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Estimation of intra- and interspecific interactions from time-series on

species-rich communities is challenging due to the high number of poten-

tially interacting species pairs. The previously proposed sparse interactions

model overcomes this challenge by assuming that most species pairs do

not interact. We propose an alternative model that does not assume that

any of the interactions are necessarily zero, but summarizes the influences

of individual species by a small number of community-level drivers. The

community-level drivers are defined as linear combinations of species abun-

dances, and they may thus represent e.g. the total abundance of all species or

the relative proportions of different functional groups. We show with simu-

lated and real data how our approach can be used to compare different

hypotheses on community structure. In an empirical example using aquatic

microorganisms, the community-level drivers model clearly outperformed

the sparse interactions model in predicting independent validation data.
1. Introduction
Biotic interactions are one of the principal drivers structuring species commu-

nities [1,2]. Individuals interact with members of their own species through

density-dependent regulation [3], and with members of other species through

e.g. interspecific competition, predation and facilitation [4–6]. Population

dynamic models fitted to single species time-series data have demonstrated

that population growth rate is density-dependent [7], due e.g. to increased mor-

tality or decreased fecundity at times of high population density [8]. Multispecies

population studies have shown that population fluctuations of interacting

species can also influence population growth rates [9–11]. However, the contri-

bution of biotic interactions in shaping complex and species-rich communities

through time remains poorly explored in the ecological literature [12], partly

due to the lack of effective statistical frameworks for analysing time-series data

of large species communities.

On the one hand, applications of standard multivariate time-series models

have enabled researchers to infer how intra- and interspecific interactions deter-

mine population dynamics only for small communities of a few interacting

species [13–16]. This is because the number of all potential pairwise inter-

actions among the species is vast for large communities and thus standard

time-series models become difficult to estimate from limited data. On the

other hand, a plethora of indices have been proposed to describe co-occurrence

patterns among species for large communities [17–19], but such indices do not

provide much insight into the underlying mechanisms driving community
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dynamics. Therefore, one of the key statistical challenges in

ecology is to develop robust techniques that allow one to sep-

arate the directional and structural changes from natural

temporal variation caused by intra- and interspecific inter-

actions versus environmental stochasticity from time-series

data on species-rich communities [13,20,21].

Multivariate autoregressive (MAR) models, also called

vector autoregressive models (VAR), have become the most

widely applied class of time-series models in community

ecology [22,23]. Their use thus far, due to the curse of dimen-

sionality, has however been restricted to small communities

[24], to most common species only [13–16], or to a priori
defined groups of species [20,22,25,26]. One solution that

has been proposed to overcome the curse of dimensionality in

MAR models is to constrain the estimation of the interaction

matrix based on prior information about the existence and

direction of interactions among specific pairs of species [22].

In the absence of such prior information, an alternative solution

is to assume that most species do not interact, i.e. that a large

proportion of the elements of the interaction matrix are

zero, and use a variable selection procedure to identify the

non-zero elements [13].

In this paper, we propose a new approach to estimating

interaction matrices based on time-series data from species-

rich communities. Our approach does not involve the

assumption that any of the interactions are necessarily zero,

but that the influences of the other species on the dynamics

of a focal species can be summarized through a few commu-

nity-level drivers. By community-level drivers we mean those

linear combinations of species abundances that are most rel-

evant in determining the future growth rates of all the

species. Biologically, community-level drivers can for

example represent the total abundance of all species (coeffi-

cients of linear combination equal for all species), the total

biomass of the community (coefficients proportional to

mass of each species), or different functional groups (coeffi-

cients non-zero only for a particular functional group).

However, instead of determining a priori the contributions

of the species to the community-level drivers (i.e. the coeffi-

cients of the linear combinations), we estimate them in a

way that they best explain the data jointly for all species.

To do so, we utilize recent developments in statistical

literature on row–column interaction models [27].

Our approach is related to latent variable modelling,

which has recently emerged in the ecological literature as a

tool for estimating large co-occurrence matrices from snap-

shot data with joint species distribution models [28–32].

The explicit time-series model that we construct here can be

seen as a more mechanistic alternative to a model in which

the species would respond to temporally structured latent

variables. While a latent variable model would necessarily

lead to symmetric associations among the species (if species

A influences species B positively, then species B necessarily

influences species A positively), the explicit time-series

model relaxes this assumption. In other words, while co-

occurrence matrices are constrained to be symmetric and

positive-definite, there is no such restriction for the inter-

action matrices, and thus the method presented here is

technically related but not identical to latent variable

approaches used for estimating co-occurrence matrices.

