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Abstract

Thyroid hormone (TH) is recognized for its role in cellular metabolism and growth and 

participates in homeostasis of the heart. T3 activates pro-survival pathways including Akt and 

mTOR. Treatment with T3 after myocardial infarction is cardioprotective and promotes elements 

of physiological hypertrophic response after cardiac injury. Although T3 is known to benefit the 

heart, very little about its regulation at the molecular level has been described to date. The 

ubiquitin proteasome system (UPS) regulates nuclear hormone receptors such as estrogen, 

progesterone, androgen, and glucocorticoid receptors by both degradatory and non-degradatory 

mechanisms. However, how the UPS regulates T3-mediated activity is not well understood. In this 

study, we aim to determine the role of the muscle-specific ubiquitin ligase muscle ring finger-1 

(MuRF1) in regulating T3-induced cardiomyocyte growth. An increase in MuRF1 expression 

inhibits T3-induced physiological cardiac hypertrophy, whereas a decrease in MuRF1 expression 

enhances T3’s activity both in vitro and in cardiomyocytes in vivo. MuRF1 interacts directly with 

TRα to inhibit its activity by posttranslational ubiquitination in a non-canonical manner. We then 

demonstrated that a nuclear localization apparatus that regulates/inhibits nuclear receptors by 

sequestering them within a subcompartment of the nucleus was necessary for MuRF1 to inhibit T3 

activity. This work implicates a novel mechanism that enhances the beneficial T3 activity 
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specifically within the heart, thereby offering a potential target to enhance cardiac T3 activity in an 

organ-specific manner.
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Introduction

Thyroid hormone (TH) is recognized for its role in cellular metabolism and growth and 

participates in homeostasis of the heart. Its biologically active form (T3) is involved in 

directing myocyte alignment and geometry (Pantos et al. 2007b), extracellular matrix 

remodeling (Ghose Roy et al. 2007), and cardiac function through the effects on contraction 

(Bengel et al. 2000). T3 mediates both direct influences on cardiac function by affecting 

calcium flux and calcium handling proteins (Belakavadi et al. 2010, Zarain-Herzberg 2006), 

in addition to voltage-gated potassium channels to affect contractility (Gassanov et al. 2009, 

Mansen et al. 2010), and through transcriptional regulation as TH is a ligand for the thyroid 

hormone receptor, predominantly the α isoform, TRα in the heart. A decrease in TH 

concentrations has been observed in acute myocardial infarction, and low circulating TH is 

commonly observed with severe heart failure (HF) (Gerdes & Iervasi 2010, Iervasi & 

Nicolini 2013). Treatment with TH following myocardial infarction is cardioprotective 

(Mourouzis et al. 2011, Pantos et al. 2007a) and promotes elements of physiological 

hypertrophic response after cardiac injury (Mourouzis et al. 2013a). T3 activates many of the 

physiological changes that would benefit the heart, activating pro-survival pathways Akt and 

mTOR and paralleling changes induced by exercise-mediated by IGF-1 (Ojamaa 2010). 

Despite our rich knowledge of the cardioprotective effects of T3, little is known about the 

intracellular regulation of its action.

Intracellular regulation of nuclear receptors by posttranslational modification by ubiquitin is 

well known and involves two distinct mechanisms: 1) targeted degradation of nuclear 

receptors by the proteasome and 2) ubiquitination-altering activity in non-degradatory ways 

(Ismail & Nawaz 2005). For example, estrogen, progesterone, androgen, and glucocorticoid 

nuclear receptors are degraded in a proteasome-dependent manner in some conditions 

(Hirotani et al. 2001, Hoeck et al. 1989, Lange et al. 2000, Li et al. 1999, Lin et al. 2002, 

Nawaz et al. 1999), with their heterodimeric binding partners RARγ and RXR also degraded 

by parallel mechanisms (Kopf et al. 2000). The muscle-specific ubiquitin ligase MuRF1 has 

recently been shown to specifically inhibit PPARα, but not PPARβ/δ or PPARγ1, activity in 
vivo (Rodriguez et al. 2015). In contrast to the previous studies on nuclear receptors, MuRF1 

was found to inhibit PPARα in the cardiomyocyte through mono-ubiquitination that 

enhanced nuclear export without promoting PPARα degradation (Rodriguez et al. 2015). By 

mono-ubiquitinating one to three lysines adjacent to a newly identified nuclear export 

sequence in PPARα, MuRF1 inhibited PPARα-regulated fatty acid oxidation both in vitro 
and in vivo (Rodriguez et al. 2015). Complementary to these studies, the closely related 

muscle-specific ubiquitin ligase MuRF2 inhibited PPARγ1 (He et al. 2015), whereas 

MuRF3 inhibited PPARβ activity in vivo by mono-ubiquitination (Quintana et al. 2015). In 
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this study, we identify the cardiac ubiquitin ligase MuRF1 as an inhibitor of T3-induced 

physiological cardiac hypertrophy in vivo. We determined that MuRF1 directly interacts 

with a specific thyroid receptor to mediate its posttranslational modification and inhibit its 

activity. These studies then determined a previously undescribed mechanism in which 

MuRF1 inhibits T3 activity, by altering TRα localization via posttranslational 

ubiquitination.

Materials and methods

Preparation of T3 and free T3 concentration estimates

3,3′,5-Tri-iodo-l-thyronine (T3, #T2877; Sigma-Aldrich) was weighed (0.003 g) on an 

analytical scale, dissolved in 20 ml sterile PBS, heated at 37°C for 10 min, and vortexed at 

the highest setting for 1 min. As a percentage of T3 remains insoluble using this method, we 

determined the resulting free T3 of this preparation compared with alkalizing T3 with 1 N 

NaOH (1 mL per mg) and putting in PBS, as described by the manufacturer. Analysis of free 

T3 heated/vortexed vs NaOH solubilized was made on the Vitros 5600 chemistry analyzer 

(Ortho Clinical Diagnostics, Rochester, NY, USA) in a matrix-compatible diluent to a final 

concentration of 50 ng/mL. With NaOH solubilization and dilution in PBS, 52.3 ± 8.4 

ng/mL (N = 3) was recovered compared with 0.87 ± 0.012 ng/mL (N = 3). The recovery 

ratio (60.4 = 52.3/0.87) was used to estimate the concentrations of T3 in all the experiments 

described in vitro and in vivo.

Culturing of neonatal rat ventricular myocytes (NRVM), HL-1 cells, and in vitro 
experimental design

NRVMs were isolated using a commercial kit according to the manufacturer’s protocols, as 

described previously (#LK003300; Worthington Biochemical Corporation, Lakewood, NJ, 

USA) (Arya et al. 2004, Li et al. 2004). NRVMs cultured on fibronectin with medium 199 

(M199) supplemented with 15% FBS were serum starved, transduced with plasmids, and 

treated with 16.6 nM T3. The cardiac-derived HL-1 cell line was maintained as described 

previously (Claycomb et al. 1998, White et al. 2004). COS-7 cells were cultured using the 

supplier’s protocols (CRL-1651, ATCC; Manassas, VA, USA). myc-tagged MuRF1/

bicistronic GFP adenovirus (AdMuRF1), GFP adenovirus control, AdshRNA-MuRF1 

(shMuRF1), or a control vector with scrambled AdshRNA (CTL) was used as described 

previously (Kedar et al. 2004, Wadosky et al. 2014). Cells were transduced with 25–60 MOI 

for 24–48 h and incubated with T3 in serum-free DMEM. Cellular fractionation was carried 

out using the Nuclear Extraction Kit (#AY2002, Panomics, Fremont, CA, USA) according to 

the manufacturer’s protocol.

CAP350 silencing and size measurement of HL-1 cells

HL-1 cells were treated with Accell mouse CAP350 (centrosome-associated protein 350) 

siRNA (GE Healthcare) using 1 μM Accell siRNA as per the manufacturer’s delivery 

protocol. Size measurement off HL-1 cells was performed using Image J.
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TRα-mediated thyroid response element (TRE)-driven luciferase activity assay

Cos-7 cells were co-transfected with plasmids expressing β-galactosidase, growth hormone 

TRE luciferase reporter, as described previously (Liu et al. 2012), and the p3XFLAG-

CMV-14 (Sigma-Aldrich) either empty or with the murine TRα sequence subcloned into the 

vector at the EcoRI and BamHI restriction sites.

Cell immunoblot analysis

Cells were lysed in Cell Lysis Buffer (Cell Signaling), supplemented with protease 

(#11697498001; Roche) and phosphatase inhibitors (#04906845001; Roche), in addition to 

0.2 M glycerol-2-phosphate (Sigma-Aldrich) and resolved on NuPAGE gels (Novex; Life 

Technologies). Primary antibodies used in this study are β-actin (1:10,000, Cat. #A5441; 

Sigma-Aldrich), CAP350 (1:1000, Cat. #20022-1-AP; Acris Antibodies, San Diego, CA, 

USA), FLAG-TRα (1:1000, anti-FLAG #F7425; Sigma-Aldrich), GAPDH (1:10,000, Cat. 

