

LM immediate recall 11.2� 2.5 15.2� 2.8 p< 0.001

LM delayed recall 9.5� 2.5 14.5� 2.6 p< 0.001

Trails A 27.5� 10.2 28.2� 13.5 p¼ 0.811 (n.s.)

Trails B 76.3� 29.4 63.0� 16.9 p¼ 0.036

Trails B–A 48.7� 22.9 34.8� 18.4 p¼ 0.01

CVLT free delay recall 9.3� 2.4 11.9� 2.5 p< 0.001

Vascular Mean arterial

pressure (mmHg)

92.6� 8.0 93.3� 8.4 p¼ 0.708 (n.s.)

White matter

hyper-intensity volume (mL)

2.7� 3.3 3.4� 4.6 P¼ 0.445 (n.s.)

MCI: mild cognitive impairment (N¼ 44); EC: elderly control (N¼ 28); MMSE: Mini-Mental-State-Exam; LM: logical memory;

CVLT: California Verbal Learning Test; n.s.: not significant. Values are mean� standard deviation.
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Resonance Imaging of the Brain (FMRIB) Software
Library (FSL) (FMRIB, Oxford University, Oxford, UK).

TRUST data were processed using methods that
were described previously.22 Briefly, after pairwise sub-
traction of the control and label images, an ROI was
drawn over the sagittal sinus and signal from over the
four brightest voxels over the sagittal sinus are aver-
aged to obtain the venous blood signal from the sagittal
sinus for each of the four images acquired at separate
echo times. The venous blood signals were then fitted
using a mono-exponential function to obtain the T2

value. The T2 was then converted to the Yv using a
calibration plot obtained from in vitro blood experi-
ments performed under controlled conditions of oxy-
genation, temperature, and hematocrit, which relates
the T2 value of venous blood to Yv.

CVR to CO2

CVR was measured with a hypercapnia challenge, in
which participants inhaled 5% CO2 gas while BOLD
MR images were continuously acquired. The details of
the CVR measurement were described previously.36–38

Briefly, during the CVR scan, subjects were fitted with a
nose clip, and breathed room air and the prepared gas
in an interleaved fashion (60 s CO2, 60 s room air,
repeated three times) through a mouthpiece. The pre-
pared gas was a mixture of 5% CO2, 74% N2, and 21%
O2 contained within a Douglas bag. The gas was deliv-
ered to the subject through a two-way non-rebreathing
valve and mouthpiece combination (Hans Rudolph,
2600 series, Shawnee, KS). A research assistant was
inside the magnet room throughout the experiment to
switch the valve and monitor the subject. BOLD MR
images were acquired continuously during the entire
experimental period. The end-tidal CO2 (Et CO2), the
CO2 concentration in the lung which approximates
that in the arterial blood, was recorded throughout the
breathing task using a capnograph device (Capnogard,
Model 1265, Novametrix Medical Systems, CT). The
total duration for the CVR scan was 7min.

Other MRI measurements

A T1-weighted high-resolution image was acquired
using the MPRAGE sequence (voxel size¼ 1� 1�
1mm3, scan duration¼ 4min).

To obtain white matter hyperintensities (WMHs), a
Fluid-Attenuated-Inversion-Recovery (FLAIR) image
was acquired. Imaging parameters of the sequence
were as follows: TR/TE¼ 11,000/125ms, TI¼ 2800ms,
FOV¼ 230� 230mm2, 24 slices, 5mm thick with 1mm
gap, reconstruction matrix¼ 512, scan duration¼ 3min,
40 s. The volume of WMHs was quantified from the
FLAIR image, using a procedure described in detail

elsewhere.39 To account for individual differences in
head size, total volume of WMH was normalized to
the intracranial volume.

Statistical analysis

Global CMRO2, OEF, and CBF values were compared
across subject groups using a linear regression model, in
which the physiological parameter is the dependent
variable, and diagnosis category (i.e., MCI or EC) is
the independent variable. Age and sex were covariates.
Potential impact of vascular risk factors, e.g., mean
arterial pressure and WMH volume, on global
CMRO2 was also assessed. The CVR maps were com-
pared voxel-wise across groups using the two-sample
t test in SPM. CVR voxel-wise data were considered
significant at a family-wise error (corrected for multiple
comparisons) threshold of p¼ 0.05.

Results

Demographic, neuropsychological, vascular risk
factor data

Demographic data are summarized in Table 1. There
was no difference in age, gender distribution, education,
and MMSE between the MCI and EC groups. As
expected, the Wechsler Memory Scale LM for immedi-
ate recall and delayed recall was poorer in MCI as com-
pared to EC. There was also a significant group
difference in Trails B (p¼ 0.036), California Verbal
Learning Test (CVLT) free delay recall (p< 0.001),
and Trails B–A (p¼ 0.01), but no difference in Trails A
(p¼ 0.811). The MCI and EC groups had similar vascu-
lar risk factors in terms of blood pressure (p¼ 0.708) and
WMH volume (p¼ 0.445). There was not a significant
association between blood pressure and global CMRO2

or between WMH volume and global CMRO2. 36.4%
and 42.9% of the MCI and EC participants, respect-
ively, received antihypertensive medications. 20.5%
and 32.1% of the MCI and EC, respectively, were
taking cholesterol lowering drugs. Regression analysis
revealed no association between antihypertensive medi-
cation and CMRO2 (p¼ 0.24) or between cholesterol
lowering drug and CMRO2 (p¼ 0.93).

