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Abstract

Preparation of a broad range of enantioenriched β-fluoro amines (α,β-disubstituted) is described 

in which the nitrogen and fluorine atoms are attached to sp3-hybridized carbons. The key finding 

is a chiral bifunctional Brønsted acid/base catalyst that can deliver β-amino-α-fluoro nitroalkanes 

with high enantio- and diastereoselection. A denitration step renders the nitro group ‘traceless’ and 

delivers secondary, tertiary, or vinyl alkyl fluorides embedded within a vicinal fluoro amine 

functional group. A concise synthesis of each possible stereoisomer of a β-fluoro lanicemine 

illustrates the potential ease with which fluorinated small molecules relevant to neuroscience drug 

development can be prepared in a stereochemically-comprehensive manner.

Graphical abstract

The introduction of the fluorine atom into small molecules has received increased attention 

in recent years,1 in recognition of its ability to impart specific and dramatic pharmacological 

effects in bioactive pharmaceutical and agrochemical small molecules. Replacement of a 

single hydrogen with fluorine in a small molecule can increase metabolic stability, improve 

lipophilicity, and improve bioavailability.2 Such a substitution, however, remains a 

formidable challenge, especially when the fluorine-bearing carbon is stereogenic.3 β-Fluoro 

amines are a specific class of fluorinated compounds4 that display remarkable CNS-

penetrant properties. Additionally, the β-fluoro amine Sofosbuvir is an RNA polymerase 

inhibitor that is in part responsible for the recent and unprecedented high cure rates of the 

hepatitis C virus.5 β-Fluoro amines exhibit decreased amine basicity and enhanced binding 
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interactions.6 From a synthetic standpoint, enantioselective methods to prepare chiral 

fluorocarbons have focused on C-F bond formation using both electrophilic7 and 

nucleophilic8,9 fluorine reagents.1 Herein we report an approach to saturated β-fluoro 

amines by carbon-carbon bond formation,10,11 reliant on a traceless nitroalkane activation 

strategy. A broad range of stereoenriched β-fluoro amines can be accessed, but of particular 

note is the convergency with which fluorinated derivatives of 1-phenethyl amines can be 

prepared,12 since these are common substructures of neurologically-active small molecules. 

β-Fluoro amines in which both carbons are chiral have few direct preparative solutions.

A convergent approach to the β-fluoro amine substructure involves formation of the central 

carbon-carbon bond, but requires both relative and absolute stereocontrol. Among possible 

fluoroalkyl nucleophiles activated by a traceless activating group (TAG,13 Scheme 1), esters, 

gem-diesters and nitroalkanes can be fluorinated, but only substrates bearing an α-fluoro 

carbonyl have been utilized broadly in enantioselective synthesis.14 Lu reported 

enantioselective reactions using α-fluorinated nitroalkanes, but an additional activating 

group (ester or aryl) at the fluoromethyl carbon was required in the additions to nitro-olefins 

for a reaction to occur.15 This highlights fluorine’s limited effect on nitroalkane acidity 

relative to its higher halogen counterparts (Scheme 1).16,17 Moreover, fluorine can actually 

deacidify carbon acids (Scheme 1): fluoronitromethane is less acidic than 

bromonitromethane, and fluoro dinitromethane is less acidic than dinitromethane.18

α-Fluoro nitroalkanes were prepared from their hydrocarbon parents by a deprotonation 

(KOH, aq CH3CN) and fluorination (Selectfluor) treatment as outlined by Guo.19 α-Fluoro 

aryl nitromethane 2 was used to first benchmark reactivity in a reaction with aldimine 1 
(Table 1). Brønsted base catalyst H,Quin-BAM (4a)20 provided a low level of conversion, 

and equally low levels of diastereoselection (2.1:1 dr) and enantioselection (25% ee) (Table 

1, entry 1). Increasingly Brønsted basic catalysts were examined, leading to good levels of 

conversion, but with little improvement to selectivity (Table 1, entries 2–3).21 Examination 

of the reactivity of catalyst 4c was extended to its acid salt (Table 1, entry 4), for which a 

corresponding increase in enantioselection, but not diastereoselection, was observed. 