#G8795; Sigma-Aldrich), MuRF1 (1:250–1:1000, #AF5366; R&D Systems), GAPDH 

(1:4000, G8795; Sigma-Aldrich), p-Rb (#sc-50; Santa Cruz Biotechnology), myc-tagged 

MuRF1 (1:4000, anti-myc, #C4439; or anti-myc-HRP-linked primary, 1:10,000, #A5598; 

Sigma-Aldrich), glutathione-S-transferase (GST)-tagged TRα (anti-GST; #G1160; Sigma-

Aldrich, 1:10,000), TRα (PA1-211A; Thermo Scientific, 1:500), and HA-ubiquitin (anti-

HA; #sc-57592, 1:1000). HRP-linked secondary antibodies used in this study are anti-mouse 

(#NA931V; GE Healthcare Life Sciences, 1:10,000), anti-rabbit (#A9169, Sigma-Aldrich, 

1:20,000), and anti-goat (#A5420; Sigma-Aldrich, 1:10,000).

Constructs for confocal TRα lysine domain mutants and GST-TRα mapping i.p. studies

DNA constructs for the full sequence of TRα1 containing modification of all lysine codons 

to encode arginine (K→R) were synthesized for each domain separately (A/B, C, D, and 

E/F: Supplementary Fig. S2 (see section on supplementary data given at the end of this 

article)) and subcloned into the p3xFLAG-CMV-14 expression vector, sequence verified, 

and transfected into cells.

Confocal immunofluorescence analysis and co-localization analysis

Cells grown on Flexcell plates (Flexcell International, Hillsborough, NC) were transfected 

with plasmids indicated, transduced (AdGFP or AdMuRF1), and treated with 16.6 nM T3 

(or vehicle) for 2 h. Cells were fixed in 4% formaldehyde, sectioned, and blocked in 0.4% 

Triton X-100/5% FBS. Primary antibodies were applied overnight followed by incubation 

with secondary antibodies. After washing, fixed cells were mounted onto glass slides with 

Fluoro-Gel II Mounting Media containing DAPI (17985-50; Electron Microscopy Services, 

Hatfield, PA, USA). A Leica DMIRB inverted fluorescence microscope (Leica 

Microsystems, Buffalo Grove, IL, USA) with a 40× objective lens and with a 10× 

Hamamatsu Orca ER camera (Bridgewater, NJ, USA) was used to analyze cell size.

Co-localization analysis was performed by determining the coefficient values representing 

the degree in which two different fluorescence channels (450, 488, 568, or 647) overlap in 

isolated regions of the cardiomyocyte using Volocity 3D Images Software Quantitation 

(PerkinElmer) (Lisby et al. 2003, Vandenbroucke St Amant et al. 2012). For TRα and 

nuclear co-localization, for every cell in each image, the nuclear region of the cell was 
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selected by tracing around the DAPI fluorescent signal. Then, quantitative co-localization 

analysis within the selected region was analyzed between 450 (DAPI) and 568 (TRα). 

Measurements were made using the Costes’ Pearson’s coefficient correlation statistics 

function provided within the software that uses the threshold values for each channel to 

adjust the final coefficient data. For correlation coefficients, numeric range is from 0 to 1, 

where 0 indicates no correlation and 1 indicates perfect correlation. For at least 20 cells per 

condition in at least three images, correlation coefficients were averaged and final data were 

presented as the average ± SE.

Co-immunoprecipitation

Transduced Cos-7 cells (AdGFP or AdMuRF1) treated with T3 (or vehicle) were lysed in 

buffer (50 mM Tris, pH 7.5, 30 mM NaCl, 1 mM EDTA, and 0.5% (v/v) Triton X-100) 

supplemented with 2× protease inhibitor cocktail (Roche) and 1× phosphatase inhibitor 

cocktail (Roche), then pre-cleared with 5 μg rabbit IgG (I5006; Sigma-Aldrich) and 2% 

(v/v) Protein A/G PLUS Agarose beads (sc-2003; Santa Cruz Biotechnology) per 1 mg of 

protein lysate for 1 hour at 4°C with rotation. Myc-MuRF1 was immunoprecipitated using 

5% (v/v) EZ View Red Anti-c-Myc Affinity Gel (E6654; Sigma-Aldrich) by incubating with 

anti-c-myc beads overnight at 4C with rotation.

GST pull down

Recombinant GST-TRα-mapping constructs were produced using BL21-CodonPlus 

Competent Cells transduced with pGEX-KG-TRα domain plasmids using standard 

protocols (Stratagene, La Jolla, CA, USA). Isolation of GST-tagged recombinant proteins 

was carried out using the BugBuster GST-Bind Purification Kit (70794-3; EMD Millipore 

Novagen, San Diego, CA, USA) according to the manufacturer’s protocol; the glutathione 

column with GST protein was then incubated with 1 mg protein lysate from Cos-7 cells 

transduced with AdMuRF1 overnight at 4C with rotation, allowing MuRF1 to bind TRα 
domains. Unbound proteins were then collected and elution steps were carried out according 

to the manufacturer’s protocol. Unbound and eluate fractions were immunoblotted for GST-

tagged recombinant TRα (anti-GST (#G1160), 1:10,000; Sigma Aldrich) and myc-tagged 

MuRF1 (anti-myc (#C4439), 1:4000; Sigma Aldrich).

Cell-free ubiquitination assay

To evaluate direct ubiquitination of TRα by MuRF1, human recombinant E1 (50 nM, Cat. 

#E-305; Boston, Biochem, Cambridge, MA, USA), human recombinant UbcH5c/UBE2D3 

(2.5 mM, Cat. #E2-627; Boston Biochem, Inc., Cambridge, MA), human recombinant 

ubiquitin (250 μM, Cat. #U-100 H; Boston Biochem), human recombinant his-6-MuRF1 

protein (1 mg, Cat. #E3-100; Boston Biochem), and human TRα recombinant protein (500 

ng; Abnova, Walnut, CA, USA) were added to the reaction buffer (50 mM HEPES, pH 7.5) 

containing 5 mM MgATP solution (Boston Biochem) and 0.6 mM DTT and were incubated 

overnight at 30°C. The reaction was stopped by SDS–PAGE sample buffer and heating, then 

resolved on a 4–12% Bis–Tris gel with MOPS running buffer (Invitrogen), and transferred to 

PVDF membranes for immunoblotting with rabbit polyclonal anti-TRα antibody (Thermo 

Scientific Pierce, Inc., Rockford, IL, USA) or rabbit polyclonal anti-MuRF1 antibody (R&D 

Systems).
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Animals, treatment with T3, conscious echocardiography

Male and female adult mice (8–16 weeks) from a knockout (MuRF1−/−) and a 

cardiomyocyte-specific MuRF1 transgenic (αMHC promoter driven) mouse (MuRF1Tg+) 

with strain-matched wild-type mice (MuRF1+/+ or wild type MuRF1Tg+ respectively) were 

used as described previously (Willis et al. 2007, Willis et al. 2009a). Randomly assigned 

mice were treated with 16.6 μg/kg/day 3,3′,5-tri-iodo-l-thyronine (T3, #T2877; Sigma-

Aldrich) dissolved in sterile PBS or PBS as a vehicle control via intraperitoneal injection 

(i.p.) for 2 weeks. Conscious echocardiographic analysis was performed at baseline, 1 week, 

and 2 weeks. After 2 weeks, mice were anesthetized to collect retro-orbital blood and then 

killed for tissue harvest. Hearts were quickly excised and frozen in liquid nitrogen and then 

stored at −80°C.

Histological analysis of mouse hearts

Fixed cardiac tissue was paraffin embedded, processed, sectioned, and stained with 

hematoxylin and eosin or Masson’s trichrome. Stained slides were scanned using an 

AperioScanscope and images were exported using AperioImagescope software (Aperio 

Technologies, Vista, CA, USA). Cardiomyocyte cross-sectional area was determined on MT-

stained slides using ImageJ software (NIH, MD, USA) on a minimum of six randomly 

selected regions per image (100× magnification) from three different hearts per group.

Analysis of T3 and T4 in serum

T3 and T4 was quantitated in serum using the Luminex MAGPIX system (EMD Millipore) 

with the MILLIPLEX MAP magnetic bead-based Multi-Species Steroid/Thyroid Hormone 

assay (Cat. #STTHMAG-21 K) analyzed on the MAGPIX Multiplexing instrument (Life 

Technologies).

Tissue immunoblot analysis

Mouse heart tissue was lysed in 8 M urea buffer and stored at −80°C. Antibodies 

recognizing Rb (Cat. #MA5–11387) and p-Rb (Cat. #MA5-12584) were obtained from Life 

Technologies (Carlsbad, CA, USA) and were used at 1:200 dilution. Antibody recognizing 

TRα (Cat. #PA1-211A; Thermo Scientific) and antibody recognizing GAPDH (Cat. 

