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ABSTRACT The principal forces of protein folding-
hydrophobicity and conformational entropy-are nonspecific.
A long-standing puzzle has, therefore, been: What forces drive
the formation of the specific internal architectures in globular
proteins? We find that any self-avoiding flexible polymer
molecule will develop large amounts of secondary structure,
helices and parallel and antiparallel sheets, as it is driven to
increasing compactness by any force of attraction among the
chain monomers. Thus structure formation arises from the
severity of steric constraints in compact polymers. This steric
principle of organization can account for why short helices are
stable in globular proteins, why there are parallel and anti-
parallel sheets in proteins, and why weakly unfolded proteins
have some secondary structure. On this basis, it should be
possible to construct copolymers, not necessarily using amino
acids, that can collapse to maximum compactness in incom-
patible solvents and that should then have structural organi-
zation resembling that of proteins.

What force causes the internal architectures in globular
proteins? Although the dominant force of folding is the
hydrophobic interaction (1), that type of interaction would
seem to be too nonspecific to account for the considerable
amounts of helices and sheets in globular proteins. Secondary
structures are hydrogen-bonded. Therefore for many years,
it was assumed that globular proteins would have simple
regular crystal-like internal architectures (2), all helix or all
sheet (3-9). It was expected that all proteins would be the
same, irrespective of the amino acid sequence. For example,
the discovery by Pauling et al. (3-7) ofthe a-helix and parallel
and antiparallel sheets was premised on the assumption of
"equivalence": that suitable bonding patterns should be the
same for each amino acid. However, the appearance of
protein structure offered several surprises. First, architec-
tures in globular proteins are not simple and regular; about
53% of all residues are not in helices, sheets, or turns (10).
Second, studies of model compounds in water show that
hydrogen bonding is not a strong force for folding (11-14).
Third, since different sequences code for different native
structures, the internal architectures of globular proteins
cannot be accounted for by backbone interactions; they must
arise instead from side-chain interactions. It is only in the
side chains that one amino acid differs from another and,
therefore, by which one amino acid sequence differs from
another. However, most hydrogen bonds in proteins (about
85%) are among peptide backbone groups rather than side
chains (10). Fourth, the following evidence indicates that
"intrinsic propensities" (i.e., the local interactions among
neighboring residues along the chain that are responsible for
helix-coil behavior) do not account for internal architecture
in proteins. (i) For peptides in solution, helix stability in-
creases with chain length (15-17) but, for the helices in
globular proteins, the stabilities (observed in the distribution;

see below) decrease with length (18-20). (ii) The most stable
helices (21, 22) are typically longer than 15 residues and are
not completely helical; in contrast in globular proteins, the
average helix length is 12 residues, the most common helix
length is less than 6 residues (18-20), and these are 100%
helical up to nearly the denaturation temperature of the
protein. (iii) "Local" sequence information has been insuf-
ficient to predict protein structures (23-26). What then is the
origin of the regular and irregular conformations that com-
prise globular proteins?

Lattice Approach

The purpose of the present work is to study patterns of spatial
adjacencies of monomers in flexible polymer molecules hav-
ing various degrees of compactness. We do so by exhaustive
computer enumeration of every possible sterically allowed
conformation of a chain molecule on a three-dimensional
simple cubic lattice. First, it is helpful to define two terms to
distinguish between two different types of spatial nearest
neighboring monomers. We refer to two monomers that are
adjacent in the chain sequence (i, i + 1) as "connected"
neighbors. We refer to monomers (i, j), i 1j, that are spatial-
ly adjacent but not connected (i $ j - 1, j + 1) as "topolog-
ical" neighbors. The secondary structures of proteins are
simple patterns of intrachain topological neighbor pairs. A
helix is defined by its series of contacts; (i, i + 3), (i + 1, i +
4), (i + 2, i + 5), .... A parallel sheet is defined by the
series: (i, j), (i + 1, j + 1), (i + 2,j + 2), . . . . An antiparallel
sheet is defined by the series: (i, j), (i + 1, j - 1), (i + 2,
j - 2).

