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Calcium-activated chloride channels (CaCCs) are key players
in transepithelial ion transport and fluid secretion, smooth
muscle constriction, neuronal excitability, and cell prolifera-
tion. The CaCC regulator 1 (CLCA1) modulates the activity of
the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engag-
ing the channel at the cell surface, but the exact mechanism is
unknown. Here we demonstrate that the von Willebrand factor
type A (VWA) domain within the cleaved CLCA1 N-terminal
fragment is necessary and sufficient for this interaction.
TMEM16A protein levels on the cell surface were increased in
HEK293T cells transfected with CLCA1 constructs containing
the VWA domain, and TMEM16A-like currents were activated.
Similar currents were evoked in cells exposed to secreted VWA
domain alone, and these currents were significantly knocked
down by TMEM16A siRNA. VWA-dependent TMEM16A mod-
ulation was not modified by the S357N mutation, a VWA
domain polymorphism associated with more severe meconium
ileus in cystic fibrosis patients. VW A-activated currents were
significantly reduced in the absence of extracellular Mg>*, and
mutation of residues within the conserved metal ion-dependent
adhesion site motif impaired the ability of VWA to potentiate
TMEM16A activity, suggesting that CLCA1-TMEM16A inter-
actions are Mg®*- and metal ion-dependent adhesion site-de-
pendent. Increase in TMEMI16A activity occurred within
minutes of exposure to CLCA1 or after a short treatment with
nocodazole, consistent with the hypothesis that CLCA1 sta-
bilizes TMEM16A at the cell surface by preventing its inter-
nalization. Our study hints at the therapeutic potential of the
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selective activation of TMEM16A by the CLCAl1 VWA
domain in loss-of-function chloride channelopathies such as
cystic fibrosis.

Calcium-activated chloride channels (CaCCs)* are key play-
ers in transepithelial ion transport and fluid secretion, smooth
muscle constriction, neuronal excitability, and cell prolifera-
tion (1, 2). The first member of the family to be identified,
TMEMI16A/Anoctamin 1 (ANO1) (3-5), is found in airway
epithelia, submucosal glands, and smooth muscle, and in-
creased TMEM16A activity has been associated with chronic
obstructive pulmonary disease and asthma manifestations such
as mucus cell metaplasia and mucus hypersecretion (3, 6, 7).
Conversely, targeted potentiation of TMEM16A has been sug-
gested as a mechanism to treat certain channelopathies, such as
cystic fibrosis (CF) (8). Calcium-activated chloride channel reg-
ulator (CLCA) proteins are self-cleaving metalloproteases that
activate calcium-dependent chloride currents (I-,cc) in mam-
malian cells (9). Initially annotated as CaCCs (10), further stud-
ies have shown that CLCAs are not channels but secreted,
soluble proteins that modulate CaCCs endogenous to cells
(11-14). CLCA1 is expressed in lung epithelia, where it plays
a role in mucus homeostasis (15), and it has been linked to
some of the same airway disease traits associated with
TMEM16A (16). Overexpression of CLCA1 alleviates the
intestinal disease meconium ileus in Cftr-deficient mice (17),
and the CLCA1 variant S357N is found with high frequency in
CF patients with aggravated intestinal disease (18), all of which
suggests that CLCA1 might act as a modifier in the context of
CE.

Recently, we uncovered a functional link between CLCA1
and TMEM16A (13, 14). Specifically, we demonstrated that the
N-terminal fragment resulting from the self-proteolysis of
CLCA1 (N-CLCA1) can activate I, in mammalian cells (14)

“The abbreviations used are: CaCC, calcium-activated chloride channel; CF,
cystic fibrosis; CLCA, calcium-activated chloride channel regulator; Ic,cc,
calcium-dependent chloride current; VWA, von Willebrand factor type A;
MIDAS, metal ion-dependent adhesion site; Ca,, voltage-gated Ca®* chan-
nel; GPI, glycosylphosphatidylinositol; Fnlll, fibronectin type Ill; CFTR, cystic
fibrosis transmembrane conductance regulator; WGA, wheat germ agglu-
tinin; pF, picofarad; ANOVA, analysis of variance; CAT, metalloprotease cat-
alytic domain; F, F test statistic.
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and that these currents are carried by TMEM16A, which inter-
acts directly with secreted N-CLCA1 at the cell surface (13). In
this study, we apply electrophysiological and imaging methods
to further investigate the mechanisms underlying CLCA1-
TMEMI16A interactions. We report that the von Willebrand
factor type A (VWA) domain within N-CLCAL1 is sufficient to
increase TMEM16A at the cell surface and TMEM16A-me-
diated current density and that the mechanism is dependent
upon the metal ion-dependent adhesion site (MIDAS) motif
within N-CLCA1 VWA. Up-regulation of TMEM16A activ-
ity by CLCA1 occurs in minutes and can be mimicked by
treatment with the endocytosis inhibitor nocodazole, in sup-
port of our hypothesis that CLCA1 stabilizes TMEM16A at
the cell surface by preventing its internalization (13). Our
findings provide novel insights into CLCA1 and TMEM16A
as a cooperative pair and have direct implications for the
targeting of CLCA1-TMEMI16A interactions in airway
disease.