#G8795; Sigma-Aldrich) were used at 1:200 and 1:10,000 dilutions respectively.

RT-qPCR

Ventricular tissue (5 mg) was homogenized using the TissueLyser LT (Qiagen). Cells were 

homogenized by syringe and needle in TRIzol (Life Technologies, Invitrogen), and total 

RNA was isolated according to the manufacturer’s protocols. cDNA was generated from 1 

μg RNA using a High-Capacity cDNA Archive Kit (Life Technologies, Invtirogen). One 

microliter of cDNA product was amplified in a LightCycler 480 Sequence Detection System 

(Roche) in 10 μl final volume using the LightCycler 480 Probes Master Mix (Roche). The 

PCR reaction mix included 0.5 μl of mouse-specific 20× Taqman probes (Life Technologies, 

Applied Biosystems): sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 

(Mm01201431_m1), MuRF1 (Mm01185221_m1), αMHC (Mm00440359_m1), 

mitochondrial adenine transporter (ANT) (Mm01207393_m1), ANF (Mm01255747_g1), 
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BNP (Mm00435304_g1), α1 skeletal muscle actin (ACTA1) (Mm00808218_g1), 

monocarboxylate transporter 8 (MCT8) (Mm01232724_m1), or monocarboxylate 

transporter 10 (MCT10) (Mm00661045_m1). Tbp (Mm00446971_m1) or 18 S 

(Hs99999901_s1) served as reference genes. The −−Ct method was used to determine the 

relative expression values that were normalized to the wild-type control group.

Statistical analysis

A two-way ANOVA with the Holm–Sidak post hoc test for all pairwise comparisons was 

used to evaluate the statistical significance with SigmaPlot software (Systat Software, Inc., 

Chicago, IL, USA). In TRα KR domain mutant experiments, a one-way ANOVA test was 

applied with an all pairwise post-test. The criterion for significance was a P-value of ≤ 0.05 

(Supplementary data, see section on supplementary data given at the end of this article).

Results

To identify the role of MuRF1 in regulating TH-induced physiological hypertrophy, HL-1 

cardiomyocyte-derived cells and neonatal rat cardiomyocytes (NRVMs) were stimulated 

with tri-iodothyronine (T3). As expected, T3 induced cardiomyocyte hypertrophy, reflected 

by increased CSA (Fig. 1A, B and C, Supplementary Fig. S1A, B and C, uncropped). T3 

stimulation of cardiomyocytes with MuRF1-knockdown (using AdshMuRF1, ~50% 

decrease in protein, Fig. 2C) resulted in a significant increase in CSA compared with T3 

alone (Fig. 1A). Conversely, increasing MuRF1 expression (AdMuRF1) significantly 

inhibited T3-induced increase in CSA in both HL-1 cells and NRVM (B and C). Together, 

these studies indicated a role of endogenous MuRF1 in attenuating T3-induced cardiac 

hypertrophy.

We next aim to further define how MuRF1 inhibits T3-induced cardiomyocyte hypertrophy 

mechanistically. We focused our attention on MuRF1’s regulation of thyroid receptor (TR) 

TRα1 activity, as it is the only isoform in cardiomyocytes that stimulates growth (the less 

common TRα2, and TRβ1 are present but lack this activity) (, Sabatino et al. 2007). In these 

studies, we identified that increasing MuRF1 expression significantly inhibited TRα-

induced TRE-luciferase activity (Fig. 2A). As another way to measure TRα activity, we next 

evaluated how increasing MuRF1 would affect TR target genes and identified that MuRF1 

significantly inhibited sarco/endoplasmic reticulum Ca2+-ATPase (SERCA expression (Fig. 

2B)). Other well-known TRα targets (αMHC and ANT) were not increased in these studies, 

which may be due to the limited 30-min T3 stimulation (Fig. 2B). As MuRF1’s inhibition of 

TRα could result from poly-ubiquitination and proteasome-dependent degradation (Kedar et 
al. 2004), we performed immunoblot analysis of TRα levels under conditions where MuRF1 

inhibited its activity and found that increasing MuRF1 did not change TRα protein 

concentration (Fig. 2C). As both increasing and decreasing MuRF1 expression in T3-

induced cardiomyocyte hypertrophy did not affect the steady-state levels of TRα (Fig. 2C), 

we were able to rule out MuRF1-mediated TRα degradation as a mechanism.

In recent studies, we demonstrated that MuRF1 inhibited PPARα activity similarly without 

affecting PPARα protein concentration (Rodriguez et al. 2015). Using confocal microscopy, 

we found that increasing MuRF1 removed nuclear PPARα in a majority of the cells that 

Wadosky et al. Page 7

J Mol Endocrinol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subsequent studies found was due to MuRF1-targeted increased in nuclear export 

(Rodriguez et al. 2015). Therefore, we next determined whether MuRF1 inhibits T3-induced 

TRα1 activity by altering TRα1’s nuclear localization. HL-1 cardiomyocytes were 

transfected with TRα1 and/or MuRF1 (+/−T3) and analyzed by confocal microscopy. 

Interestingly, T3 altered the nuclear localization of TRα1 (Fig. 3A, column 4) compared 

with controls (Fig. 3A, column 3). Specifically, it appeared that MuRF1 altered TRα1 

nuclear localization by moving it to the nuclear periphery, a region closely aligned with the 

endoplasmic reticulum and microtubule anchoring complexes. To confirm this localization, 

we first identified the co-localization of the nuclear proteins lamin β1 and desmin with 

TRα1 using confocal immunofluorescent analysis (Fig. 4A). Increasing MuRF1 expression 

significantly increased the co-localization of TRα1 with nuclear lamin β1 (Fig. 4), while 

similarly increasing the co-localization of TRα1 with desmin (Supplementary Fig. S2). 

Lastly, we assessed MuRF1’s effects on TRα1 nuclear localization by isolating the 

cardiomyocyte nuclear fraction by differential centrifugation and measuring the amount of 

TRα1 by immunoblot (Fig. 4B). Together, these studies demonstrate that increasing MuRF1 

sequestered TRα1 in the nucleus, to inhibit TRα1 nuclear activity.

To assess whether TRα is a MuRF1 substrate, we next determined whether MuRF1 

interacted directly with TRα by transfecting cells with MuRF1 and immunoprecipitating the 

myc-labeled MuRF1 (Fig. 5A). To determine the specific region of TRα that MuRF1 

interacts, we next performed a pull-down assay using recombinant TRα domains to identify 

their ability to interact with full-length MuRF1 (Fig. 5B). We found that MuRF1 binds the 

TRα hinge (or D, as denoted on the diagram) domain of the receptor (Fig. 5B, right). With 

evidence that MuRF1 interacts with TRα, we next tested MuRF1’s ability to ubiquitinate 

TRα in vitro. We identified that MuRF1 catalyzes TRα mono-ubiquitination (Fig. 5C), a 

posttranslational modification that does not target substrate for degradation, consistent with 

our initial findings in cardiomyocytes.

With evidence that MuRF1 mono-ubiquitinated TR in a cell-free system, we next aim to 

identify these in cells. We observed an unexpected complication of identifying MuRF1’s 

mono-ubiquitination in cells where a strong background of TRpoly-ubiquitination occurs 

(Fig. 5D). As described in cancer cells, poly-ubiquitination is a common way in which 

thyroid hormone receptors have been described natively (Fig. 5E, as described in TRβ) 

(Dace et al. 2000, Kenessey & Ojamaa 2005). As immunoprecipitated TRα was 

polyubiquitinated in control cells (Figure 5D, red box), we hypothesized that the poly-

ubiquitination competed for the sample lysines that MuRF1 mono-ubiquitinated. Support for 

this hypothesis came from studies with increased MuRF1 (AdMuRF1), where there was 

decreased poly-ubiquitination (Fig. 5D, blue box). While the identification of a mono-

ubiquitinated TRα was not achieved, we did identify the common dichotomy competing 

mono- and poly-ubiquitin for substrates, known to be dependent on the types of E2 present 

and ratios of E3 to substrates (He et al. 2015, Kim et al. 2007, Lai et al. 2001).

The centrosome-associated protein (CAP) CAP350 has recently been identified as protein 

involved in regulating nuclear receptor activity, including PPAR (Patel et al. 2005). Initially, 

we analyzed MuRF1’s effects on the co-localization of endogenous CAP350 and TRα in 

cardiomyocytes by confocal imaging (Fig. 6A). We found that increasing MuRF1 
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significantly increased nuclear CAP350 and the co-localization of CAP350 and TRα (Fig. 