Corresponding to the two classes of neighbor types, there
are two classes of folding interactions: forces among con-
nected neighbors and forces among topological neighbors.
There is some justification for believing that the free energies
of these two types of interaction may be approximately
additive in polymers and proteins (27-29). To the extent that
additivity holds, it implies that folding need not be described
within a single model: a geometrically accurate model is
required to account for the interactions among connected
neighbors (i.e., of the bond angles 0, 4, X, for example); a
topologically accurate model is required to account for the
interactions among topological neighbors. Our focus in this
work is on this topological problem: what is the nature of the
monomer pairings (i, j) in the full spectrum of conformations
of a chain molecule? We, therefore, require a model with
which we can explore the full conformational space and with
which we can accurately represent the "neighborness" of
residue pairs, but it follows from the arguments above that
the accuracy of representation of geometric detail is less
important for this problem. This purpose is well-served by
the use of a lattice model of a chain. The lattice serves as a
device for representing all the possible conformations of the
chain backbone at low resolution by a finite countable set of
configurations using fixed bond angles (27, 28, 30).

First, we consider what errors are incurred by using a
lattice model to represent secondary structures. The Pauling-
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Corey-Branson a-helix cannot be represented with perfect
accuracy on any lattice of low coordination number, but the
helices observed in crystallography data bases of real pro-
teins are likewise not perfect a-helices. The identification of
helices varies depending on different definitions (18, 19,
31-37); in addition, some helices of different topology also
occur in proteins (with low frequency), namely the 310- and
ir-helices (18, 38-40). Our four representations of helices on
the simple cubic lattice are described elsewhere (41).
The quality of model helices can be assessed by comparing

the set of spatial distances from residue i to (i + 2, i + 3, i +
4, . . .) in the model with the corresponding distances in the
true a-helix. The distance between the (i, j) residue pair in
an a-helix is denoted by da(i, j). Because of helical symme-
try, this distance depends only on Ij - il and is independent
of the starting position i. On the other hand, the correspond-
ing distance dm(i, j) in the four model helices does depend on
i. The average distance dm(i, j) is obtained by averaging over
all possible inequivalent starting positions. The average dis-
tances dm(j, I) for model helices and the corresponding
distances d,(i, j) for real a-helices are plotted in Fig. 1 for
comparison.
We define a simple measure of the overall quality of

representation of a-helices by models, in terms of the error
8(i, j) da(ji, j) - dm(i, j)l/da(i, j), the "energy-weighted"
average,

N

E [8(i, i + k)/da(i, i + k)6]

(8)E liM N . [1]
E [1/daU(, i + k)6]
k=2

According to this criterion, the models used here and shown
in figure 9 of ref. 41 are the closest topological representa-
tions of a three-dimensional a-helix on the simple cubic
lattice. Since no one of these four lattice helix models is
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clearly superior to the others or uniquely "correct" by
several different criteria, and since, together, they broadly
characterize the range of variation among observed helices in
proteins, we make no further attempt to select from among
them a single "best" model. All the cubic lattice models
represent helix topology more accurately than the tetrahedral
lattice model (see Fig. 1), despite the more accurate repre-
sentation of a single bond angle on the tetrahedral lattice.
The compactness p of a chain molecule is defined as the

ratio of the number of intrachain topological contacts t (i.e.,
the number of dots on the contact map) to the maximum
possible number of such contacts, tmax,

I:-pm, Osp l.
tmax

[2]

Maximally compact chains are characterized by p = 1. The
value of tmax is determined by simple geometric packing
considerations (for three dimensions, see ref. 41; for two
dimensions, see ref. 42). Although the compactness is in-
versely related to the radius of gyration, these measures are
not otherwise identical (41-43); the former is most conve-
nient here.
Our purpose below is to explore the conformations of

polymer chains of varying compactness, from low-density
open conformations, p 0, to high-density maximally com-
pact conformations, p = 1. Chains with a single self-contact
have been studied in detail elsewhere (41-44). We consider
here conformations with any two specified intrachain con-
tacts. This case is interesting because two contacts are the
minimum required to specify the smallest building blocks of
secondary structure. If a chain molecule has one given
topological contact (i, j), then which contacts (i', j') are the
most probable second ones to form? We count all the chain
conformations that do not violate excluded volume con-
straints and that have both contacts, (i, j) and (i', j'); this
number is Q(i, j; i', j'). If the total number of all possible
conformations is Q0, then the restriction of conformational
space due to the two constraints is Q(i, j; i', j')/Qo. The
entropy loss for the formation of these two contacts, con-
verted to a free energy, is

Q(i,j;i', j')
-kl Qo .