Results

The VWA domain of CLCAT is necessary and sufficient to
up-regulate TMEM16A activity

We demonstrated previously that N-CLCA1l binds to
TMEMI6A and that this interaction can increase the surface
density of TMEM16A, thereby increasing TMEM16A currents
(13, 14). Because N-CLCA1 contains several discrete protein
domains (Fig. 14), we set out to identify the minimal region
required for interaction with TMEM16A. First, we transfected
HEK293T cells with expression constructs composed of one or
more N-CLCA1 structural domains (Fig. 14) and tested them
for TMEM16A activity by means of patch clamp electrophysi-
ology and confocal microscopy-based immunofluorescence
(Fig. 1, B-E). Robust, modestly outward-rectifying currents
were activated in cells expressing full-length (CLCA1) or
N-CLCA1 (Fig. 1, C and D), and we have demonstrated that
these currents are carried by TMEM16A (13). Substantially
smaller currents were measured in cells transfected with the
empty pHLsec vector, consistent with the low endogenous lev-
els of TMEMI16A at the membrane of these cells (19, 20). In
cells transfected with constructs containing the VWA domain,
currents with the same biophysical characteristics and compa-
rable density as those evoked in CLCA1- or N-CLCA1-trans-
fected cells were activated (Fig. 1, C and D), and this was not
affected by the absence of the B sheet-rich domain in the
CAT + VWA construct, suggesting that this domain is not
required for CLCA1-dependent TMEM16A regulation. In cells
transfected with a construct containing only the metallopro-
tease domain (CAT), the currents were indistinguishable from
those measured in mock-transfected cells (Fig. 1, C and D),
suggesting that proteolytic cleavage of a downstream target is
not part of the TMEM16A modulation mechanism, in agree-
ment with our previous results (14). In immunofluorescence
experiments, fixed and non-permeabilized cells transfected
with constructs that included the VWA domain (CLCAI,
N-CLCA1, CAT + VWA, or VWA alone) stained strongly for
TMEMI16A surface expression, whereas cells transfected with
CAT or pHLsec displayed little or no TMEM16A staining (Fig.
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1E), further suggesting that N-CLCA1 interactions with
TMEM16A are mediated by the VWA domain. Thus, we con-
clude that the VWA domain contained within N-CLCA1 is
required and sufficient to stabilize TMEMI16A at the cell
surface.

Secreted CLCA1 VWA can activate TMEM16A-mediated
currents and increase TMEM16A surface levels

In our previous studies, we showed that N-CLCA1 can be
applied exogenously to potentiate the functional expression of
TMEMI16A in HEK293T cells (13). We therefore investigated
whether the isolated VWA domain can elicit the same
responses, and we also examined the cellular phenotype of
S357N, a common human polymorphism within the CLCA1
VWA domain that has been associated with more severe meco-
nium ileus in CF patients (18) (Fig. 2). We cultured untrans-
fected cells or cells transfected with negative control scrambled
RNAI (siControl) or TMEM16A siRNA overnight in medium
obtained from cells transfected with either empty pHLsec vec-
tor or wild-type or S357N VWA and then assayed them for
TMEMI16A protein and activity as above (Fig. 2A4). Typical
CLCA1-dependent currents were activated in untransfected
cells exposed to secreted WT or S357N VWA (Fig. 2B); the
current density was similar in both cases (Fig. 2C) and compa-
rable with that observed in VWA-transfected cells (Fig. 1D).
Conversely, only small background currents were measured
in mock-conditioned untransfected cells (Fig. 2, B and C).
TMEM16A staining was noticeably increased in untransfected
cells conditioned with either WT or S357N VWA (Fig. 2D), and
currents were knocked down to near background levels in WT
or mutant VWA-conditioned cells transfected with TMEM16A
siRNA but remained unchanged in cells transfected with
siControl (Fig. 2, B and C). These results further support the
hypothesis that the VWA domain of CLCA1 is critical for
CLCA1-TMEMI16A interactions and suggest that external
application of the CLCA1 VWA domain may be an effective
means of potentiating TMEMI16A activity. Finally, VWA
activity was not modified by the S357N mutation, suggesting
that the association of CLCA1 S357N with the etiology of
meconium ileus, if any, is unrelated to TMEM16A channel
regulation.