6A, right two columns). The increased co-localization of CAP350 and TRα driven by 

increasing MuRF1 was most apparent in the perinuclear region following T3 stimulation 

(Fig. 6A, in yellow). To solidify CAP350’s mechanistic relationship to MuRF1’s inhibition 

of TRα, we next knocked down CAP350 (to < 50%, Fig. 6B) and determined its effect on 

cardiomyocyte cross-sectional area (Fig. 6C). In control cells, CAP350 knock-down 

attenuated the T3-induced cardiomyocyte hypertrophy (experimental group 3 vs group 2, 

Fig. 6C). The MuRF1 attenuation of T3-stimulated cardiomyocyte growth (experimental 

group 6 vs group 3, Fig. 6C) was significantly overcome (i.e increased in cross-sectional 

area size) with CAP350 knock-down (experimental group 5, Fig. 6C). Together, these 

studies demonstrate a role of CAP350 in MuRF1’s regulation of TR in cardiomyocytes.

We next aim to identify the region within TRα protein that MuRF1 ubiquitinates to modify 

its activity. A well-known challenge to studying protein ubiquitination is its heterogeneous 

nature; when a major ubiquitination site (lysine) is mutated, it is common for nearby lysines 

to be alternatively targeted (Xu & Jaffrey 2013). In practice, this means that mutating single 

lysines does not alter ubiquitination, even if the major site is mutated, as alternative sites are 

targeted. As the goal of mutating a lysine would be to prevent specific ubiquitination, we 

took an alternative approach and mutated lysine residues in specific regions of the TR 

protein. Four full-length TRα constructs were created with lysine residues mutated to 

arginine (KR) (Supplementary Fig. S3): TRα A/B (AF1, N-terminus), TRα C (DNA-

binding), TRα D (hinge), and TRα E/F (ligand-binding). These TRα constructs were then 

expressed in cardiomyocytes and assessed for their response to MuRF1 alterations in 

localization by confocal microscopy (). Increasing MuRF1 expression localized the TRA/B, 

C, and D lysine mutants to the perinuclear region as observed with the native receptor (Fig. 

7A). In contrast, cells expressing the E/F TR domain mutant exhibit a distinctly nuclear 

localization of the receptor rather than a perinuclear one as observed with the native form 

implying that MuRF1 ubiquitinates residues in this domain to negatively regulate TR 

function (Fig. 7A, far right). Interestingly, when the E/F TR domain mutant was expressed, 

CAP350 localization was affected, moving from a perinuclear to a pan-nuclear distribution 

(Fig. 7B, far right). Together, these studies illustrate that MuRF1 inhibits TRα activity by 

mono-ubiquitinating it in the E/F region, resulting in an interaction with CAP350 and 

nuclear sequestration in cardiomyocytes.

To determine the physiological relevance of these mechanistic findings in vivo, we next 

challenged MuRF1−/− and MHC-MuRF1 cardiomyocyte-specific transgenic mice 

(MuRF1Tg+) with daily T3 i.p. for 2 weeks. We followed the cardiac phenotype by 

conscious echocardiography and histological analysis. Echocardiographic and histological 

assessment identified that T3 induced an exaggerated cardiac hypertrophy in MuRF1−/− 

compared with sibling-matched wild-type controls, evidenced by increases in left ventricular 

anterior wall thickness and LV mass (Fig. 8A, Table 1 for full echocardiographic data) and 

cardiomyocyte area (Fig. 8B). Interestingly, MuRF1−/− had an enhanced systolic function, 

reflecting increases in contractility and reflective of the T3-induced enhancements driven by 

increases in SERCA and phospholamban (Periasamy et al. 2008). Overall, the MuRF1−/− 

mice had a 53.6% increase in cardiomyocyte area compared with the 30.5% increase found 

in the wild-type controls (Fig. 8B). Consistent with these findings, the MuRF1Tg+ mice 
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challenged with T3 had an attenuated cardiac hypertrophy response in vivo (Fig. 8C). 

Echocardiographic and histological assessment identified that MuRF1Tg+ mice had 

significantly less LV anterior and posterior wall thickness compared with sibling-matched 

wild-type controls (Fig. 8A, Table 2 for full echocardiographic data) as well as 

cardiomyocyte area (Fig. 8D). Significant reductions in systolic function over time were 

observed (Fig. 8C), consistent with an increase in pathological hypertrophy, identified by 

increases in BNP, α1-skeletal muscle actin, and ANF (data not shown). The observed effects 

on TH-induced physiological hypertrophy in our mouse models were most likely attributable 

to MuRF1 activity as circulating concentrations of T3/T4 were not altered in MuRF1−/− or 

MuRF1Tg+ mice (Supplementary Fig. S5A and B). Furthermore, MCT8 and -10 expressions 

(transporters involved in the uptake and efflux of T3) were not significantly different across 

the genotypic groups (Supplementary Fig. S5C and D). All studies included parallel PBS-

injected controls, with no alterations seen (as detailed in Supplementary Tables S1 and S2). 

Overall, these studies demonstrate that the MuRF1−/− mice exhibited an exaggerated cardiac 

hypertrophy, while MuRF1Tg+ hearts lacked the development of cardiac hypertrophy in 

response to T3, consistent with a role for MuRF1 in inhibiting TRα activity in vivo. With no 

evidence for alterations in steady-state TRα protein levels in vivo (Supplementary Fig. S4), 

like those found in vitro (Fig. 2C), cardiomyocyte MuRF1’s inhibition of TRα is relevant in 

the intact heart illustrating alternative mechanisms that could be targeted to protect against 

heart failure in a tissue-specific manner.

Discussion

Understanding how the thyroid hormone receptor α is regulated is critical to our 

understanding of heart disease. Inhibiting TRα in myocardial infarction experimentally 

impairs post-ischemic performance due to activation of p38 and an increased 

phospholamban (Mourouzis et al. 2013b). Conversely, T3 therapy protects the heart against 

ischemia—reperfusion injury in a TRα-dependent manner (Pantos et al. 2011). T3 also 

seems to counteract the maladaptive responses implicated in adrenergic induced 

cardiomyocyte remodeling. Stimulation of cardiomyocytes with phenylephrine results in 

increased fetal gene expression (βMHC); co-stimulating cardiomyocytes with phenylephrine 

and T3 blocks these maladaptive changes, while increasing TRα expression in the nucleus 

and cytosol (Pantos et al. 2008). In models of myocardial infarction (acute coronary artery 

ligation) leading to compensated heart failure, a distinct pattern of TRα expression was 

found during the course of post-ischemic remodeling (Pantos et al. 2010). TRα was 

upregulated initially, then markedly decreased during the transition to decompensated heart 

failure, resulting in tissue hypothyroidism (Pantos et al. 2010). While circulating T3 and T4 

levels remained unchanged, a link between mTOR and TRα was identified (Pantos et al. 
2010). Together, these studies illustrate the critical role the TRα plays in heart failure and 

how regulating TRα expression can critically affect disease progression and severity.

The regulation of nuclear hormones by the ubiquitin proteasome system occurs in a myriad 

of ways (Ismail & Nawaz 2005). Some nuclear hormone receptors are degraded in both the 

presence and absence of their cognate ligands, such as the estrogen, progesterone, and 

glucocorticoid receptors (Hoeck et al. 1989, Lange et al. 2000 ; Nawaz et al. 1999). 

Alternatively, the androgen receptor and the PPARα are targeted to the proteasome in the 
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absence of ligand (Hirotani et al. 2001, Li et al. 1999, Lin et al. 2002). The closely related 

receptors that heterodimerize with PPARs, such as RARγ and RXR, are also degraded by 

the ubiquitin proteasome system with fewer details available (Kopf et al. 2000). We have 

recently extended these findings to demonstrate that the muscle-specific ubiquitin ligase 

MuRF1 specifically inhibits PPARα, but not PPARβ/δ or PPARγ1 activity in vivo 
(Rodriguez et al. 2015). In contrast to previous studies on nuclear receptors, we identified 

that MuRF1 had an inhibitory effect on PPARα in cardiomyocytes by enhancing nuclear 

export, not degradation. By multi-mono-ubiquitination of lysines adjacent to the newly 

identified nuclear export sequence in PPARα, MuRF1 inhibited PPARα-regulated fatty acid 

oxidation both in vitro and in vivo (Rodriguez et al. 2015). Complementary to these studies, 

the closely related muscle-specific ubiquitin ligase MuRF2 was found to inhibit PPARγ1 

(He et al. 2015), while MuRF3 inhibits predominantly PPARβ activity in vivo through 

mono-ubiquitination of substrates (Quintana et al. 2015).