We compare the performance of the ‘community-level dri-

vers’ approach to previously published MAR approaches

[13,22] using both simulated and real data. We first consider a
set of simulated communities that differ in their size

(i.e. number of species) and the underlying structure of the inter-

action matrix, and ask how well different approaches are able to

(i) infer the interaction matrix and (ii) predict independent vali-

dation data. We then apply four alternative statistical models to

a real time-series data on 100 species of aquatic microorganisms

[33], to examine (iii) which of the statistical models performs

best in predicting independent validation data, (iv) whether

and how much accounting for interspecific interactions

helps in predicting the validation data, and (v) what is the

estimated structure of the interaction matrix for this community.
2. Methods
(a) Statistical modelling framework
We consider time-series data on species abundance that span

over n þ 1 time steps (e.g. years) and involve m species. We

denote by yi,t the log-abundance of species i at time t, and by

yt the vector for all species. We focus here on the standard first

order multivariate autoregressive model MAR(1), defined by

yi,t ¼ ci þ
Xm

j¼1

ai,jy j,t�1 þ ei,t, ð2:1Þ

or equivalently in vector form by yt ¼ cþAyt�1 þ et. The noise

term is assumed to follow the multivariate normal distribution

et�Nð0,VÞ, independently among the time steps t. The intercept

c (with elements ci) has the dimension m � 1, and the interaction

matrix A (with elements ai,j) and the variance-covariance matrix

V (with elements vi,j) have the dimension m � m. Note that

while the matrixV is symmetric, the matrix A may be asymmetric.

To connect the MAR(1) model to ecological literature, we

note that equation (2.1) is mathematically equivalent to the

widely applied Gompertz model [22,34], defined by

yi,t ¼ yi,t�1 þ ri 1�
Xm

j¼1

â i,jy j,t�1=ki

2
4

3
5þ ei,t: ð2:2Þ

In the Gompertz model, yi,t is the log-abundance of species i
at time t, ri is the growth rate and ki the carrying capacity of

species i, and âi,j the influence of species j on species i. While

we will follow here the parameterization of the MAR(1) model

(equation (2.1)), its parameters can be mapped to those of the

Gompertz model (equation (2.2)), and thus our results apply

also to the latter model.

Two major limitations for ecological applications of the

MAR(1) model are that it assumes the simplistic linear depen-

dency on how the dynamics of a focal species are modified by

other species, and that it assumes normally distributed residuals.

Concerning the assumption of linearity, MAR(1) can be con-

sidered as an approximation to a more general class of

nonlinear models [22]. With regard to the assumption of normal-

ity of residuals, we note that the model can be generalized to

other data distributions by letting yi,t be the linear predictor

within a generalized linear modelling framework. For example,

Sebastián-González et al. [35] used the logit-link function to fit

a generalized version of the MAR(1) model to presence–absence

time-series data. Thus, while we develop our methods here in the

context of the somewhat simplistic MAR(1) model, they can be

applied also in a more general framework, e.g. allowing for the

inclusion of sampling or observation error.

(i) Dimension reduction through community-level drivers
The parameterization of the MAR(1) model, and more generally

any community-level time-series model, is challenging for large

m, i.e. for species-rich communities. This is because the matrix A
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has m2 degrees of freedom and the symmetric matrix V has m(m þ
1)/2 degrees of freedom. Thus, if not making some further struc-

tural assumptions, the parameterization of equation (2.1)

requires very long time-series ðn� mÞ, which is unrealistic for

real species-rich communities. Here we propose an alternative

approach to the sparse interactions model [13] by not assuming

that any of the interactions are necessarily zero, but that the inter-

actions within the community are structured so that they can be

described by a small number of community-level drivers. From

the statistical point of view, our approach belongs to the class

of row–column interaction models [27], which in turn are a

special case of reduced rank vector models [36]. We model the

community-level drivers as linear combinations of species occur-

rences,

dt,k ¼
Xm

j¼1

wk,jyj,t, ð2:3Þ

where dt,k is the community-level driver k (with k ¼ 1, . . . ,nd)

at time t, and wk,j is the contribution of species j to the driver k.

Denoting by qi,k the influence of the community-level driver k
on species i, the interaction terms of equation (2.1) can be

written as

ai,j ¼
Xnd

k¼1

wk,jqi,k þ dijai: ð2:4Þ

Here dij is Kronecker’s delta (dii ¼ 1 and dij ¼ 0 for j = i), and

thus we have included separately a term for within species den-

sity dependence (ai) due to its obvious ecological importance.

