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To survive in harsh conditions, motile bacteria swim in complex environments

and respond to the surrounding flow. Here, we develop a mathematical model

describing how flagella bending affects macroscopic properties of bacterial

suspensions. First, we show how the flagella bending contributes to the

decrease in the effective viscosity observed in dilute suspension. Our results

do not impose tumbling (random reorientation) as was previously done to

explain the viscosity reduction. Second, we demonstrate how a bacterium

escapes from wall entrapment due to the self-induced buckling of flagella.

Our results shed light on the role of flexible bacterial flagella in interactions

of bacteria with shear flow and walls or obstacles.
1. Introduction
Bacteria, being among the simplest living organisms, are the most abundant

species on the planet. They significantly influence carbon cycling and sequestra-

tion, decomposition of biomass and transformation of contaminants in the

environment. Trillions of symbiotic and pathogenic bacteria share human body

space and form microbiota. Behaviour of bacterial suspensions is an active

topic of research [1–6]. The recent discoveries include the onset of large-scale col-

lective behaviour [2,3,7,8], reduction of effective viscosity [9–11], rectification of

random motion of bacteria and extraction of useful energy [12–14], and enhanced

mixing in bacterial suspensions [1,15–17].

Some motile bacteria utilize bundled helical flagella to propel themselves in

a fluid environment. Bacteria use the propensity to swim to search for food (e.g.

chemotaxis), colonize new territory or escape harsh conditions. Orientation of

bacteria is also affected by shear flow, leading to a variety of non-trivial effects,

such as rheotaxis (swimming against the flow) [18] or depletion of bacterial

concentration in shear flows [5,19]. Unlike chemotaxis, i.e. drift along the con-

centration gradient, rheotaxis and concentration depletion are purely physical

effects since no active receptor response is needed for the explanation of

these phenomena. Elastomechanics of the bacteria, like bending and buckling

of the flagella, could then play an important role in the understanding of

these phenomena [20]. A flagellum is, typically, at least twice longer than the

bacterial body and is flexible. Thus, flagellar bending could result in a signifi-

cant effect on bacterial trajectories [20–23]. Nonlinear dynamics of rigid

microswimmers in two-dimensional Poiseuille flow were studied in [24,25]. It

was shown that the swimmers initially located away from channel walls exhibit

a stable periodic motion around the centreline of the flow. The role of bacteria

motility in zipping of individual flagellar filaments and the formation of the

bacteria flagella bundle was investigated in [26]. However, it was poorly under-

stood how the flagellum can affect the bacterial dynamics due to bending in

response to the external shear flow or due to collision with the wall or obstacle.

A model of a swimmer with flexible flagella in two fundamental shear flows,

either planar shear or Poiseuille flow in long channels, has been introduced in

our previous work [27]. A variety of surprising effects was discovered.
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For example, depending on the bending stiffness of the fla-

gellum, the swimmer may migrate towards the centre or

exhibit periodic motion. This paper significantly extends

and advances our results obtained in [27]. Here, we succeed

in tackling two new important problems associated with the

bacterial dynamics in shear flows. We show that flexibility of

the bacterial flagella (i) contributes to the reduction of the

effective viscosity and (ii) assists bacteria escaping entrap-

ment near solid walls. Our results provide insight on how

microswimmers interact with external shear flow and with

obstacles, realized, for example, in microfluidic devices or

in vivo.

The first part of this work is motivated by the experimen-

tal observation in [9,10] on the decrease of the effective

viscosity of an active suspension of B. subtilis, in particular

in the dilute regime, that is, when the volume fraction of bac-

teria is less than 1%. This result has been recently extended in

[11] where a suspension of E. coli exhibited properties remi-

niscent of those of a super fluid: persistent flow and zero

(or even negative) apparent viscosity. This is a hallmark of

active matter: chemical energy stored in nutrients is turned

into mechanical energy which is then used to counter-balance

the viscous dissipation. Suspensions of active (self-propelled)

swimmers representing bacteria were studied in [19,28–30]

with the primary goal to identify a mechanism resulting in

the decrease of effective viscosity in a dilute regime. The

works [28–30] require bacteria to tumble (randomly change

direction characterized by some tumbling rate or effective

rotational diffusion Dr). Nevertheless, the strain of B. subtilis
used in [9] tumbles rarely, i.e. Dr� 1. Here, we show that

bacterial flagella bending contributes to the reduction of the

effective viscosity even in the absence of tumbling. We

derive an asymptotic expression for the effective viscosity

for a dilute suspension. We show that this expression is in

agreement with both the numerical solution of the model

and qualitatively consistent with the experimental data

from [9].