While cardiac MuRF1 has multiple roles in the heart, a consistent theme of its activity has 

been its anti-hypertrophic activity (Wadosky et al. 2014, Willis et al. 2007, Willis et al. 
2009a, Willis et al. 2014) and regulation of metabolism. In pressure overload-induced 

cardiac hypertrophy, MuRF1 inhibits pathological hypertrophy by inhibiting the serum 

response transcription factor (Willis et al. 2007, Willis et al. 2009a, Willis et al. 2014). In 

physiological hypertrophy induced by exercise (IGF-1), MuRF1 transcriptionally inhibits 

cardiomyocyte growth by inhibiting cJun-mediated increases in IGF-1 signaling proteins 

(Wadosky et al. 2014), by preferentially recognizing phospho-cJun, poly-ubiquitinating, and 

targeting it for proteasome-dependent degradation in vivo (Li et al. 2011). Metabolically, 

MuRF1 has been found to ubiquitinate oxidized creatine kinase, mediating its turnover in 
vivo. Increasing MuRF1 decreases creatine kinase activity significantly in the intact heart, 

resulting in a reduction of this critical transporter of ATP from the mitochondria to the 

sarcomere, resulting in heart failure (Willis et al. 2009b, Zhao et al. 2007). MuRF1 also 

inhibits PPARα (Rodriguez et al. 2015), interacts with a host of energy-related proteins 

(Witt et al. 2005), and alters the cardiac metabolome in vivo (Banerjee et al. 2015). Building 

upon this larger theme, this study demonstrates MuRF1’s anti-hypertrophic role in T3-

mediated cardiomyocyte growth, with broader implications in T3-regulated metabolic rates 

critical to cardiac function in health and disease.

The link between MuRF1 and the centrosome-associated protein 350 (CAP350) stems from 

the observation that MuRF1 alters nuclear TRα distribution in a similar manner as CAP350 

does with PPARα (Patel et al. 2005). Although the role of CAP350 in regulating nuclear 

hormone receptors (such as TRα) is established (Lelievre et al. 2008, Patel et al. 2005), the 

mechanistic details have yet to be elucidated. In previous studies, the recently defined 

centrosome- and cytoskeleton-associated protein CAP350 was found to inhibit PPARα 
activity by redirecting PPARα’s nuclear distribution to the perinuclear area with punctate 

distribution (Patel et al. 2005). In this study, we similarly observed that MuRF1 altered the 

nuclear distribution of TR (Fig. 3A), which led to subsequent studies to delineate the 

underlying mechanistic relationship between MuRF1’s anti-hypertrophic activity with T3 

stimulation and MuRF1’s reliance upon CAP350 for preventing hypertrophic growth (Fig. 

6C). The present studies illustrate that MuRF1’s attenuation of T3-induced cardiomyocyte 

growth is dependent on TRα mono-ubiquitination of the ligand-binding domain (Fig. 7) and 
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interaction with CAP350 (with significantly smaller cardiomyocytes with MuRF1 and 

CAP350 present, Fig. 6C, group 6). Our working hypothesis on the role of MuRF1 in this 

process is that MuRF1 mono-ubiquitinates TRα to enhance its affinity for CAP350, which 

sequesters TRα-Ub in nuclear compartments making it inaccessible to DNA promoters to 

diminish transcriptional activity.

Protein mono-ubiquitination that results in an enhanced affinity to other proteins is a 

common molecular process noted in the biology of cancer. An established example is the 

ubiquitin ligase MDM2, which mediates p53 mono-ubiquitination. In this system, p53 

mono-ubiquitination alters its conformation to preferentially bind CRM1 (a subunit of the 

nuclear export apparatus), which then enhances p53 nuclear export resulting in activity 

inhibition (Brooks et al. 2007, Lee & Gu 2010). This is an emerging, common theme, 

further illustrated with the estrogen receptor (ER), when the BRCA1 ubiquitin ligase mono-

ubiquitinates it to inhibit its activity (Ma et al. 2010) and the suppression of DNA 

polymerase Eta, when mono-ubiquitinated by the Pirh2 ubiquitin ligase (Jung et al. 2011). 

The present studies demonstrate a novel role for CAP350 activity in the heart and an 

emerging role in regulating TRα activity that has not been previously reported.

Posttranslational modification of TRα by ubiquitin has not previously been described; 

however, its regulation by the closely related small ubiquitin-related modifier (SUMO) has 

been in cancer. Paralleling the ubiquitination process, SUMOylation involves the addition of 

a single SUMO modification, added by the cooperation of the SUMO E1, E2, and E3 

(SUMO ligase) enzymes. Interestingly, SUMO modification alters cellular processes, 

including nuclear transport, transcriptional regulation, apoptosis, and protein stability 

without degrading its substrate. SUMOylated TRα has been reported in both liver (HepG2) 

and pituitary (GH3) cell lines (Liu et al.2012), mediated by the SUMO ligase PIAS1. In the 

absence of ligand, PIAS1 SUMOylates TRα, whereas the SUMO ligase PIASx SUMOylates 

TRβ only in the presence of ligand (Liu et al. 2012). Both SUMO1 and SUMO3 (two 

different types of SUMO modification) have been reported in T3-dependent gene regulation, 

closely matching TR activity and cofactor recruitment to the TRE in ChIP assays (Liu et al. 
2012).

This study describes a non-canonical ubiquitination (mono-ubiquitination) of TRα, which 

parallels the process of TRα SUMOylation. Both SUMOylation and mono-ubiquitination 

occur at specific lysines and do not result in degradation of TRα. SUMOylation and mono-

ubiquitination also inhibit T3-induced TRα activity. Interestingly, TRα is SUMOylated at 

lysines 284 and 389 (Liu et al. 2012), both of which are within the ligand-binding domain 

(E/F region) of TRα, consistent with our findings that MuRF1 interacts with and catalyzes 

the addition of ubiquitin in the E/F domain of TRα are critical to regulation by MuRF1 (Fig. 

7, lysines 187 through 389, Supplementary Fig. S3 for additional information). The 

physiological importance of SUMOylation in health and disease is not known; however, the 

common T3-mediated growth functions of TRα make it likely that SUMOylation in 

hepatocytes and pituitary parallel the critical regulation of mono-ubiquitination in 

cardiomyocytes reported here.
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The exaggerated hypertrophy in the MuRF1−/− hearts is consistent with an enhanced 

cardiomyocyte TRα activity (Fig. 1A, Fig. 8A). Similarly, the lack of cardiac hypertrophy in 

the MuRF1Tg+ hearts was consistent with in vitro findings (Fig. 1B and C, Fig. 8D). 

However, the baseline MuRF1Tg+ heart function worsens after 2 weeks of T3 treatment (Fig. 

8C). One explanation for this may be the energetic defects seen in the MuRF1Tg+ mice, such 

as decreased creatine kinase activity and altered fatty acid oxidation (Rodriguez et al. 2015, 

Willis et al. 2009b). Conversely, the enhanced MuRF1−/− function seen with T3 stimulation 

(Fig. 8A) may reflect an athletic phenotype previously identified in the MuRF1−/− hearts that 

may be related (Hwee et al. 2014, Wadosky et al. 2014), but not fully due to enhanced T3 

activity resulting from decreased ubiquitination.

This study may offer several clinically relevant insights into approaches to treating heart 

failure. TH induces molecular changes that benefit the failing heart, including the 

stimulation of pro-survival pathways such as Akt and mTOR (Mourouzis et al. 2012) that is 

accompanied by improved cardiac function, paralleling changes induced by exercise, 

mediated by IGF-1 (Ojamaa 2010), to drive increases in contractile proteins critical to 

cardiac function and performance (Periasamy et al. 2008). Exercise has also been shown to 

increase myocardial TR expression and T3 levels in a small cohort of HF patients with 

ventricular assist devices (Adamopoulos et al. 2013), underscoring the role for TH in 

promoting positive adaptive remodeling of the injured heart. Exogenous approaches to 

supplementing TH also hold promise as low-dose T3 replacement has been shown to restore 

cardiac T3 levels and ameliorate dysfunction in preclinical models of heart failure (Weltman 

et al. 2014, Zhang et al. 2014). Additionally, long-term physiological T3 supplementation as 

an adjunct therapy in hypertensive heart disease has been beneficial in preclinical studies 

(Weltman et al. 2014) and may enhance ventricular remodeling in humans (Rajagopalan & 

Gerdes 2015). The use of T3 in heart failure has been a topic of discussion for many 

decades, with a growing number of animal and human studies suggesting that TH treatment 

may contribute to improved cardiovascular outcomes (Gerdes 2015), although off-target 

effects may limit application, particularly in patients who appear systemically euthyroid. 