CLCA1 VWA-mediated current activation is dependent on
extracellular Mg®* and is impacted by mutations within the
MIDAS motif

VWA domains, commonly found in extracellular adhesion
proteins, are implicated in extracellular protein-protein inter-
actions, largely via a MIDAS motif consisting of up to five polar
or negatively charged residues that coordinate a divalent cation,
usually Mg>* (21). Sequence alignments and structure predic-
tion (Fig. 34) indicate that the CLCA1 VWA domain contains a
five-residue (“perfect”) MIDAS motif (21), corresponding to
Asp-312, Ser-314, Ser-316, Thr-383, and Asp-412 (Fig. 3A), and
we investigated whether CLCA1-TMEMI6A interactions are
mediated by this motif (Fig. 3, B-F). We observed that CLCA1
VWA-dependent current activation requires extracellular
Mg>"; thus, the current density in cells incubated overnight
with CLCA1 VWA-conditioned medium dropped to back-
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Figure 1. The VWA domain of CLCA1 is necessary and sufficient to activate TMEM16A-like currents and to increase TMEM16A protein at the cell
surface. A, top panel, CLCA1 is a self-cleaving zincin metalloprotease. The dashed line indicates the proteolytic cleavage site. Cat, metalloprotease catalytic
domain; Cys, cysteine-rich domain; VWA, von Willebrand factor type A domain; BSR, B sheet-rich domain; Fnlll, fibronectin type Il domain. Bottom panel,
schematic of constructs used to experimentally determine the minimal domain within CLCA1 required to modulate TMEM16A. B, HEK293T cells were trans-
fected with empty pHLsec vector or with CLCA1 constructs as in A and assayed for TMEM16A functional expression by patch clamp electrophysiology and
confocal microscopy imaging. C and D, whole-cell currents measured in cells superfused with standard extracellular solution and in the presence of 10 um free
Ca’" in the pipette. C, representative current traces. The pulse protocol is shown at the top left. Outward currents are represented by upward deflections, and
dotted lines indicate zero current. Membrane capacitance was similar in all cases at ~25 pF. D, current density at +100 mV, measured at the end of the 600-ms
voltage step. Symbols represent data from individual cells (n = 19-45); error bars indicate the means = S.E. of all experiments. Statistical differences are
indicated by different lowercase letters; i.e. a group labeled with a given letter is statistically similar to any other group labeled with the same letter but
significantly different from any other group labeled differently (p < 0.05, one-way ANOVA, F = 16 and p = 4 X 10" '3, followed by the Tukey test). E,
immunofluorescence staining of TMEM16A (green) and the cell surface marker WGA (blue).

ground levels when experiments were performed in Mg " -free
extracellular solution (Fig. 3, B and C). More conclusively, dis-
ruption of the MIDAS motif, in particular mutation of Ser-316
or Thr-383 to Ala, reduced the ability of CLCA1 VWA to mod-
ulate surface protein levels and activity of TMEM16A (Fig. 3,
D-F). The current density in cells treated with D312A/S314A
or D312A/S314A /D412 VW A-conditioned medium was com-
parable with that measured in cells exposed to wild-type VWA
but decreased ~30% in cells conditioned with D312A/S314A/
S316A or D312A/S314A/S316A/D412A VWA and to back-
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ground levels in cells conditioned with D312A/S314A/S316A/
T383A VWA (Fig. 3, D and E). Compared with cells con-
ditioned with WT, D312A/S314A, or D312A/S314A/D412
VWA, the increase in TMEM16A surface staining was also
attenuated in cells exposed to D312A/S314A/S316A, D312A/
S314A/S316A/D412A, and D312A/S314A/S316A/T383A (Fig.
3F). These findings suggest that CLCA1 VWA interacts with
TMEM16A in a Mg®"- and MIDAS-dependent manner and
that residues Ser-316 and Thr-383 within the MIDAS motif are
critical for these interactions.
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Figure 2. Secreted CLCA1 VWA domain up-regulates TMEM16A. A, untransfected cells or cells transfected with negative control RNAi (siControl) or
TMEM16A siRNA were cultured in medium from pHLsec-transfected cells or from cells expressing CLCAT VWA, either WT or cystic fibrosis-associated variant
S357N, and subsequently assayed for TMEM16A currents and surface staining. B and C, whole-cell currents measured under standard extracellular and pipette
conditions. B, representative current traces, displayed as in Fig. 1C. The pulse protocol is shown at the bottom right. Membrane capacitance was similar in all
cases at ~25 pF. C, current density at +100 mV. Symbols represent data from individual cells (n = 9-31); error bars indicate the means = S.E. of all experiments.
The results of the statistical analysis are indicated by lowercase letters; i.e. groups sharing letters are statistically similar (for example, groups labeled a and ab),
whereas those not sharing any letters are significantly different (for example, groups labeled a and bc) (p < 0.05, one-way ANOVA,F = 11andp =2 X 102,
followed by the Tukey test). D, immunofluorescence staining of TMEM16A (green), CLCAT1 (red, anti-human CLCA1 antibody 2F4), and the cell surface marker

WGA (blue) in untransfected cells incubated in pHLsec-, WT, or S357N VWA-conditioned medium.