The second part of the work focused on the bacterial

behaviour near surfaces (e.g. obstacles or walls). Swimming

of bacteria in the presence of walls is important for the macro-

scopic properties of suspensions since these properties

depend significantly on the spatial distribution of bacteria.

The problem of the bacterial behaviour near surfaces natu-

rally occurs in multiple settings relevant in the biomedical

context (formation of biofilms, migration of bacteria along

channels, e.g. catheter) and industry (pipes clogging, biofoul-

ing). In many situations, bacteria swim in a confined

container and their trajectory can be significantly affected

by a nearby surface. Typically, bacteria are attracted by a

no-slip surface (a wall) due to long-range hydrodynamic

interactions [31], and then swim (mostly) parallel to the

wall for a certain period of time. Eventually, bacteria can

escape due to tumbling [4] or can permanently adhere to

the wall. Study of the behaviour of flagellated swimmers

near walls was initiated by [32] where the accumulation of

spermatozoa at glass plates was documented. In the exper-

imental works [33,34] it was shown that E. coli is attracted

by the wall and the straight trajectory becomes circular due

to counter-rotation of the bacterial body and the flagella.

The tendency of bacteria to approach the wall and to increase

the curvature of their trajectory was observed by numerical

modelling in [35] where a bacterium was modelled as a

sphere with a helical flagellum rotating with constant angular
velocity. To explain why the bacteria can swim near the wall

adjacent to it for a long time, in [36] the authors hypothesized

the presence of short-ranged forces of van der Waals type.

However, in [37], by combining theory and experiment, it

was shown that van der Waals forces cannot be responsible

for parallel swimming of the bacteria near the wall. Instead

authors proposed to extend the model from [35] for a non-

spherical bacterium body, and showed that bacteria may be

kept at the wall by the additional torque caused by the

non-sphericity. In addition to hydrodynamic attraction, bac-

teria can eventually reorient themselves and swim away

from the wall (escape). In [4], the time needed for bacteria

to escape was estimated theoretically, provided that

rotational diffusion (for example, due to tumbling) is intro-

duced. Drecher et al. [4] noted that even if bacteria do not

tumble and are too large to be affected by thermal effects,

the rotational diffusion can be assigned with a significant

value due to noise in the swimming mechanism, whose

essential constituent is flagella dynamics.

Here, we consider how a flagellated bacterium, being

initially entrapped and immobilized at a wall, can escape

by exploiting the flexibility of its flagella. Such an entrapment

may also naturally happen when the suspending liquid is

anisotropic, e.g. lyotropic liquid crystal [38,39]. In this situ-

ation, bacteria are swimming predominantly parallel to the

average molecular orientation, i.e. liquid crystal director. In

the case when the liquid crystal director is anchored perpen-

dicular to the confining wall (homeotropic alignment),

bacteria are forced to be aligned perpendicular to the wall

and become trapped [38,40]. When the motility of bacteria

is increased (by adding oxygen), the bacterium may turn par-

allel to the wall due to the torque coming from the wall. Also,

the forces which kept bacteria immobilized are small in com-

parison to the propulsion force (weak surface anchoring of

the liquid crystal molecules). We show that a bacterium

with rigid flagellum swims along the wall, so it stays essen-

tially entrapped. By contrast, we show that a bacterium

with flexible flagellum may rotate by an angle larger than

p/2 and escape. An ability to escape from the wall is

important for macroscopic properties of suspensions since it

affects accumulation of bacteria at the wall, and thus distri-

bution of bacteria in the whole domain. For example,

effective viscosity is a function of the spatial distribution of

bacteria. Thus, wall accumulation will affect the spatial distri-

bution of bacteria, and, correspondingly, will contribute to

the apparent viscosity.