Cerebral metabolic rate of oxygen

Figure 1 shows a representative image of the CMRO2

scan. Group results of global CMRO2, CBF, arterial
oxygen saturation, and OEF are plotted in Figure 2.
Linear regression revealed a significant effect
(p¼ 0.004) of diagnosis category on global CMRO2.
Average CMRO2 for the MCI volunteers was 12.9 %
lower compared to that in the EC group. The observed
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metabolic deficit in MCI volunteers could not be attrib-
uted to brain atrophy, as brain volume was accounted
for in the CMRO2 calculation. In fact, whole brain
volume was not different (p¼ 0.28) between groups;

it was 1136.1� 118.9 (mean� standard deviation) mL
in MCI volunteers and 1167.5� 122.8mL in EC volun-
teers. Gray matter volume was also measured and was
not different (p¼ 0.46) between the groups.

We further asked whether this reduction in oxygen
metabolism is because there is insufficient supply of
oxygen or because the neurons cannot extract oxygen
from the blood stream effectively. Specifically, oxygen
supply can be assessed by examining CBF and arterial
oxygen saturation (Ya). Figure 2(b) and (c) shows these
results. It can be seen that neither global CBF (p¼ 0.80)
nor arterial oxygen saturation (p¼ 0.57) showed a sig-
nificant difference between the MCI and control
groups. In contrast, when comparing the OEF between
the two groups (Figure 2(d)), a reduced OEF by 10%
(p¼ 0.016) is observed in the MCI patients.

Figure 2. Comparison of brain metabolism and associated physiological parameters between amnestic MCI patients and elderly

controls. (a) Global CMRO2, (b) CBF, (c) Arterial oxygen saturation (Ya), and (d) Oxygen extraction fraction (OEF).

Figure 1. A representative CMRO2 dataset. (a) Phase contrast

MRI for the measurement of global absolute cerebral blood flow

(CBF) and (b) TRUST MRI for the measurement of global venous

oxygenation (Yv).

Figure 3. Scatter plot between global CMRO2 and logical

memory (LM) delayed recall scores in the MCI participants.
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Global CMRO2 was found to be correlated (Pearson
correlation, r¼ 0.256, p¼ 0.03) with LM-delayed recall
scores across all participants (including both MCI and
EC). Furthermore, within the MCI group, global
CMRO2 showed a similar association with LM-delayed
recall scores (r¼ 0.259), although not statistically sig-
nificant due to a smaller sample size (p¼ 0.047, single-
tailed test). The scatter plot between CMRO2 and LM
scores for the MCI participants is shown in Figure 3.

Cerebrovascular reactivity

Group-averaged CVR maps for the ECs and MCI
volunteers are shown in Figure 4. Visual inspection sug-
gests that CVR in both groups is similar. Quantitative
comparison confirmed this result. Whole-brain gray
matter CVR was 0.174� 0.04%BOLD/mmHg and
0.170� 0.03%BOLD/mmHg for the MCI and EC
group, respectively, with no group difference (p¼ 0.74).
Voxel-by-voxel comparison between the two groups
similarly showed no significant differences.

Discussion

In the present study, we evaluated brain tissue oxygen
metabolism and CVR in MCI individuals using several
advanced imaging techniques. The main novel aspects
are (1) This study is distinctive from literature reports
using FDG PET in that the present study provides
absolute quantification of brain metabolism in MCI
patients, and the validity of our results does not rely
on the assumption that reference regions such as cere-
bellum or pons have normal metabolic rate. Our result
extended previous PET findings and showed that the
brain as a whole shows diminished oxygen utilization.
The large amplitude (12.9%) of this change suggests
that diminished brain metabolism is not restricted to
the focal regions identified by PET, e.g., posterior cin-
gulate cortex (PCC) and superior temporal cortex
(although they may be the most pronounced regions),
(2) a technical novelty is that these measurements are
performed without using ionizing radiation or any

exogenous agent, thus provide a great potential for
translation to routine clinical screening, and (3) this
study also provides some mechanistic insight as to the
cause of the diminished metabolism in MCI. We found
that global perfusion in MCI individuals is minimally
affected when compared to that of ECs, and further-
more their blood vessels can dilate as well as those of
EC when during vascular challenge (CO2 inhalation).
Thus, the lower metabolic rate of the tissue is most
likely attributed to dysfunction of neuronal tissue
itself, the mitochondria of which cannot consume as
much oxygen as that of an EC. When the condition
of the patient advances to the stage of AD, vascular
deficits are likely to become more apparent.17,40,41

Our findings of a reduction in brain tissue oxygen
utilization in MCI cannot be attributed to a loss in
brain volume,8,42 as neither gray matter nor whole-
brain volume showed a difference between the two
groups. Similarly, the volume of WMHs did not show
a difference. A possible mechanism for the global
reduction in CMRO2 observed in this study is elevated
oxidative stress and reduced mitochondrial function,
which has been previously reported in AD.43–46

Lower energy metabolism is consistent with findings
that AD/MCI patients manifest reduced EEG
rhythms,47,48 as neural synaptic potentials is the pri-
mary cellular process that consumes energy.