CLCA1-dependent modulation of TMEM16A activity occurs
within minutes and is mimicked by treatment with the
internalization inhibitor nocodazole

We demonstrated previously that application of exogenous
CLCA1 to HEK293T cells increases TMEM16A-mediated cur-
rent density and TMEM16A surface staining without changing
total TMEM16A protein levels. Because we found that CLCA1
directly binds TMEM16A at the cell surface, we hypothesize
that this interaction may prevent recycling of the channel (13).
The effects of CLCA1 on TMEM16A surface levels and func-
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tion are relatively rapid (Fig. 4), consistent with a mechanism
that is independent of protein synthesis. Strong TMEMI16A
staining was detected and maximized after just 30 min of incu-
bation in CLCA1l-conditioned medium (Fig. 44). In patch
clamp assays (Fig. 4, B—E), robust, slightly outward-rectifying
currents were activated ~1-3 min after application of purified
CLCA1 VWA protein to the extracellular solution and
approached steady state ~5-7 min later (Fig. 4, C and D); the
maximum current density in VWA-treated cells was up to
7-fold higher than in cells exposed to protein-free buffer (Fig.

J. Biol. Chem. (2017) 292(22) 9164-9174 9167
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Figure 3. A MIDAS motif within the CLCA1 VWA domain is implicated in the CLCA1-TMEM16A interactions. A, homology model of the CLCAT VWA
domain based on the VWA domain of C. acidiphila (PDB code 4FX5). Inset, the MIDAS pocket with an Mg?" ion within. The critical residues Ser-316 and Thr-383
are highlighted in red. B and C, whole-cell currents measured in wild-type CLCA1 VWA- (WT VWA) or mock-conditioned (pHLsec) cells superfused with standard
([ mMMg?*1,,.) or Mg?* -free ([0 mm Mg?"1,,,.) extracellular solution. D and E, whole-cell currents measured in mock-conditioned cells and in cells conditioned
with WT or MIDAS motif mutant VWA superfused with standard extracellular solution. B and D, representative current traces displayed as in Fig. 1C. The pulse
protocolisthe sameasin Figs. 1 and 2. The membrane capacitance was similar in all cases at ~25 pF. Cand E, current density at +100 mV.Symbols are data from
individual cells (C,n = 6 -25; E,n = 18-30); error bars indicate the means = S.E. of all experiments. The results of the statistical analysis are indicated by lowercase
letters; i.e. groups sharing letters are statistically similar (for example, groups labeled a and ab or groups labeled ab and bc), whereas those not sharing any
letters are significantly different (for example, groups labeled a and b or groups labeled ab and ¢) (p < 0.05, one-way ANOVA; C,F = 13andp =3 X 10" %E F =

12and p = 1 X 107 "% followed by Tukey test). F, immunofluorescence staining of TMEM16A (red) in pHLsec-, WT, or MIDAS motif mutant VWA-conditioned
medium.

4E). The microtubule destabilizer nocodazole disrupts micro-
tubule-dependent internalization of channels and other mem-
brane proteins (22-24), thus preventing the recycling of these
proteins from the cell surface. In cells treated with nocodazole,
but not in those treated with vehicle (0.5% DMSO), currents
with properties similar to those observed in cells transfected or
conditioned with CLCAL1 (see, for example, Refs. 13, 14 and
Figs. 1-3) were activated (Fig. 5). The current density was
significantly knocked down in nocodazole-treated cells
transfected with TMEM16A siRNA in contrast to those trans-
fected with siControl (Fig. 5). Together, these data support the
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hypothesis that CLCA1 stabilizes TMEM16A at the cell surface
by impeding its reinternalization.

Discussion

The VWA domain in N-CLCAT1 is the minimal requirement for
interaction with TMEM16A

Here we demonstrate that the CLCA1 VWA domain is
responsible for mediating the interaction with TMEMI16A,
resulting in increased TMEMI16A at the cell surface and
increased I-,cc density (Figs. 1-4). VWA domains mediate
protein-protein interactions important for cell adhesion and

SASBMB
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anti-human CLCA1 antibody 1228), and the cell surface marker WGA (blue) in untransfected cells incubated in CLCA1-conditioned medium for a few seconds
(0 min) or 30 or 120 min. B-E, time course of whole-cell current activation by purified CLCAT VWA protein. B, experiments were performed under standard
extracellular and pipette conditions. A descending voltage ramp was applied every 10 s for the duration of the experiment. C, current density at +80 mV
measured over time in two example cells (membrane capacitance ~20 pF). After stable conditions were achieved, 5 ul of purified CLCAT VWA protein (final
concentration, 5 um) or dialysis buffer B was added to the bath (arrow); currents immediately before addition of protein or buffer (a) and at the post-application
steady state (b) are shown in color. D, current/voltage relationships at a and at b for the examples shown in C. E, current density at +80 mV in three individual
buffer-treated cells and in three individual VWA-treated cells measured at selected time points, immediately before (0 min) or up to 9 min after addition of
protein or buffer. Each cell is represented with unique symbols; the colored symbols are the same as in C.