To obtain results of both parts, we extend the model from

[27], referred to below as MMFS (the mathematical model of

flagellated swimmer). The model is two-dimensional and

describes the swimmer as a rigid elliptic body (major and

minor axes are denoted by ‘ and d, respectively) with an

attached elastic beam representing flagella (figure 1). The

orientation of the swimmer u0 is defined as the orientation

of the principal axis of the body with respect to the horizon-

tal. The flagellum is a segment of a curve of constant length L
and u(s) is the tangential angle of the flagellum at the point

corresponding to arc length parameter s, 0 � s � L. The

underlying physical assumptions of MMFS are outlined in

§5. MMFS requires solving a coupled system of nonlinear

differential equations that were obtained from the force and

torque balances for the swimmer. This mathematical model,

as well as balance equations, can be found in electronic

supplementary material, S1.
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Figure 1. Schematics of the flagellated swimmer.
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2. Results
2.1. Effective viscosity of a dilute suspension

of flagellated swimmers
2.1.1. A general formula for effective viscosity
Effective viscosity can be understood as a measure of the total

shear stress of a suspension induced by a prescribed shear

flow. In the context of bacterial suspensions, the stress result-

ing from the applied strain is due to the intrinsic resistance of

suspending fluid and due to the stress created by the micro-

swimmers (bacteria). In the dilute regime, interactions

between bacteria are negligible. Therefore, the superposition

principle applies: the contribution to the total stress from

all bacteria is the sum of the individual contributions.

Moreover, due to their large number, each bacterium’s contri-

bution may be approximated in the sum by its expected value

(taking a continuum limit). The dilute framework enables us

to use MMFS to derive macroscopic properties of the suspen-

sion. The formula for the effective viscosity heff in a linear

planar shear background flow of strain rate _g becomes

[28,29,41–43]

heff ¼ h0 þ
Xn

i¼1

hbact,i

� h0 þ n
ð2p

0

S12ðu0Þ þ S21ðu0Þ
2 _g

Pðu0Þdu0, ð2:1Þ

where h0 is the viscosity of the suspending fluid, n ¼ FVL is

the number of particles in the volume VL occupied by a sus-

pension, F is the number density of bacteria and P(u0) is the

bacterial orientation probability distribution function. The

integral in the r.h.s. of equation (2.1) is the expected value

of the contribution to the effective viscosity hbact,i of the ith
bacterium. The effective viscosity hbact,i is the ratio between

the anti-diagonal components S12 and S21 of the stress

tensor S (induced by the bacterium) and the applied shear

rate _g. Here, we assume that S12 and S21 are only determined

by the orientation angle u0 of the bacterium. To compute the

expected values of S12 and S21, finding the distribution of

orientation angles P(u0) is necessary.

MMFS is based on balance of forces and torques exerted

by the swimmer and the fluid on the swimmer’s rigid body
and at each point of the flexible flagellum. The sum of

forces exerted by the swimmer on the fluid is zero. This is

similar to the force-dipole model of a swimmer [4,43] where

the sum of the force that pushes the body in the fluid and

the resistive (or viscous drag) force that perturbs the fluid

due to the propulsion mechanism in the flagella (represented

in the force-dipole model by a point force exerted behind the

body) is zero. The key difference between MMFS and the

force-dipole model is that the sum of all torques exerted by

the swimmer in MMFS is not necessarily zero, whereas for

force dipoles this sum is trivially zero. In particular, the

force dipole cannot rotate if no external torque is exerted

(a non-zero background flow, interactions with other swim-

mers, external magnetic field, etc.), while the flagellated

swimmer may rotate if the flagellum is bent. The fact

that the fluid balances a non-zero total torque exerted

by the swimmer results, in general, in the effective stress

being non-symmetric in MMFS, i.e. S12 = S12 [44]. A non-

zero anti-symmetric part of the effective stress due to

active contribution is the special feature of active chiral

fluids [45].

To find the stress tensor components Skl one needs to

solve the Stokes equation in the low Reynolds number

regime: 2rx
. S(x) ¼ Fbact(x), where S is the fluid stress

tensor, and Fbact is the bulk force due to the presence of the

bacterium (the thrust force). Solving this equation is imprac-

tical due to the large domain of integration compared with

the bacterium size. In a simpler model of a bacterium with

rigid flagellum [43], each bacterium was approximated by

a force dipole [4] and the explicit expression for S is well

known in this case. Here, our goal is to capture the effects

coming from bending of elastic flagella in shear flow, so an

approximation by the force dipole would oversimplify the

consideration and would lead to zero net contribution

to the effective viscosity. Instead, we use the Kirkwood

approximation for the stress tensor [46–48]

Skl ¼
1

VL

ð
(Fbact(x))k(x� xc)l dx, ð2:2Þ

where Fbact(x) is non-zero in a small neighbourhood of the

centre of mass of the bacterium xc, and VL is the volume occu-

pied by the fluid. The Kirkwood approximation can be also

interpreted as the second term in the multipole expansion

of the Stokes flow [42].