The present studies offer insight into how one might specifically enhance the actions of TH 

by inhibiting MuRF1’s antagonism, thereby targeting muscle-specific activation without 

necessarily supplementing T3 systemically.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
MuRF1 inhibits T3-induced cardiomyocyte hypertrophy in vitro. (A) Confocal fluorescent 

images of HL-1 cardiomyocytes with MuRF1 gene knock-down (shMuRF1) in the presence 

and absence of T3 (16.6 nM). Gene-silencing controls (scrambled Adsh) were run in 

parallel. (B) Confocal image of HL-1 cells increased MuRF1 expression (AdMuRF1) treated 

with T3. GFP-transfected controls were included (AdGFP). (C) Primary neonatal rat 

ventricular myocytes (NRVM) with increased MuRF1 expression (AdMuRF1) and T3 

treatment. Fluorescent confocal images show cell volume highlighted by GFP (green) and 

nuclear staining with DAPI (blue). Graphs contain quantitative analysis of cell area (≥ 200 

cardiomyocytes averaged per group from three independent experiments). A two-way 

ANOVA test was used to determine statistical significance using a pairwise post-test and 

significance between groups is denoted by #P < 0.05 or ##P < 0.001. The F statistic and 

degrees of freedom (DF) were reported when dependence between groups was found to be a 

significant source of variation. *Significance at the level of adenovirus group, 

**Significance on the level of treatment group, 400× final magnification.

Wadosky et al. Page 19

J Mol Endocrinol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
MuRF1 inhibits TRα transcriptional activity following T3 treatment without affecting its 

steady-state levels. (A) TRE reporter assay results from Cos-7 cells co-transfected with 

luciferase plasmid containing TRE (or β-galactosidase control), and FLAG-TRα plasmid, 

transduced with AdMuRF1 (4 h), then treated with 16.6 nM T3 for 24 h (n = 3 independent 

experiments). Immunoblot verifying FLAG-TRα and myc-MuRF1 protein expression shown 

below graph. (B) Relative expression of TR transcriptionally regulated genes; HL-1 cells 

were transfected with AdMuRF1 (or AdGFP control) for 24 h and then treated with T3 for 

30 min (C) Immunoblot of endogenous TR protein expression following MuRF1 knock-

down (shMuRF1) or increased MuRF1 expression (AdMuRF1) in HL-1 cardiomyocytes (β-

actin = loading control). Quantitative data shown in graphs below blots. Data are represented 

as mean ± S.E.M. (n = 3 independent experiments). A two-way ANOVA test was used to 

determine statistical significance. *Significance on the level of plasmid group. The F statistic 

and degrees of freedom (DF) were reported when dependence between groups was found to 

be a significant source of variation. Significance between groups is represented as #P < 0.05 

as determined using a pairwise post-test; n.s. = not significant.
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Figure 3. 
MuRF1 increases TRα localization to nuclear region in cells treated with T3. HL-1 

cardiomyocytes were transfected with FLAG-TRα plasmid transduced with AdMuRF1 (or 

AdGFP) and treated with 16.6 nM T3 for 2 h. (A) Confocal immunofluorescent images used 

to define TRα (anti-FLAG, red) and nuclei (DAPI, blue) co-localization. (B) Secondary-

only fluorescence controls. Data are represented as mean ± S.E.M. (n = 3 independent 

experiments). For TRα/DAPI co-localization, a two-way ANOVA test was used to determine 

statistical significance. *Significance at the level of adenovirus group, **Significance on the 

level of treatment group. Significance between groups is represented as ##P < 0.001 as 

determined using a pairwise post-test, 400× final magnification.
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Figure 4. 
MuRF1 inhibits T3-induced TRα localization to the nuclear envelope (lamin β1). HL-1 

cardiomyocytes transfected with FLAG-TRα plasmid (empty FLAG = control), transduced 

with AdMuRF1 (AdGFP = control) for 4 h, and treated with 16.6 nM T3 for 2 h were 

assayed by confocal microscopy. (A) TRα (anti-FLAG, red) and endogenous lamin β1 

(green) co-localization at the nuclear membrane. A two-way ANOVA test was used to 

determine statistical significance. *Significance on the level of adenovirus group, 

**Significance on the level of treatment group. The F statistic and degrees of freedom (DF) 

were reported when dependence between groups was found to be a significant source of 

variation. Significance between groups is represented as #P < 0.05, ##P < 0.001, as 
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determined using a pairwise post-test. (B) HL-1 cardiomyocytes were transduced with 

AdMuRF1 (24 h) and treated with 16.6 nM T3 (2 h) followed by fractionation. Immunoblot 

of endogenous TR and myc-MuRF1 after T3 treatment (p-Rb used as a loading control) in 

nuclear fraction. Data represent three independent experiments. A two-way ANOVA test was 

used to determine statistical significance with a pairwise post-test. *Significance on the level 

of adenovirus group, % Significant interaction between adenovirus and treatment groups, 

#Difference from treatment control group (criterion for cutoff; P < 0.05). Data are presented 

as mean ± S.E.M., 400× final magnification.
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Figure 5. 
MuRF1 interacts with and mono-ubiquitinates TRα. (A) Cos-7 cells transduced with 

AdMuRF1 and treated with 16.6 nM T3 for 2 h were used in analysis. Whole cell lysates 

were immunoprecipitated with myc-MuRF1 and probed for endogenous TRα to evaluate 

protein—protein interaction as shown in the blot (left). (B) GST-tagged recombinant 

peptides for each TR domain were used in an immunoprecipitation assay with myc-MuRF1 

followed by immunoblot to establish the specific domain bound by MuRF1 (right). Blots 

shown on top right show the MuRF1-bound regions of TR (predominantly D); the top blot 

shows the bound myc-MuRF1 (eluate) for each domain construct. The middle blot shows 

unbound myc-MuRF1 and the bottom membrane is a Ponceau stain of each isolated peptide 

to confirm expression of the expected molecular weight protein (constructs were also 

sequenced to verify product, data not shown). At the far right is a diagram indicating the 

various domains, for reference. (C) An in vitro biochemical assay was used to assess 

ubiquitination with exogenous MuRF1 and was detected by immunoblot with HA-tagged Ub 

antibody. (D) Cos-7 cells co-transfected with HA-Ub and FLAG-TRα and transduced with 
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AdMuRF1 (or AdGFP) at MOI 25 for 4 h; whole cell lysates were submitted to 

immunoprecipitation of FLAG-TRα followed by immunoblot for HA-Ub. The red box 

highlights ubiquitination in controls, whereas the blue box demonstrates the decrease in 

ubiquitination when MuRF1 expression is increased. Empty vector control (FLAG and HA) 

experiment blots are shown in left panel. (E) Diagram of TRα with known protein domains 

indicated in addition to the lysines within the E/F (ligand binding) domain with the 

corresponding (murine) amino acid sequence position (total of 15 residues). This region 

includes two lysines known to be targeted for regulation in the human isoform of TR for 

SUMOylation (K283 and K389).
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Figure 6. 
MuRF1 inhibition of T3-induced cardiomyocyte hypertrophy is dependent on the 

centrosome-associated protein 350 (CAP350). (A) Confocal immunofluorescent images of 

TRα (anti-FLAG, red) and CAP350 (green) in cells transduced/transfected with vectors 

indicated and treated with T3 for 2 h (Fig. 3 for fluorescence controls). Data are reported as 

the mean ± S.E.M. (n = 3 independent experiments). A two-way ANOVA test was used to 

determine statistical significance. *Significance on the level of adenovirus group, 

**Significance on the level of treatment group. Significance between groups is represented 

as ##P < 0.001 as determined using a pairwise post-test. (B) Knock down of CAP350 in HL1 
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cardiomyocytes using siRNA achieved >50% reduction in protein by immunoblot analysis. 

(C) Cell cross-sectional area analysis of T3-stimulated HL-1 cells with increased MuRF1 

(AdMuRF1) and CAP350 knock-down to identify the role of CAP350 in MuRF1-mediated 

inhibition of T3-induced hypertrophy. Data are reported as the mean ± S.E.M. (n = 2 

independent experiments). A one-way ANOVA test was used to determine statistical 

significance. Significance between groups is represented as *P < 0.05 vs all other groups, % 

P < 0.05 vs groups 1, 4, and $P < 0.05 in indicated comparisons, 400× final magnification.
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Figure 7. 
MuRF1-mediated TRα nuclear accumulation following T3 treatment is dependent on TRα 
ligand-binding domain (E/F region) lysines. HL-1 cardiomyocytes were transfected with 

plasmids containing FLAG-TRα with various lysine to arginine (KR) mutants 

(Supplementary Fig. S2), transduced with AdMuRF1 for 4 h, and treated with 16.6 nM T3 

for 2 h. (A) Nuclear localization of TRα was assessed using confocal immunofluorescent 

imaging of TRα (anti-FLAG, red) and nuclei (DAPI, blue). (B) MuRF1 (anti-myc, green) 

and TRα at the nucleus was assessed TRα (anti-FLAG, red). (C) TRα (anti-FLAG, red) 

and endogenous CAP350 (green). Data represent the mean ± S.E.M. A one-way ANOVA 

test was used to determine statistical significance. ##P < 0.001 as determined by a pairwise 

post-test, 400× final magnification.
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Figure 8. 
MuRF1’s attenuation of TRα activity is identified in both MuRF1−/− and cardiac (αMHC)-

MuRF1Tg+ mice in vivo after T3 stimulation. (A) Conscious echocardiographic data from 

wild-type (MuRF1+/+) and knockout (MuRF1−/−) receiving daily T3 i.p. (vehicle control = 

PBS) for 2 weeks (Table 1 for complete complementary echocardiographic data). (B) Gross 

and histological analysis of H&E and Masson’s trichrome hearts (100× magnification) from 

T3-treated MuRF1−/− mice. (C) Echocardiographic data from T3-treated wild-type 

MuRF1Tg+ and MuRF1Tg+ (Table 2 for complete complementary echocardiographic data). 