(I.

iv)

k

FIG. 1. Average distance between residues i and i + k in helices
as a function of separation, k, along the chain, in units of (virtual)
bond lengths. This measure compares helical topologies, of a-, 310-,
and ir-helices (solid lines), of cubic lattice model helices (i-iv) in
figure 9 of ref. 41, and of the tetrahedral lattice model helix (dashed
lines). The shaded region between the 310- and 7r-helices indicates the
variation allowed by observers of protein data bases in helix iden-
tification. Data compiled by Kabsch and Sander (18) show that the
majority ofhelices are identified as a-helices, 7r-helices are very rare,
but 310-helices are not uncommon-they make up approximately
10% of residues observed in helices.

[3]

For a given first contact, we perform this enumeration for
every possible second contact pair (i', j').
We have found that a useful way to display the results of

this type of calculation is to insert these free energies at their
respective positions on the contact map (41-43) and connect
similar values with contour lines. This gives a "topological"
free energy surface (see Fig. 2). The lowest free energies are
shown as the darkest regions; the dot on that figure indicates
the position of the first presumed contact (i, j). It is clear
from Fig. 2 that out of approximately n2/2 possible second
contacts, only two are strongly preferred: those of the helix
and antiparallel sheet. A chain prefers to simply "zip up" a
helix or antiparallel sheet from a small loop because these are
the configurations that cause the least further reduction in
configurational entropy [i.e., given a small loop (i, i + 3) as
the initial "nucleus," the most favored second additional
contacts are (i + 2, i + 5) or(i - 2, i + 1) or(i - 1, i + 4)].
The same feature is observed for chains on two-dimensional
square lattices (43), an observation that was the motivation
for the present work and suggests that this feature is not
simply a function ofdimensionality or geometry ofthe lattice.
The present simulations take into account only conforma-
tional freedom and excluded volume, which are properties of

Chemistry: Chan and Dill



Proc. Natl. Acad. Sci. USA 87 (1990)

1 2 q 4 S 6 7§' 1 ::.), 8 A~~~~..... ......1

2

3

4

60 3 kT E If w am2 / - 1

G. 2- 0. 3 f0.0kT rgysfe7G a
-0 6 _ -0.3kT <X.* 8

0.9 _0.6 kT X l9

1.2 _0.9kTX 10

-1.8 - OR5 12

E1Presumed Contactt Prohibited Contact

FIG. 2. Topological free energy surface. Given a contact between
residue pair (5,8) in a 12-segment three-dimensional chain, these
contours represent the relative free energies for formation of any
second contact pair (i', j'). The antiparallel sheet (4,9) and/or the
helical contacts (3,6), (7,10) are most favored relative to all other
configurations, because they impose the least additional restriction
on conformational freedom.

all chain molecules, and do not consider the effects of any
specific interactions.
Now consider chain molecules of increasingly greater

compactness. The probability that an arbitrarily chosen
monomer is in a particular form of secondary structure is
shown in Fig. 3, as a function of chain compactness and as a
function of the radius of gyration of the chain. These distri-
butions are of all positions of the monomer within the chain
and are taken over the full ensemble of conformations of a
given number of intrachain contacts (compactness) or of a
given range of radius of gyration. The number of accessible
conformations diminishes rapidly as the compactness in-
creases. Within this ensemble of accessible conformations,
the fraction of conformations containing secondary struc-
tures increases sharply as compactness increases. For ex-
ample, about 50% of the monomers in a chain are in some
form of secondary structure in the ensemble ofconformations
that are maximally compact. Thus any force that causes a
chain to have many intrachain contacts (i.e., to become
compact) will consequently cause formation of much sec-
ondary structure. For proteins, this force is presumably the
hydrophobic interaction.
The result shown in Fig. 3 also implies that chain molecules