signaling in extracellular matrix proteins, such as integrins and
collagens, but are also found in auxiliary subunits of voltage-
gated Ca®>" (Ca,) channels (21). A common mechanism of
VWA domain-dependent protein-protein interactions involves
the coordination of a divalent cation, usually Mg>*, by a
MIDAS motif at the binding interface (21). However, there are
examples of VWA-mediated interactions in which surfaces
other than the MIDAS are implicated (25-27). Our results indi-
cate that the CLCA1 VWA-TMEMI16A interaction s, at least in
part, dependent on both Mg>* and the perfect MIDAS motif
within the VWA domain of CLCA1 (Fig. 3). These observations
draw intriguing comparisons with the «,8 subunits of Ca,,
channels, in particular Ca,,1 and Ca,2 (28). Like CLCAs, «,6
proteins are posttranslationally cleaved into two fragments, a,
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and & (29), and modulate Ca®" currents through functional and
structural association with «; pore-forming subunits (30, 31).
Both a,6-1 and a,8-2 contain VWA domains with a perfect
MIDAS motif that is required for increasing Ca®>" current den-
sity and Ca,, channel complex surface expression (30, 32, 33).
However, unlike N- and C-CLCA]1, the «, and the 6 fragments
remain linked by a disulfide bond after cleavage (34) and are
likely associated with the plasma membrane though a predicted
glycosylphosphatidylinositol (GPI) anchor site at the C termi-
nus of 8 (35, 36). Ca,a;-a,8 interactions seem to occur during
the intracellular protein maturation process (32), whereas
CLCAI1 can interact with TMEM16A after it has been secreted,
either by the same cell or by neighboring cells (13). Similar to
CLCA1, a major mechanism for a,6 subunit-dependent mod-

J. Biol. Chem. (2017) 292(22) 9164-9174 9169
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Figure 5. Nocodazole increases TMEM16A current density. HEK293T cells, untransfected or transfected with negative control RNAi (siControl) or TMEM16A
siRNA, were treated for 30 min with the microtubule polymerization inhibitor nocodazole (20 wg/ml) or with vehicle (DMSO). Whole-cell currents were
measured under standard extracellular and pipette conditions and using the same pulse protocol as for Figs. 1-3. A, representative current traces. B, current
density at +100 mV. Symbols are data from individual cells (n = 10-20); error bars are the means = S.E. of all experiments. Statistical differences are indicated
by different lowercase letters, i.e. a group labeled with a given letter is statistically similar to any other group labeled with the same letter but significantly
different from any other group labeled differently (p < 0.05, one-way ANOVA, F = 11 and p = 2 X 10>, followed by the Tukey test).

ulation of Ca®>™ currents is the increase of @, subunit and Ca,,
channel complex surface expression (28), but, unlike CLCA1,
there is substantial evidence that «,6 subunits also inform the
biophysical and pharmacological properties of Ca,, channels
(37).

Mechanism of TMEM16A stabilization by CLCA1

Our data indicate that exogenously applied CLCA1 increases
TMEM16A surface levels and, thus, I, through the channel
This up-regulation occurs within minutes (Fig. 4), suggesting
that it is not dependent on protein synthesis but, rather, draws
from the existing pool of TMEMI16A protein in the cell
TMEMI16A channels are functional oligomeric homodimers,
i.e. each of the two identical subunits defines its own conduc-
tion pore (38 —40), but oligomerization is required for channel
assembly and surface expression (41, 42); TMEM16A likely
forms high-affinity dimers, as the purified protein elutes as a
dimer on gel filtration columns (43), and the first crystal struc-
ture of a fungal orthologue revealed a dimer (44). Thus, it
is unlikely that CLCA1 engages monomeric TMEM16A and
drives dimerization, but it may stabilize the dimer at the cell
surface, perhaps through a conformational change that masks a
reinternalization signal. Treatment with nocodazole, an inhib-
itor of microtubule-dependent internalization, recapitulates
the effect of exogenous application of CLCA1 (Fig. 5), suggest-
ing that CLCA1 may prevent the recycling of TMEM16A chan-
nels. Interestingly, although the «,8 subunits of Ca,, channels
are thought to act mostly by enhancing forward trafficking of
the channel complexes (45, 46), there is evidence that they may
also delay their turnover (47), but the mechanisms involved
remain unclear.

A model for CLCA1-TMEM16A interactions

Based on our previous findings (13, 14) and the results
reported here, we propose the following model for the up-reg-
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ulation of TMEM16A-mediated I, by secreted CLCA1 (Fig.
6). CLCAL1 is synthesized as a full-length protein, and, in this
form, the VWA domain of CLCA1 is prevented from interact-
ing with TMEM16A by the C-terminal region of the protein
(Fig. 6A); accordingly, disruption of the catalytic or cleavage
sites impairs the ability of CLCAL1 to activate I, (14). This
masking of the VWA domain might be achieved through inter-
action with the fibronectin III (Fnlll) domain found in the
C-terminal fragment (Fig. 14), as Fnlll domains are known
ligands for VWA domains (21). Upon proteolytic self-cleavage,
the CLCA1 VWA domain is exposed and free to engage
TMEMI6A, likely via the last extracellular («9-«10) loop of the
channel (Fig. 6A); thus, an antibody raised against this region of
TMEMI16A blocks the binding of N-CLCA1 to TMEM16A-
expressing cells (13). The VWA domain of secreted N-CLCA1
binds and stabilizes TMEM16A at the cell surface, likely by
preventing its reinternalization (Fig. 6B), thereby leading to
increased TMEM16A surface expression and TMEM16A-me-
diated I, density.