Diastereoselection could be improved at the sacrifice of enantioselection by adding an 

additional electron-donating substituent to the catalyst (Table 1, entry 5), but its acid salt was 

unexpectedly less selective. The behavior was also observed with its 8-alkyl counterpart 

(Table 1, entry 7). It was not until a further increase in Brønsted basicity of the acid salts was 

sought that 6,7(MeO)2PBAM·HNTf2 (4g·HNTf2) emerged as the key to formation of 3 with 

high yield (97%), diastereoselection (4.8:1), and enantioselection (91/86% ee) (Table 1, c.f. 

entries 8–9). Use of the free base provided inferior results (Table 1, entry 10), in line with 

similar comparisons outlined above, but in stark contrast to earlier work with aryl 

nitromethanes that showed equal selectivity when comparing free base to its salt.22,23 A 

temperature decrease led to improved selectivity (Table 1, entry 11). Catalyst loading could 

be decreased at some expense to selectivity (Table 1, entries 12–13). Assignment of absolute 

configuration was made using X-ray analysis of 3.
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An investigation of the level of generality inherent to the reaction and catalyst reagent is 

summarized in Table 2. The overall objective was to target four general classes of β-fluoro 

amines, defined by the type of substituent – aryl or alkyl – at the aminomethyl (R1) and 

fluoromethyl (R2) carbons (R1,R2≠H). For example, the combination of aryl aldimine and 

aryl fluoronitromethane leads to a permutation with an aryl substituent at the aminomethyl 

and fluoromethyl carbons (3,7a–f). In this context, an electronically diverse group of aryl 

aldimines performed well (Table 2) en route to masked-fluoro stilbene amine compounds 

(vide infra). A highlight is the 3-pyridyl imine, resulting in relatively high diastereoselection 

at 6.9:1 dr and providing a heterocycle-containing product in high ee (Table 2, entry 6). A 

heterocycle is also allowable on the nitroalkane component, even when the pyridine nitrogen 

is in close proximity to the nitro group (Table 2, entry 7). This case was anticipated to be the 

most challenging from a catalyst selectivity standpoint, as it could serve as a frustrating 

hydrogen bond acceptor in the transition state. This feature may have contributed to the 

relatively low diastereoselection at 2.5:1 dr, but both diastereomers were formed with high 

enantioselection (95/94% ee), and in 81% yield (Table 2, entry 7).

N-Boc aldimines could provide an alkyl substituent at the aminomethyl carbon, but are 

challenging electrophiles due in part to their sensitivity to tautomerization to unreactive N-

Boc enamides. Under the standard conditions, α-fluoro phenyl nitromethane engaged the 

imine to produce the product in moderate yield (53%, two steps from the α-amido sulfone) 

at 0 °C and serviceable stereoselection (6.1:1 dr, 84% ee) (Table 2, entry 8). Gratifyingly, 

improved stereocontrol and yield were obtained at −20 °C (9:1 dr, 93% ee, 70% yield over 2 

steps: Table 2, entry 9) as a result of decreased imine tautomerization.24 Alkyl 

fluoronitroalkanes can be easily prepared (2 steps from various alkyl bromides)19 and are 

also suitable here for the first time in enantioselective catalysis, in direct contrast to 

previously reported attempts15 (Table 2, entries 10–12). Notably, the alkyl fluoronitroalkanes 

react only at warmer temperatures (24 °C), allowing for an even more simplified reaction 

setup. Regardless, high levels of stereocontrol can be readily obtained (7h; 5:1 dr, 93% ee, 