(D) Gross and histological analysis of H&E and Masson’s trichrome hearts (100× 

magnification) from T3-treated MuRF1Tg+ mice. A two-way ANOVA test was used to 

determine statistical significance using a pairwise post-test. For echocardiographic data: †P 
< 0.001 vs all other groups, ***P < 0.001 vs matched wild type, **P < 0.001 vs MuRF1+/+ 

and MuRF1−/− baseline; §P < 0.001 vs all other groups except MuRF1−/− +T3 at 2 

weeks, §§P < 0.001 vs all other groups except MuRF1−/− +T3 at 1 week. Data on 

cardiomyocyte area were generated from three mice per group by averaging values from 400 

cardiomyocytes per animal and statistical significance between indicated groups is 
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designated by #P < 0.05, ##P < 0.001. The F statistic and degrees of freedom (DF) were 

reported when dependence between groups was found to be a significant source of variation, 

20× final magnification.

Wadosky et al. Page 30

J Mol Endocrinol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wadosky et al. Page 31

Ta
b

le
 1

H
ig

h-
re

so
lu

tio
n 

tr
an

s-
th

or
ac

ic
 e

ch
oc

ar
di

og
ra

ph
y 

pe
rf

or
m

ed
 o

n 
co

ns
ci

ou
s 

M
uR

F1
−

/−
 a

nd
 a

ge
-m

at
ch

ed
 w

ild
-t

yp
e 

m
ic

e 
at

 b
as

el
in

e,
 1

 w
ee

k,
 a

nd
 2

 w
ee

ks
 

af
te

r 
da

ily
 i.

p.
 T

3 
tr

ea
tm

en
t. 

D
at

a 
re

pr
es

en
t m

ea
ns

 ±
 S

.E
.M

. G
ro

up
s 

w
er

e 
fi

rs
t a

na
ly

ze
d 

w
ith

 a
 o

ne
-w

ay
 a

na
ly

si
s 

of
 v

ar
ia

nc
e,

 a
nd

 if
 s

ig
ni

fi
ca

nt
, a

na
ly

ze
d 

w
ith

 a
 H

ol
m

–S
id

ak
 te

st
 f

or
 p

ai
rw

is
e 

co
m

pa
ri

so
ns

.

M
uR

F
1+

/+
 B

as
el

in
e 

n 
= 

10
M

uR
F

1−
/−

 B
as

el
in

e 
n 

= 
12

M
uR

F
1+

/+
 T

hy
ro

id
 

ho
rm

on
e 

1 
w

ee
k 

n 
= 

10
M

uR
F

1−
/−

 T
hy

ro
id

 h
or

m
on

e 
1 

w
ee

k 
n 

= 
12

M
uR

F
1+

/+
 T

hy
ro

id
 

ho
rm

on
e 

2 
w

ee
ks

 n
 =

 1
0

M
uR

F
1−

/−
 T

hy
ro

id
 

ho
rm

on
e 

2 
w

ee
ks

 n
 =

 1
2

LV
E

D
D

 (
m

m
)

3.
03

 ±
 0

.1
1

3.
08

 ±
 0

.1
2

3.
13

 ±
 0

.1
3

3.
87

 ±
 0

.1
5

3.
11

 ±
 0

.1
1

3.
00

 ±
 0

.1
4

PW
T

D
 (

m
m

)
0.

97
 ±

 0
.0

2
1.

04
 ±

 0
.0

4
1.

12
 ±

 0
.0

2*
*

1.
37

 ±
 0

.0
7*

*,
**

*
1.

28
 ±

 0
.0

5
1.

58
 ±

 0
.0

5†

A
W

T
S 

(m
m

)
1.

77
 ±

 0
.0

4
1.

82
 ±

 0
.0

6
1.

97
 ±

 0
.0

2
2.

23
 ±

 0
.0

8
2.

23
 ±

 0
.0

7
2.

44
 ±

 0
.0

6

PW
T

S 
(m

m
)

1.
58

 ±
 0

.0
1

1.
65

 ±
 0

.0
7

1.
81

 ±
 0

.0
6

2.
10

 ±
 0

.0
8

1.
93

 ±
 0

.0
8

2.
18

 ±
 0

.0
7

LV
 V

ol
; d

 (
L

)
36

.5
 ±

 3
.3

38
.2

 ±
 3

.8
39

.8
 ±

 3
.7

32
.6

 ±
 3

.8
39

.0
 ±

 3
.4

36
.3

 ±
 4

.1

LV
 V

ol
; s

 (
L

)
4.

8 
±

 0
.5

5.
5 

±
 0

.8
5.

8 
±

 0
.8

3.
0 

±
 0

.5
†

5.
7 

±
 1

.0
4.

0 
±

 0
.7

LV
 m

as
s 

(m
g)

10
7.

3 
±

 6
.1

12
4.

8 
±

 1
1.

1
13

9.
4 

±
 7

.6
18

7.
8 

±
 1

7.
6*

*,
**

*
17

0.
3 

±
 8

.8
**

23
7.

4 
±

 1
9.

8†

LV
 m

as
s/

B
W

 (
m

g/
g)

4.
1 

±
 0

.3
4.

7 
±

 0
.2

5.
2 

±
 0

.3
6.

4 
±

 0
.2

**
,*

**
5.

9 
±

 0
.3

**
8.

0 
±

 0
.2

†

B
W

 (
g)

26
.1

 ±
 0

.8
26

.7
 ±

 2
.5

27
.3

 ±
 0

.7
29

.0
 ±

 1
.9

28
.9

 ±
 1

.1
29

.5
 ±

 1
.8

H
R

 (
bp

m
)

66
5 

±
 9

67
0 

±
 1

3
70

8 
±

 2
1

72
7 

±
 1

1*
*

73
0 

±
 1

4*
*

72
9 

±
 1

0*
*

† P 
<

 0
.0

01
 v

s 
al

l o
th

er
 g

ro
up

s.

**
* P 

<
 0

.0
01

 v
s 

m
at

ch
ed

 w
ild

 ty
pe

.

**
P 

<
 0

.0
01

 v
s 

M
uR

F1
+

/+
 a

nd
 M

uR
F1

−
/−

 b
as

el
in

e.

§ P 
<

 0
.0

01
 v

s 
al

l o
th

er
 g

ro
up

s 
ex

ce
pt

 M
uR

F1
−

/−
 w

ith
 T

3 
at

 2
 w

ee
ks

.

§§
P 

<
 0

.0
01

 v
s 

al
l o

th
er

 g
ro

up
s 

ex
ce

pt
 M

uR
F1

−
/−

 w
ith

 T
3 

at
 1

 w
ee

k.
 H

R
, h

ea
rt

 r
at

e;
 E

xL
V

D
, e

xt
er

na
l l

ef
t v

en
tr

ic
ul

ar
 d

ia
m

et
er

; b
pm

, h
ea

rt
 b

ea
ts

 p
er

 m
in

ut
e;

 A
W

T
D

, a
nt

er
io

r 
w

al
l t

hi
ck

ne
ss

 in
 d

ia
st

ol
e;

 
A

W
T

S,
 a

nt
er

io
r 

w
al

l t
hi

ck
ne

ss
 in

 s
ys

to
le

; P
W

T
D

, p
os

te
ri

or
 w

al
l t

hi
ck

ne
ss

 in
 d

ia
st

ol
e;

 P
W

T
S,

 p
os

te
ri

or
 w

al
l t

hi
ck

ne
ss

 in
 s

ys
to

le
; L

V
E

D
D

, l
ef

t v
en

tr
ic

ul
ar

 e
nd

-d
ia

st
ol

ic
 d

im
en

si
on

; L
V

E
SD

, l
ef

t v
en

tr
ic

ul
ar

 
en

d-
sy

st
ol

ic
 d

im
en

si
on

; F
S,

 f
ra

ct
io

na
l s

ho
rt

en
in

g,
 c

al
cu

la
te

d 
as

 (
LV

E
D

D
–L

V
E

SD
)/

LV
E

D
D

 ×
10

0;
 E

F%
, e

je
ct

io
n 

fr
ac

tio
n 

ca
lc

ul
at

ed
 a

s 
(e

nd
 S

im
ps

on
’s

 d
ia

st
ol

ic
 v

ol
um

e 
– 

en
d 

Si
m

ps
on

’s
 s

ys
to

lic
 

vo
lu

m
e)

/e
nd

 S
im

ps
on

’s
 d

ia
st

ol
ic

 v
ol

um
e 

×
10

0,
 N

D
, n

ot
 d

et
er

m
in

ed

J Mol Endocrinol. Author manuscript; available in PMC 2017 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wadosky et al. Page 32

Ta
b

le
 2

H
ig

h-
re

so
lu

tio
n 

tr
an

s-
th

or
ac

ic
 e

ch
oc

ar
di

og
ra

ph
y 

pe
rf

or
m

ed
 o

n 
co

ns
ci

ou
s 

M
uR

F1
T

g+
 a

nd
 a

ge
-m

at
ch

ed
 w

ild
-t

yp
e 

m
ic

e 
at

 b
as

el
in

e,
 1

 w
ee

k,
 a

nd
 2

 w
ee

ks
 

af
te

r 
da

ily
 i.

p.
 T

3 
tr

ea
tm

en
t. 