Implications for airway disease

CLCAI has been proposed as a modifier gene in the context
of CF. Cftr~/~ mice, which mostly die from severe meconium
ileus, show decreased expression of Clcal in the intestine, but
up-regulation of Clcal in these mice ameliorates the intestinal
phenotype and improves survival (17). One report linked the
S357N variant within the CLCA1 VWA domain to increased
risk of developing meconium ileus in a subset of CF patients
(18). However, this variant had no effect on VWA; neither
TMEM16A current activation (Fig. 2, Band C) nor TMEM16A
surface staining (Fig. 2D) were altered by S357N, suggesting
that any potential contribution of this mutation to the develop-
ment of meconium ileus is not linked to decreased ability of the
VWA domain to engage TMEM16A.
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Figure 6. Model for CLCA1-mediated activation of TMEM16A. A, in full-
length CLCA1, the VWA domain within the N-terminal region of the protein
(N-CLCAT) is unable to engage TMEM16A, possibly because of a self-interac-
tion with the Fnlll domain in the C-terminal portion (C-CLCAT) that masks the
VWA. Following self-cleavage, N-CLCA1 and C-CLCAT1 likely dissociate, allow-
ing the N-CLCA1 VWA domain to directly engage TMEM16A, likely via the
a9-a10 loop of the channel. B, N-CLCA1 secreted by the same cell (autocrine)
or by adjacent cells (paracrine) binds and stabilizes TMEM16A at the cell sur-
face, likely by preventing its recycling, thereby increasing TMEM16A surface
expression and I, density.

A significant gap in our knowledge still exists regarding the
cooperative roles of CLCA1 and TMEM16A in physiology and
disease (48). For example, both proteins are up-regulated in
mucus cell metaplasia (7, 49), a hallmark of asthma and chronic
obstructive pulmonary disease, but no mechanistic link has yet
been established. Increased TMEMI16A activity is associated
with pulmonary hypertension in a rat model of the disease (50),
but whether CLCAL1 is involved remains to be addressed. Both
CLCA1 and TMEM16A have been proposed as therapeutic tar-
gets for airway disease (9), and our results suggest that they may
be used in tandem to selectively activate anion currents. This
may be advantageous in the case of certain channelopathies,
such as CF, which arises from impaired ClI~ and HCO; con-
ductance in mucosal epithelia because of partial or total loss of
function of the cystic fibrosis transmembrane conductance reg-
ulator (CFTR). Therapeutic approaches have mostly focused on
the symptoms, but significant efforts are being made to target
the defective CFTR itself. Approximately 2000 mutations in the
CF1R gene have been found that disrupt CFTR function by one
of six general mechanisms, including defective trafficking, fold-
ing, and gating of the channel protein (51). Although a few
mutation-specific therapies are available (52), the activation of
an alternate anion channel, such as TMEM16A, would be
agnostic to the CFTR mutation and, thus, a potentially univer-
sal approach. We show that exogenously applied CLCA1, spe-
cifically the VWA domain including a classic protein-protein
interaction MIDAS motif, directly binds and stabilizes TMEM16A
at the cell surface, thereby increasing Cl~ conductance. This
raises the intriguing possibility that CLCA1 VWA, or a peptide
derived from it, might be developed as a drug to compensate for
decreased or absent CFTR conductance in CF patients.
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Experimental procedures
Reagents

Commercial antibodies were used according to the specifica-
tions of the manufacturer. Primary antibodies were as follows:
goat-anti-human-TMEMI16A polyclonal antibody S-20 raised
against a 15- to 20-amino acid peptide within residues 820-
870, corresponding to the last (a9-al0) extracellular loop
(Santa Cruz Biotechnology, Santa Cruz, CA); rabbit anti-hu-
man CLCA1 polyclonal antibody 1228 (Biosystems, Rockford,
IL); and wheat germ agglutinin (WGA)-Alexa Fluor 633 conju-
gate (Life Technologies). Secondary antibodies were as follows:
donkey anti-goat IgG-Alexa Fluor 488, donkey anti-rabbit IgG-
Alexa Fluor 488, donkey anti-mouse IgG-Alexa Fluor 555, and
donkey anti-goat IgG-Alexa Fluor 594 conjugates (all from Life
Technologies). Mouse anti-human CLCA1 monoclonal anti-
body 2F4 was produced in-house and used as described previ-
ously (14, 16). Nocodazole (Sigma-Aldrich, St. Louis, MO) was
prepared as a 2 mg/ml stock solution in DMSO and was used at
a working concentration of 20 ug/ml.