85% yield) (Table 2, entry 10).25

The coupling of two aliphatic partners (Bocimine and fluoronitroalkane) is the most 

challenging pair due to the lower reactivity of each (21% yield, 2 steps), yet very useful 

levels of stereocontrol can be achieved (7i; >10:1 dr, 84% ee) (Table 2, entry 11). In a final 
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example, an alkyl fluoronitroalkane can engage a heteroaromatic pyridyl Bocimine at room 

temperature to afford the adduct (7j) in good yield (84%) (Table 2, entry 12: 4.4:1 dr, 96% 

ee). Preliminary work to assess reactivity of α-fluoro nitroalkanes relative to their 

nonfluorinated counterparts replicated the trend suggested by relative pKa (Scheme 1).26 

This aligns with the hypothesis that a more Brønsted basic catalyst is necessary for 

activation, and may explain the lack of prior success.15

The addition reactions in Table 2 are the basis for a collective preparation of the four 

stereoisomers of β-fluoro amines, a need that is particularly pressing in therapeutic 

development where a small molecule’s conformation and protonation state affect its 

pharmacologic properties.27 We targeted fluorinated lanicemine (8), a stereoisomeric series 

of compounds unknown in the literature. Lanicemine (AZD-6765) is a potent, low-trapping 

NMDA receptor antagonist (Scheme 2).28 Preparation of both fluorine diastereomers would 

be considered important in exploratory studies for several reasons, including the 

conformational effects that result from the chiral fluoromethyl group.29 Using the (R,R) and 

(S,S) antipodes of 4g·HNTf2 separately, each enantiomer of the addition product 7f was 

obtained with high enantioselection (95–96% ee, Scheme 2). Conversions of β-fluoro-β-

nitro amines to β-fluoro amines are unprecedented,30 but were readily performed under 

reductive conditions using free radical-mediated denitration.31 It is this step that establishes 

the nitro functionality as a TAG.13 Boc-deprotection produced the desired β-fluoro-

lanicemine derivatives 8 in good yield overall.32

The potential versatility of the nitro group as a TAG was probed further (Scheme 3). 

Reductive allylation of 7a formed the tertiary fluoro-β-amine 9 in >10:1 dr and 53% yield.33 

Under basic conditions, conversion of 10 to vinyl fluoride 11 was accomplished by regio- 

and stereoselective elimination of the nitro group.34 This transformation establishes a new 

enantioselective approach to an amide isostere of phenyl glycine in this case.13j,35,36,37

In summary, a convenient stereocontrolled synthesis of β-fluoro amines has been developed, 

particularly those involving sp3-hybridized secondary and tertiary fluoromethyls. The 

approach required development of the catalyzed addition of α-fluoro nitroalkanes to imines, 

one that allowed each permutation of aryl and alkyl substituent to be used for each reactant. 

High diastereoselection and enantioselection is possible when using a more Brønsted basic 

ligand (4g) within the Brønsted acid catalyst (4g·HNTf2), which counteracted the acid-

weakening effect of fluorine on nitroalkane acidity. A selection of denitrative 

functionalizations provided entry to several fluorinated pharmacophores.
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Scheme 1. 
Considerations for use of a Traceless Activating Group Strategy for Enantioselective β-

Fluoro Amine Synthesis
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Scheme 2. 
Lanicemine (AZD6765) and Preparation of All Four Stereoisomers of ‘β-Fluoro-

Lanicemine’ (8).

Reaction conditions: a) Bu3SnH (4 equiv.), AIBN (0.4 equiv), benzene, 80 °C, 180 min (dr ≈ 
2:1 anti:syn, 74%); b) TFA, CH2Cl2, 180 min (98%). In each case, diastereomers 8 were 

purified by reverse phase preparatory HPLC as their TFA salt adducts (see SI). Enantiomeric 

excess (ee) for stereoisomers 8 follow from ee of 7f/ent-7f.
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Scheme 3. 
Transformations of Enantioenriched α-Amino Fluoronitroalkanes: Denitrative 

Functionalizations
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