D
at

a 
re

pr
es

en
t m

ea
ns

 ±
 S

.E
.M

. G
ro

up
s 

w
er

e 
fi

rs
t a

na
ly

ze
d 

w
ith

 a
 o

ne
-w

ay
 A

N
O

V
A

, a
nd

 if
 s

ig
ni

fi
ca

nt
, a

na
ly

ze
d 

w
ith

 a
 

H
ol

m
–S

id
ak

 te
st

 f
or

 p
ai

rw
is

e 
co

m
pa

ri
so

ns
.

M
uR

F
1T

g+  
W

ild
 

ty
pe

 B
as

el
in

e 
n 

= 
16

M
uR

F
1T

g+ 

B
as

el
in

e 
n 

= 
11

M
uR

F
1T

g+  
w

ild
 t

yp
e 

T
hy

ro
id

 h
or

m
on

e 
1 

w
ee

k 
n 

= 
16

M
uR

F
1T

g+  
T

hy
ro

id
 

ho
rm

on
e 

1 
w

ee
k 

n 
= 

10
M

uR
F

1T
g+  

w
ild

 t
yp

e 
T

hy
ro

id
 

ho
rm

on
e 

2 
w

ee
ks

 n
 =

 1
6

M
uR

F
1T

g+  
T

hy
ro

id
 

ho
rm

on
e 

2 
w

ee
ks

 n
 =

 1
1

PW
T

D
 (

m
m

)
1.

02
 ±

 0
.0

2
0.

96
 ±

 0
.0

2
3.

15
 ±

 0
.1

0
3.

27
 ±

 0
.1

1
3.

20
 ±

 0
.1

1
3.

54
 ±

 0
.1

3

A
W

T
S 

(m
m

)
1.

70
 ±

 0
.0

5
1.

54
 ±

 0
.0

6
1.

48
 ±

 0
.0

7§
,§

,*
*

1.
80

 ±
 0

.0
9*

**
1.

64
 ±

 0
.1

0§
,*

2.
23

 ±
 0

.1
4

LV
E

SD
 (

m
m

)
1.

53
 ±

 0
.0

7
1.

88
 ±

 0
.1

4
1.

36
 ±

 0
.0

6
1.

18
 ±

 0
.1

2
1.

41
 ±

 0
.0

4
1.

11
 ±

 0
.0

3*

PW
T

S 
(m

m
)

1.
58

 ±
 0

.0
4

1.
33

 ±
 0

.0
6

1.
86

 ±
 0

.0
5§

1.
60

 ±
 0

.0
3

1.
92

 ±
 0

.0
5§

,§
§,

*
1.

50
 ±

 0
.0

6

LV
 V

ol
; d

 (
L

)
37

.4
 ±

 2
.4

41
.6

 ±
 4

.6
40

.3
 ±

 3
.0

44
.1

 ±
 3

.7
42

.1
 ±

 3
.3

53
.4

 ±
 4

.6

LV
 V

ol
; s

 (
L

)
6.

8 
±

 0
.8

12
.0

 ±
 2

.1
6.

3 
±

 0
.9

10
.4

 ±
 1

.1
8.

5 
±

 1
.4

17
.9

 ±
 2

.4
†,

§,
§§

LV
 m

as
s 

(m
g)

11
6.

6 
±

 7
.3

10
7.

4 
±

 9
.3

17
8.

5 
±

 8
.3

13
7.

7 
±

 7
.4

20
1.

8 
±

 1
10

.8
§,

§§
,*

*
15

5.
0 

±
 1

0.
2

LV
 m

as
s/

B
W

 (
m

g/
g)

4.
1 

±
 0

.3
5.

1 
±

 0
.7

6.
2 

±
 0

.2
§

5.
2 

±
 0

.3
6.

7 
±

 0
.2

§,
§§

,*
*

5.
5 

±
 0

.3

B
W

 (
g)

29
.3

 ±
 1

.3
27

.7
 ±

 1
.8

29
.9

 ±
 1

.1
26

.9
 ±

 1
.5

29
.8

 ±
 0

.9
28

.1
 ±

 1
.1

H
R

 (
bp

m
)

71
1 

±
 1

3§
§

67
9 

±
 1

0§
§

80
2 

±
 9

80
2 

±
 7

79
8 

±
 1

3
76

8 
±

 6
§

† P 
<

 0
.0

01
 v

s 
al

l o
th

er
 w

ild
-t

yp
e 

gr
ou

ps
.

* P 
<

 0
.0

01
 v

s 
m

at
ch

ed
 w

ild
 ty

pe
.

**
P 

<
 0

.0
01

 v
s 

M
uR

F1
T

g+
 2

 w
ee

ks
 a

ft
er

 T
3 

tr
ea

tm
en

t.

**
* P 

<
 0

.0
01

 v
s 

M
uR

F1
T

g+
 b

as
el

in
e.

§ P 
<

 0
.0

01
 v

s 
ba

se
lin

e 
gr

ou
ps

§§
P 

<
 0

.0
01

 v
s 

1 
w

ee
k 

T
3 

gr
ou

ps
. H

R
, h

ea
rt

 r
at

e;
 E

xL
V

D
, e

xt
er

na
l l

ef
t v

en
tr

ic
ul

ar
 d

ia
m

et
er

; b
pm

, h
ea

rt
 b

ea
ts

 p
er

 m
in

ut
e;

 A
W

T
D

, a
nt

er
io

r 
w

al
l t

hi
ck

ne
ss

 in
 d

ia
st

ol
e;

 A
W

T
S,

 a
nt

er
io

r 
w

al
l t

hi
ck

ne
ss

 in
 

sy
st

ol
e;

 P
W

T
D

, p
os

te
ri

or
 w

al
l t

hi
ck

ne
ss

 in
 d

ia
st

ol
e;

 P
W

T
S,

 p
os

te
ri

or
 w

al
l t

hi
ck

ne
ss

 in
 s

ys
to

le
; L

V
E

D
D

, l
ef

t v
en

tr
ic

ul
ar

 e
nd

-d
ia

st
ol

ic
 d

im
en

si
on

; L
V

E
SD

, l
ef

t v
en

tr
ic

ul
ar

 e
nd

-s
ys

to
lic

 d
im

en
si

on
; F

S,
 

fr
ac

tio
na

l s
ho

rt
en

in
g,

 c
al

cu
la

te
d 

as
 (

LV
E

D
D

–L
V

E
SD

)/
LV

E
D

D
 ×

10
0;

 E
F%

, e
je

ct
io

n 
fr

ac
tio

n 
ca

lc
ul

at
ed

 a
s 

(e
nd

 S
im

ps
on

’s
 d

ia
st

ol
ic

 v
ol

um
e 

– 
en

d 
Si

m
ps

on
’s

 s
ys

to
lic

 v
ol

um
e)

/e
nd

 S
im

ps
on

’s
 d

ia
st

ol
ic

 
vo

lu
m

e 
×

10
0,

 N
D

, n
ot

 d
et

er
m

in
ed

J Mol Endocrinol. Author manuscript; available in PMC 2017 June 01.


	Abstract
	Introduction
	Materials and methods
	Preparation of T3 and free T3 concentration estimates
	Culturing of neonatal rat ventricular myocytes (NRVM), HL-1 cells, and in vitro experimental design
	CAP350 silencing and size measurement of HL-1 cells
	TRα-mediated thyroid response element (TRE)-driven luciferase activity assay
	Cell immunoblot analysis
	Constructs for confocal TRα lysine domain mutants and GST-TRα mapping i.p. studies
	Confocal immunofluorescence analysis and co-localization analysis
	Co-immunoprecipitation
	GST pull down
	Cell-free ubiquitination assay
	Animals, treatment with T3, conscious echocardiography
	Histological analysis of mouse hearts
	Analysis of T3 and T4 in serum
	Tissue immunoblot analysis
	RT-qPCR
	Statistical analysis

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	Table 2