The advantage of equation (2.4) is that it greatly reduces be effec-

tive dimension of the interaction matrix, assuming that the

number of community-level drivers is much smaller than the

number of species: while in the original model the number of

parameters in the interaction matrix A is m2, with equation

(2.4) the matrix is constructed from m(2nd þ 1) parameters. Con-

sequently, the parameters of the model can be identified if the

number of time steps is much greater than the amount of

community-level drivers, n� nd.

Similarly, the matrix V can be written with the help of latent

factors (ht,k) and factor loadings (lk,i) as

ei,t ¼
Xnf

k¼1

ht,klk,i þ dij1i,t, ð2:5Þ

where 1i,t �Nð0,s2
i Þ and nf is the number of latent factors. With

this parameterization, it holds that V ¼ LTLþ diag(s2
i Þ, where

L is the matrix of factor loadings lk,i. As the parameterization

of equation (2.5) has been discussed extensively in the context

of joint species distribution modelling [32], we focus here

mainly on the novel component of our work, i.e. equation (2.4).
(ii) Alternative statistical frameworks
To evaluate the performance of the above described statistical

model, we define a set of alternative models. We consider the

following four models:

— Model 1: no interspecific interactions. In this model we assume

that ai,j ¼ 0 for i = j.
— Model 2: full interactions. In this model, we estimate A as a full

matrix without making any prior structural assumptions on it.

— Model 3: sparse interactions. Here we assume a priori that

each off-diagonal element ai,j is non-zero with probability

p whereas the diagonal elements ai,i are assumed to be

non-zero.

— Model 4: community-level drivers. This is the model described

in the previous section, and thus we model the interaction

coefficients ai,j by the row–column interaction model of

equation (2.4).
(iii) Model fitting
We parameterized the model in a Bayesian framework,

implemented as an extension to HMSC-Matlab [32]. This

implementation enables one not only to parameterize the

model described above, but also to extend it to involve environ-

mental covariates, species traits, phylogenetic relationships, as

well as e.g. a spatially hierarchical or a spatially explicit study

design. Further, in addition to normally distributed data, it

includes as data models Bernoulli distribution (with probit

link-function) for presence–absence data and Poisson and over-

dispersed Poisson distributions (with log link-function) for

count data. Concerning the prior distributions, as usual in

factor analysis, we assumed that wk,j �Nð0, 1Þ and ht,k �Nð0, 1Þ.
We assumed a multiplicative gamma prior [37] for the influences

of the community-level drivers (qi,k) and the latent factors (lk,i) on

the species. In this model, the number of drivers nd is theoreti-

cally infinite, but their effective number is kept small due to

increasing level of shrinkage applied to the influences of the

community-level drivers (qi,k) as a function of the driver

number. Due to computational reasons, the drivers that contrib-

ute a negligible proportion of variance are dropped from

the model. In the sparse interactions model, we assumed that

p ¼ 0.1 as the default prior. For details on model fitting, see the

electronic supplementary material.

(b) Testing the performance of the approach with
simulated data

To evaluate the performance of the statistical approach, we gen-

erated simulated data from the MAR(1) model. We conducted a

full factorial design, in which we generated data using each of

the above described four models, and then fitted to each

dataset all the four models, resulting in 16 combinations of

data-generating model and model used for inference. When gen-

erating data with the sparse interactions model, we set p ¼ 0.1

and thus assumed that 90% of the interspecific interactions

were zeros. When generating data with the community-level

drivers model, we assumed that there were nd ¼ 2 drivers.

To test the influence of community size and length of time-

series on the results, we assumed either a small (m ¼ 5) or

large community (m ¼ 100), and either a short (n ¼ 10) or long

time-series (n ¼ 100). We generated 10 replicates of each of

these cases, thus resulting in 4 � 2�2 � 10 ¼ 160 datasets

and 4 � 160 ¼ 640 models fitted to data. For details on data

generation, see the electronic supplementary material.

We assessed the performances of the models both in terms of

inference and predictive power. In terms of inference, we com-

puted the correlation between the true and estimated (posterior

mean) values of the interaction coefficients ai,j over all species

pairs (i, j ). In terms of predictive power, we predicted the pos-

terior mean for yt, conditional on the true value of yt21, for

dynamics simulated for 100 additional time steps following the

end of the time-series used for estimation. We computed the cor-

relation between the predicted and observed values separately

for each species, and then computed the average correlation

over the species.

(c) An empirical case study
We analysed time-series data collected by Brannock et al. [38] on

pelagic micro-eukaryote communities. The data were down-

loaded from the Dryad data repository [33]. The data originate

from four sites that were bimonthly sampled during 2.5 years.