which are relatively, but not maximally, compact should also
have some degree of structure. This offers an explanation for
why some denatured proteins have secondary structure (45-
49): the ensemble of unfolded configurations of any weakly
denatured protein will be of relatively high density (50) and
thus should contain much secondary structure. On the other
hand, proteins that are strongly denatured (for example, in
high concentrations of urea or guanidinium hydrochloride)
will be of much lower compactness and should, therefore,
have much less secondary structure.
The fraction of residues participating in secondary struc-

ture is not much affected by chain length (over the narrow
range tested) in these three-dimensional studies (Table 1). In
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FIG. 3. Amount of secondary structure over the full ensemble of
all conformations of 12-segment chains: as a function of the radius of
gyration of the chains measured in units of the minimum possible
radius (a) and as a function of chain compactness (b). (c) The
histogram shows the number of accessible conformations as a
function of the compactness of the molecule. The dashed curve
shows the average radius of gyration for all chain compactnesses.
With increasing compactness, there are fewer accessible conforma-
tions. With decreasing average radius, the amount of secondary
structure strongly increases.

more extensive studies of chains in two dimensions, we find
that structure increases with chain length and appears to
approach 100% secondary structure in the long chain limit
(42).
A relatively stringent test of the predictions is of the

distributions of the lengths of helices and parallel and anti-
parallel sheets. The simulations are compared with the
Kabsch and Sander observations (18) of protein crystal
structures in Fig. 4; the agreement is good. For both the
theory and data-base observations, the relative amounts of
the shortest helices and parallel sheets are about the same,
and both are about 25% as probable as the shortest antipar-
allel sheets. The prediction that antiparallel sheets are
strongly favored is in agreement with the observations of
Richardson (51, 52) that parallel sheets are less stable, always
buried, and seldom occur in small protein domains. Also,
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Table 1. Percentage secondary structure participation in compact
molecules in simple cubic lattices

% secondary structure

Structure(s) 12 residues 18 residues 27 residues
Helix i 10.5 5.7 2.9
Helix ii 16.0 7.2 4.2
Helix iii 9.6 15.8 16.5
Helix iv 0.9 0.7 0.6
All helices 31.5 26.0 22.5
Antiparallel sheet 12.6 18.6 19.8
Parallel sheet 2.7 4.7 6.9
Turn 4.6 6.1 6.6
All sheets and turns 18.0 26.8 29.1
All structures 48.2 51.2 49.8

Definitions of various secondary structure types are given in ref.
41. The combined participation rates (in all structures) are slightly
smaller than the sum of the participation rates in all helices and all
sheets, because it is possible for residues to participate in both an
antiparallel sheet and a type ii helix. Similarly, because it is possible
for a residue to participate in more than one secondary structure,
subtotals of all helices and all sheets and turns are less than the sum
of the respective types of helices and sheets. Totals and subtotals are
highlighted by bold numbers.

both the theory and the data-base observations agree that, for
all structures, there is a monotonic decrease in probability
with increasing length of the structure, the rate of decline
increasing in the following order: helices < parallel sheets <
antiparallel sheets. The minor differences between theory
and experiment are due to the limited sizes of the chains in
the simulations and otherwise have no significant bearing on
the test of principle.
The total amount of secondary structure of each type is

found as the integral under each of these distributions.
Theory and experiment are in qualitative agreement. For
example, the simulations predict 22-32% helix and 18-29%
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FIG. 4. Length distributions of secondary structures. (a) Data-
base observations of Kabsch and Sander (18) on 62 proteins of
different chain lengths. (b) Exhaustive simulations of maximally
compact chains of 26 residues on a two-dimensional square lattice.
"Length" refers to the number of residues in a secondary structural
element.