The findings of the present study have primarily
revealed a metabolic deficit in patients with amnestic
MCI, but did not found global changes in CBF. The
lack of global CBF change was somewhat surprising, as
prior research including our own has demonstrated a
regional CBF deficit in PCC and related regions.15–18

However, it should be noted that PCC only represents
about 1.14% of the whole brain volume,49 thus a 27%
reduction50,51 in PCC CBF would only translate to
0.3% in global CBF change, which is beyond the
detectability of global MRI measurements (Note: PC
global CBF measurement has a coefficient of variation
of about 5%52). Furthermore, deficits in PCC CBF as
often observed in Arterial Spin Labeling (ASL) studies
could be due to either a neural or a vascular deficit. In
fact, the most common interpretation of the ASL find-
ings is that it is a surrogate marker of glucose metab-
olism, thus is thought to reflect a neural rather than
vascular effect. Thus, the fact that there is ASL deficit
in MCI does not necessarily mean that there is vascular
dysfunction in this population.

The CVR data provide additional insights on vascu-
lar function in MCI, as CVR is presumably not
strongly dependent on metabolism and is thought to
be more vascular-specific. In our study, neither voxel-
by-voxel CVR comparison nor global CVR quantifica-
tion revealed a significant difference between the MCI
and EC participants, suggesting a minimal vascular

Figure 4. Averaged CVR maps (a) Elderly control group and

(b) Amnestic MCI group.
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deficit in the MCI cohort. Our findings of a lack of CVR
difference between MCI and EC are consistent with a
previous study in MCI patients by Richiardi et al.,19 who
reported an absence of difference in CVR amplitude
(although the response time was slower). One of our
previous studies in Alzheimer’s patients found that
CVR was significantly reduced in frontal lobe and
insula.17 One of the possible reasons for the discrepancy
from the present study is that AD is at a later stage of
the disease progression, thus vascular deficits may
become more pronounced. Another possible reason is
that the patients in that study had significantly greater
cardiovascular risk factors, including having a higher
fraction of participants taking antihypertensive and
cholesterol lowering medications, compared to control
participants (e.g., see Table 1 of Yezhuvath et al.17).
In the present study, on the other hand, the MCI and
control participants had no difference in blood pressure,
WMH volume, or antihypertensive or cholesterol low-
ering medications. Therefore, CVR difference in the pre-
vious study could be due to cardiovascular factors rather
than Alzheimer’s pathology.

A previous study in a similar MCI cohort has also
reported an 11% deficit in CMRO2, when evaluating
CMRO2 using ultrasound and near infrared spectros-
copy (NIRS).53 There are several differences between
that study and the present study. The most important
one is that the NIRS method cannot separate the arter-
ial vs. venous source in light absorption, thus its out-
come, tissue oxygenation index, reflects a combined
effect of arterial and venous oxygenation weighted by
an unknown factor. A second difference is that it meas-
ures oxygenation in a local region (usually a location in
the frontal lobe), and thus does not always reflect that
whole-brain oxygenation. Therefore, the present study
provides a more definitive examination of brain oxygen
metabolism in MCI individuals without those con-
founding factors. We were also able to detect a differ-
ence in venous oxygenation which the previous study
did not observe.

The findings from the present work should be inter-
preted in view of a few limitations. First, the sample
size of our study is modest. Wu et al.9 had a sample size
of 196 MCI and 109 healthy controls participants from
the ADNI cohort. Xekardaki et al. studied 75 cogni-
tively stable and 73 deteriorating participants. The
report of Viticchi et al. had a total of 117 subjects.
Our sample size of 28 MCI and 44 control subjects is
smaller than some of the previous reports, but is
comparable to several FDG glucose metabolism stu-
dies, e.g., Mosconi et al.10 (13 MCI, 11 controls),
De Santi et al.11 (15 MCI, 11 controls), Drzezga
et al.12 (22 MCI). Second, we did not include other
factors such as ApoE genotype in our regression ana-
lysis, thus our observation of a CMRO2 difference,

although unlikely, could be due to an ApoE effect.
Finally, our assignment of MCI and EC was based
on clinical (i.e., CDR) and neuropsychological (i.e.,
LM) scores, rather than neuropathology or amyloid
imaging. Thus, the amyloid status of our participants
is not known, and mis-categorization of participants is
possible.

In conclusion, the present work suggests that global
brain oxygen metabolism is diminished in MCI, which
is primarily attributed to a reduced extraction fraction
of oxygen by the tissue. Global blood flow and its
reserve in MCI individuals showed no difference from
EC. Imaging markers reported in this study may prove
valuable in understanding neurobiological changes in
the early stage of AD.
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