In total, three sites were sampled 14 times and one site was

sampled 10 times. The microorganisms were identified through

high-throughput sequencing, the outcome of which was a

matrix describing the sequence count for each OTU (operational

taxonomical unit) for each site. Out of the 19 158 OTUs, we
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Figure 1. Comparison of the performance of the alternative statistical modelling frameworks based on simulated data. Panel (a) shows the correlation between
model prediction and validation data (averaged over species), and panel (b) the correlation between elements of true and estimated ( posterior mean) interaction
matrices A. In both panels, the rows correspond to the data-generating models, the columns to small (m ¼ 5) or large (m ¼ 100) communities, and the colours to
the models used for inference. The bars show the mean and the error bars+ two standard errors over the 10 replicates. The figure shows the results for a long
time-series (n ¼ 100), corresponding results for a short time-series (n ¼ 10) being shown in the electronic supplementary material.
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selected the 100 most common ones according to their prevalence

(fraction of samples where the species was present), which

varied among these 100 OTUs from 87% to 100%. We computed

an abundance index by log(x þ 1)-transforming the OTU count.

We kept the last four time points for each site as validation

data, and used the remaining data as training data. We fitted

each of the Models 1–4 to the training data, including as covari-

ates the season (fixed factor with the four levels of winter, spring,

summer and fall), the site (random factor), the sample (random

factor) and the log-transformed total number of sequences

(continuous covariate). The last one was included to control for

variation in sequencing depth, the total number of sequences

per sample varying from 12 000 to 778 000. The random factors

were implemented through a latent factor approach (equation

(2.5)) following Ovaskainen et al. [32], and they model random

variation in species occurrence and co-occurrence at these two

levels. We evaluated the models’ performances in terms of corre-

lation between model prediction and validation data similarly to

the evaluation of the simulated data. To test the sensitivity of

the results to the prior assumptions related to the sparseness

(Model 3) or effective dimensionality (Model 4) of the inter-

action matrix, we fitted the Models 3 and 4 also with

alternative priors (see electronic supplementary material).
3. Results
For a small community, long time-series data contains

sufficient information for estimating the full A matrix. Conse-

quently, for small communities, all models performed

essentially equally well with simulated data both in terms of

prediction (figure 1a) and inference (figure 1b). The exception
is Model 1, which failed to perform well with data generated

by the other models, simply because it assumes that the off-

diagonal elements of A are zero. With large communities,

which are the focus of this paper, the models deviated substan-

tially from each other in their performance. As expected, the

true model that was used to generate the data always per-

formed at least equally well as the other models. Similarly to

the case of the small communities, with large communities

Model 1 performed well only if the underlying communities

also lacked interspecific interactions. Among Models 2–4,

Model 2 (full interactions) performed the worst: Models 3

and 4 performed equally well as Model 2 for data generated

by Model 2, but Model 2 performed worse than Model 3 for

data generated by Model 3, and it performed worse than

Model 4 for data generated by Model 4. Neither Model 3

(sparse interactions) nor Model 4 (community-level drivers)

was superior over the other one: Model 3 outperformed

Model 4 with data generated by Model 3, whereas Model 4

outperformed Model 3 with data generated by Model 4.

The results from simulated data demonstrate that the

choice among the Models 3 and 4 is not a statistical but an

ecological question: are real communities structured by

sparse interactions or by interactions that can be captured

by community-level drivers? While this question cannot be

answered conclusively without the evaluation of a large

array of case studies, the results from our empirical case

study (with data illustrated in figure 2) give support for the

community-level driver hypothesis: the correlations between

model prediction and validation data were 0.37 (Model 1),

0.14 (Model 2), 0.32 (Model 3) and 0.46 (Model 4).
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Intriguingly, both Model 2 (full interactions) and Model 3

(sparse interactions) performed worse than Model 1 (no inter-

specific interactions). This is because of overfitting, which

was the case for all models, and especially for Model 2: the

correlation between model prediction and training data was

0.60 (Model 1), 0.98 (Model 2), 0.73 (Model 3), and 0.86

(Model 4). Repeating the analyses for alternative priors

for Models 3 and 4 showed that the result of Model 4

outperforming Model 3 is robust to prior choice (electronic

supplementary material). For additional evaluations of

model fit, see electronic supplementary material.