Cloning and mutagenesis

All human CLCA1 cDNAs were cloned into the pHLsec
vector, which contains an optimized secretion signal and a
C-terminal hexahistidine tag (53). Constructs with the cDNA
sequences for full-length CLCA1 (22-914), the CLCA1 N-ter-
minal fragment (N-CLCA1, 22-694), or the following CLCA1
domains were prepared (Fig. 14): CAT (22-293), including the
metalloprotease catalytic domain; VWA (294 —478), contain-
ing von Willebrand factor type A; and CAT + VWA (22-478).
Domain boundaries were predicted by means of the Phyre2
Protein Fold Recognition Server (54). Mutations were intro-
duced by means of QuikChange Lightning (Agilent, Santa
Clara, CA). Constructs were verified by sequencing. Expression
and secretion of each of the different CLCA1 proteins were
confirmed by Western blotting (supplemental Fig. S1).

Heterologous expression of CLCA1

HEK293T cells were cultured in 6-well dishes in Dulbecco’s
modified Eagle’s medium (Life Technologies) supplemented
with 10% fetal bovine serum, 10° units/liter penicillin, 100
mg/liter streptomycin, 1% glutamine, and 1% non-essential
amino acids (Corning Inc., Corning, NY) at 37 °C and 5% CO.,,.
Cells were transfected at 80% confluency with 293fectin trans-
fection reagent (Life Technologies) ata 1:2 ratio (micrograms of
DNA:microliters of 293fectin) using 1-2 ug of plasmid DNA
per 1 million cells. Experiments were conducted in cells that
were transiently transfected with the appropriate constructs or
in cells that were exposed to exogenous CLCA1 protein by
treatment with medium conditioned with CLCA1. For condi-
tioned medium experiments, cells were transfected with either
CLCA1 constructs or empty pHLsec vector (pHLsec). After 6 h,
the transfection medium was removed, cells were washed with
sterile PBS, and fresh medium was applied. Following 24—48 h
of incubation, medium from these cells was harvested and
centrifuged gently (1500 rpm, 5 min) to remove non-adher-
ent cells. Untransfected cells were plated at low density onto
UV-sterilized, 8-mm round German glass coverslips (Elec-
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tron Microscopy Sciences, Hatfield, PA) and incubated for
up to 24 h in 2 ml of cleared CLCA1- or pHLsec-conditioned
medium supernatants.

siRNA knockdown of TMEM16A

Cells plated in 48-well plates were transfected with either 200
nM TMEM16A siRNA (HSS123904, 5'-AAG UUA GUG AGG
UAG GCU GGG AAC C-3/, Life Technologies) or 200 nm
medium GC content Stealth RNAi negative control (12935300,
5'-GGU UCC CAG CCU ACC UCA CUA ACU U-3', Life
Technologies) using Lipofectamine 2000 (Life Technologies) at
a 20:2 ratio (picomoles of siRNA:microliters of Lipofectamine
2000). 24 h later, cells were plated onto round coverslips and
incubated for an additional 24 h in CLCA1- or pHLsec-condi-
tioned medium as described above. TMEMI16A knockdown
was estimated at 60 —70% as assayed by quantitative PCR.

Recombinant expression of CLCA1 VWA

The VWA domain of CLCA1 was expressed in 293F cells via
transient transfection with Hype-5 (OZ Biosciences, San Diego,
CA) ata1:1.5 ratio (micrograms of DNA:microliters of Hype-5)
using 1 ug of plasmid per 1 million cells. Media from superna-
tants were harvested after 72 h. Protein was purified from
medium supernatant using nickel-nitrilotriacetic acid super-
flow resin (Qiagen, Hilden, Germany) and eluted in 5 ml of
buffer A containing 50 mm K,HPO, (pH 8), 300 mm NaCl, and
250 mM imidazole. Purified CLCA1 VWA was dialyzed into
buffer B containing 20 mm HEPES and 150 mm NaCl (pH 7.4)
and concentrated in a centrifuge concentrator to 1 mwm, calcu-
lated from absorbance at 280 nm.

Whole-cell patch clamp recordings

Experiments were performed at 25 °C up to 24 h after trans-
fection or incubation in conditioned medium. Micropipettes
were prepared from non-heparinized hematocrit glass (Kimble-
Chase, Vineland, NJ) on a horizontal puller (Sutter Instru-
ments, Novato, CA) and filled to a typical electrode resistance
of 3 megohms with a pipette solution containing 150 mm
N-methyl-p-glucamine chloride, 10 mm Hepes, 2 mm MgCl,, 8
mm HEDTA, and 5.8 mm CaCl, to attain 10 um free Ca®", as
calculated by means of the CaBuf program (available through
Katholieke Universiteit Leuven). The pH of the pipette solution
was adjusted to 7.1 with Tris. The standard bath solution was
150 mm NaCl, 10 mm Hepes, 1 mMm CaCl,, and 1 mm MgCl, and
adjusted to pH 7.4 with Tris. Selected experiments were per-
formed in the absence of extracellular Mg>" with a bath solu-
tion composed of 150 mm NaCl, 10 mm Hepes, 1 mm Na-EDTA,
and 2 mm CaCl, to maintain the extracellular free Ca®>" at 1 mm
(Fig. 3, B and C). After formation of a gigaohm seal and estab-
lishment of the whole-cell configuration, cells were voltage-
clamped at 0 mV. For most experiments, a pulse protocol was
applied in which the membrane potential was held at 0 mV for
50 ms and stepped to a test value (—100 to +100 mV in 20-mV
increments) for 600 ms before returning to the holding poten-
tial for an additional 400 ms. For time course experiments (Fig.
4), a 400-ms descending voltage ramp protocol (+80 to —80
mV in 400 ms) was applied every 10 s, and were currents con-
tinuously recorded. Following a brief period of stabilization (~1