sheet overall, in agreement with studies of protein crystal
data bases showing 21-40% helix and 14-28% sheet (18, 19,
31-37). For example, the study of Chou and Fasman (31, 32)
shows 890/2473 = 36% helix and 424/2473 = 17.1% sheet in
15 globular proteins; the study of Levitt and Greer (19) shows
3627/9213 = 39.4% helix and 2136/9213 = 23.2% sheet in 43
globular proteins; and the study of Kabsch and Sander (18)
shows 21.2% helix, 13.9% antiparallel sheet, and 4.5% par-
allel sheet in 62 globular proteins. More quantitative com-
parison is not presently warranted for several reasons. (i) The
data-base observations depend on the specific details of the
definitions of structures and on data-base size. (ii) By ne-
glecting zigzags, the simulations are conservative in estimat-
ing the number of sheets. (iii) These results may depend on
chain length for longer chains (see above), and since lattice
under- and overestimates due to chirality and other geometric
details are unknown, more quantitative comparison is diffi-
cult.
The steric principle of internal architecture could also be

tested by construction of copolymers, not necessarily com-
prised of amino acids, that could collapse to maximum
compactness in poor solvents (i.e., those that are incompat-
ible with a sufficient number of monomers in the chain) and
that should thus be driven to the formation of internal
structural organization. The experiments of Rao et al. (53) on
random terpolymers of lysine, alanine, and glutamic acid are
consistent with this expectation. They found that within a
solution containing a very large number of different random
sequences, a significant fraction of the chains is highly
compact, and they observe 46% helix by circular dichroism
measurements. Such copolymers might also provide the basis
for the design ofnew materials with microscopic organization
resembling that of proteins, but whose construction strate-
gies would follow from well-established polymer chemistry.

This conclusion that internal architecture in proteins arises
from steric packing would seem to leave no role for hydrogen
bonds, a principal signature of secondary structures. We
believe the role of hydrogen bonds is more subtle. Neither
amino acids nor hydrogen bonds are required for helical
conformations of chain molecules. Of the 176 crystal struc-
tures of synthetic polymers known to be reliable, 49 are
planar zigzags (resembling sheets), and 79 are helices of 22
different types (54). Several crystalline polymers have helices
closely resembling the a-helix, with three to four monomers
per turn, including polybutadiene, polybutene, polyvinyl-
napthalene, polypropylene, and even fibrous sulfur, none of
which form hydrogen bonds. In our view, the packing forces
in proteins can drive, for example, the formation of periodic
repeating stretches of (i, i + 3) contacts. What then "de-
cides" that the geometry will be specifically that of the
a-helix, as opposed to any of the dozens of other types of
closely related helices, will be the local factors, including
hydrogen bonding, that distinguish amino acids as monomers
from other types of chemical units. Thus in our view hydro-
gen bonding and intrinsic propensities do contribute to in-
ternal organization but at the level of "fine-tuning" rather
than as dominant forces.
The packing force is significantly stronger than intrinsic

connected-neighbor interactions for the formation of short
helices in globular proteins. (The "packing" free energy is
defined as the free energy of a structure in the ensemble of
compact conformations relative to the same structure within
the full ensemble of all conformations.) The intrinsic helix/
coil equilibrium constant of 1.05 (55) corresponds to 0.2OkT,
for a 6-residue segment of four rotatable bonds. In contrast,
our simulations show that the packing free energy favors the
helix relative to the coil by approximately 1.7kT for a
6-residue segment in three dimensions.
The steric "force" for internal organization can, therefore,

be viewed as follows. In the ensemble of all chain configu-
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rations, helices and sheets are a very small fraction of the
ensemble and are, therefore, entropically costly to form.
However, in the much smaller ensemble of only compact
configurations, helices and sheets are a relatively larger
fraction of all possible conformations and, therefore, are
entropically less costly to form. Therefore, any force toward
compactness also decreases the entropic cost of forming
secondary structures.

Conclusions

We have explored every possible conformation accessible to
short chain molecules in three-dimensional space on a simple
cubic lattice by computer enumeration. We conclude that
internal architecture is a natural consequence ofcompactness
in chain molecules. For proteins, compactness is a result of
hydrophobic interactions. This view resolves several puz-
zles. (i) It shows how helical peptides that are not stable
isolated in solution can be stable in globular proteins. (ii) It
provides a single framework to account also for stabilities of
sheets and irregular structures that are equally important
components of protein architecture but that are intrinsically
"nonlocal" in character. (iii) It explains why some unfolded
proteins are observed to have secondary structure. It follows
that other polymer molecules, not comprised of amino acids,
when driven to the maximally compact state by solvent
aversion ofsome of the residues, might also have protein-like
internal structures.
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