The contributions of the OTUs to each driver (wk,j) are

illustrated in figure 2f, and the influences of the drivers to

each species (qi,k) are illustrated in figure 2g. Effectively, the

model identified only a single driver, as the influence of

the first factor (top row in figure 2g) contributed 98.6%

of the total influence of all 11 drivers that were included in the

model. Thus, while Model 1 (full interactions) had 10 000

free parameters for the estimation of the matrix A, the com-

munity-level drivers model had essentially (counting the

first driver only) only 300 parameters (100 parameters for

each of wk,j, qi,k, ai). The terms modelling within-species

density dependence ai (figure 2h) were clearly visible in the

interaction matrix A, which had roughly equally many posi-

tive and negative off-diagonal elements (figure 2e). The

matrix A was sparse in the sense that only a small fraction

of the off-diagonal elements ai,j were estimated to be posi-

tive or negative with high statistical support: the fraction

of elements that were positive with at least 95% posterior

probability was 0.5%, and similarly the fraction of elements

that were negative with at least 95% posterior probability

was 0.2%.
4. Discussion
The ‘community-level drivers’ approach presented in this

paper provides a new statistical framework for using

time-series data on large communities to identify biotic

and environmental drivers structuring communities. The

method introduced here enables ecologists to efficiently esti-

mate interaction matrices for species-rich communities, and

thus to get a more accurate picture of interspecific inter-

action networks than so far has been possible. Large-scale

and long-term time-series community data originating from

environmental barcoding techniques are becoming increas-

ingly available [39,40], and thus there is an increasing

demand for robust statistical tools for analysing such

large data. When combined with earlier developments in joint

species distribution modelling [30–32], the statistical methods

developed and implemented here enable analyses of such

data in a way that integrates information on community-level

dynamics with environmental covariates, species traits,

phylogenetic relationships and spatial structure (e.g. spatially

hierarchical or spatially explicit study designs). Estimated par-

ameters may subsequently be used to evaluate the relative

importance of intra- and interspecific interactions, as well as

the stability of a community [22]. Moreover, since the method

presented is a model-based approach, it can be used to predict

community dynamics under environmental change, which is a

key priority in conservation biology [41].

The community-level driver and the sparse interactions

approaches represent two different ways to deal with the

curse of the dimensionality problem encountered when esti-

mating large interaction matrices. These two approaches may

also be considered as alternative hypotheses about the
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structures of ecological interaction networks. Results from

simulations performed here indicate that both approaches are

able to predict community dynamics better than the full inter-

action model, but we acknowledge that for a comprehensive

evaluation, more simulations under varying sets of assump-

tions and parameters as well as tests on empirical data are

needed. The methods presented here allow one to test among

these competing hypotheses, by fitting the competing models

to data and comparing predictive performances of the

models or applying other model selection approaches. The

case study considered here gave support for the interactions

between aquatic microorganisms being structured more closely

according to ‘the community-level drivers hypothesis’ rather

than ‘the sparse interactions hypothesis’. An important chal-

lenge for community ecological research is to disentangle

these, and possibly other hypotheses, for a broad range of

taxa and environmental settings. The community driver

approach may also be extended to test further hypotheses,

such as analysing whether the effects among trophically similar

species on total abundance are equal, as proposed by the neu-

tral theory [42]. This can be done by imposing constraints on

the interaction matrix (equations (2.3–2.4)). Furthermore, our

approach also provides tools for validating the critical assump-

tions regarding parametric species abundance models used to

analyse temporal variation in community structure [43].

In the empirical case study involving aquatic microorgan-

isms, we found strong statistical support for a positive or

negative interaction only for very few species pairs. This

finding is in line with theoretical and empirical studies show-

ing that compared to the effects of the environment and

intraspecific interactions, the contributions of interspecific

interactions in structuring ecological communities are

weak [13,44,45]. In spite of this, accounting for interspecific

interactions greatly improved the predictive performance

of the model, the correlation between model prediction

and validation data increasing from 0.37 (Model 1) to 0.46

(Model 4). Curiously, even if the sparse interaction model is

designed for a case where most interactions are zero, this

approach led to even worse predictive power than Model 1,

which sets all interactions to zero. Together, these results
illustrate that, in the case of the community-level drivers

model, the joint posterior distribution of the interaction

matrix involves more information than what might be

inferred from the marginal distributions of the interaction

coefficients for each species pair. This is perhaps not surpris-

ing, as the model was not designed to capture interactions

among specific species pairs, but structural properties of the

interaction matrix. This is consistent with prior information

on the importance of trophic interactions in the taxa relevant

for the empirical study [46], e.g. large zooplankton being

predators of small zooplankton and protists, and small

zooplankton being grazers of phytoplankton.

Interaction networks might be structured by species traits

[14,47], and thus modelling the species contributions to com-

munity-level drivers as well as the species responses to them

as a function of traits is an important challenge for the future.

Further aspects not considered here but potentially important

in determining population dynamics include e.g. demographic

stochasticity, migration and age structure. Incorporating

these factors into the modelling framework in addition to

mechanisms already included would further improve our

mechanistic understanding of community dynamics.
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