9172 J Biol. Chem. (2017) 292(22) 9164-9174

min after break-in), a 5 um bolus of purified CLCA1 VWA
protein or the equivalent volume of buffer B (5 ul) was added to
the bath, and the response was monitored until a steady state
was reached. Membrane capacitance was calculated from the
integral of the current transient in response to 10-mV depolar-
izing pulses and monitored for stability throughout the exper-
iments. Patch clamp data were filtered at 2 kHz, and signals
were digitized at 5 kHz with a Digidata 1322A (Molecular
Devices, Sunnyvale, CA). MultiClamp 700B Commander and
pClamp software (Molecular Devices) were used for pulse or
ramp protocol application and data acquisition. Data were ana-
lyzed using Clampfit 10.1 (Molecular Devices). Results are pre-
sented as mean * S.E. Statistical differences between groups
were assessed by one-way ANOVA and post hoc all-pairwise
Tukey test (Prism 5.0c, GraphPad Software, San Diego, CA).
The results of the statistical analysis are indicated in the figures
by a lowercase letter system, whereby groups that share letters
are statistically similar (for example, “a” and “ab” or “ab” and
“bc”), whereas those not sharing any letters are significantly

“w_»

different (for example, “a” and “b” or “a” and “bc”).

Immunofluorescence

For staining experiments, cells were either transfected or
exposed to conditioned medium as described above. Cells were
fixed for 5 min on glass slides with 4% paraformaldehyde and
blocked for 1 h at room temperature with 1% blocking solution
(Life Technologies). For the experiments shown in Figs. 1E and
2D, cells were incubated with primary antibodies overnight at
4. °C, i.e. goat anti-human-TMEMI16A polyclonal antibody S-20
at 1:50 dilution (Figs. 1E and 2D) and mouse anti-human
CLCA1 monoclonal antibody 2F4 at 1:100 dilution (Fig. 2D).
Slides were washed and incubated with WGA-Alexa Fluor 633
conjugate (5 ug/ml) for 30 min at room temperature, followed
by secondary antibodies for 2 h at room temperature; i.e. don-
key anti-goat IgG-Alexa Fluor 488 conjugate at 1:200 dilution
(Figs. 1E and 2D) and donkey anti-mouse IgG-Alexa Fluor 555
conjugate at 1:250 dilution (Fig. 2D). For the experiments
shown in Fig. 3F, cells were incubated in goat anti-human-
TMEM16A antibody S-20 as above, followed by donkey anti-
goat IgG-Alexa Fluor 594 (1:200). For the experiments shown in
Fig. 4A, cells were incubated with rabbit anti-human 1228 anti-
body at 1:100 dilution and goat anti-human-TMEMI16A anti-
body S-20 and WGA-Alexa Fluor 633 conjugate as described
above, followed by donkey anti-goat IgG-Alexa Fluor 594 con-
jugate (1:200) and donkey anti-rabbit IgG-Alexa Fluor 488
conjugate (1:250). Washed slides were then mounted in
Vectashield H-1200 mounting medium with DAPI (Vector
Laboratories, Burlingame, CA). Confocal microscopy was car-
ried out using a Zeiss LSM 880 confocal laser-scanning micro-
scope with Airyscan (Carl Zeiss Microscopy, Thornwood, NY).
The images were acquired and batch-processed with Zen soft-
ware (Carl Zeiss Microscopy). For each experiment, all cells
were treated on the same day and fixed, stained and imaged in
parallel using the same acquisition and display settings.

Homology modeling

The tertiary structure of the CLCA1 VWA domain was pre-
dicted using Phyre2 (54). The best template identified was the
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VWA domain from Catenulispora acidiphila (PDB code
4FX5), and the resulting model based on this template was built
with 99.9% confidence.

Author contributions—M. S.R.,, Z. Y., K.N.B,, C. G.N,, and T.J. B.
designed the experiments. M. S. R., Z. Y., and K. N. B. performed the
experiments and analyzed the data. M. S. R., Z. Y., and T. J. B. wrote
the manuscript. M. S. R., Z. Y., K. N. B, C. G. N,, and T. J. B. revised
and edited the manuscript.
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