In the context of MMFS, Fbact(x) is the sum of two forces

distributed over the flagellum: (i) the uniform propulsion

force Fpt(s) directed along the unit tangent vector t(s) with

the magnitude Fp and (ii) the elastic force Q(s) ¼ L(s)t(s) þ
N(s)n(s) (L and N are tangent and normal components of

Q, respectively). In the following, it will be convenient to

separate contributions coming from propulsion and from

elasticity for the components of the stress tensor: Skl ¼

Spropulsion
kl þ Selastic

kl , where according to equation (2.2)

S
propulsion
kl ¼ 1

VL

ðL

0

FptkðsÞðXlðsÞ � Xlð0ÞÞds

and S
elastic
kl ¼ 1

VL

ðL

0

@Qk

@s
ðsÞðXlðsÞ � Xlð0ÞÞds,

9>>>=
>>>;

ð2:3Þ

and analogously for the effective viscosity heff:

heff � h0 ¼ hpropulsion þ helastic: ð2:4Þ

Terms hpropulsion and helastic are computed via (2.3) and (2.1).

They take into account the effect of the flagellum. This means



Table 1. Comparison of numerical solution with the asymptotic results.

Kb 5 3310223 N m2 Kb 5 9310223 N m2

asymptotics numerics asymptotics numerics

heff�h0
h0

< 0 L . 15 mm L . 11 mm L . 22 mm L . 15 mm

r , 0.33 r , 0.45 r , 0.23 r , 0.34

1 . 0.16 1 . 0.05 1 . 0.24 1 . 0.05
heff�h0

h0
< 10% L . 16 mm L . 12 mm L . 23 mm L . 16 mm

r , 0.31 r , 0.43 r , 0.22 r , 0.32

1 . 0.21 1 . 0.06 1 . 0.26 1 . 0.06
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that the contribution to the effective viscosity due to the pres-

ence of rigid bodies in the fluid is included in h0. In other

words, h0 is the effective viscosity of the dilute suspension

of rigid bodies and h0 � hfluid[1 þ nF], where hfluid is the vis-

cosity of water and F is the number density. The formula for

the coefficient n is well known: for spheres n ¼ 2.5 (the Ein-

stein formula [49]); for ellipsoids n was obtained by Jeffery

(formulas (62) and (64) in [50]).

2.1.2. Asymptotic results for large bending stiffness of flagellum
We present here our results on computations of hpropulsion

and helastic as functions of the following geometrical and

physical dimensionless parameters: shape parameter b

(describes the shape of the bacterium body; b ¼ 0 for rods

and 1/2 for spheres), ratio of bacterial body length to the fla-

gella length r ¼ ‘/L (‘ and L are the body and the flagellum

length, respectively) and the compound dimensionless

parameter characterizing ratio of drag force to elastic force

1 ¼ L4 _gzb=Kb (zb is the drag coefficient and Kb is the bending

stiffness of the flagellum). We use two scale asymptotic

expansions in small 1 (stiff flagella) to establish an explicit

expression for the effective viscosity heff. Note that, for

fixed values of zb, L and _g, taking 1 small is equivalent to

the flagellum being nearly rigid. This implies that the bend-

ing stiffness of the flagellum Kb is large (the reader should

not be confused by the fact that the typical Kb we use for

bacteria and call it ‘large’ is of the order of 10223 N m2;

after non-dimensionalization Kb is replaced by 121; for details

see electronic supplementary material, S2). Necessity of two

scales in the asymptotic expansions in the ‘rigid’ limit is

explained by the two different time scales for the smoothly

translating bacterial body and rapidly deforming flagellum.

The two-scale asymptotic expansion for equations of

MMFS is used to derive the following asymptotic expres-

sion for the tangential and normal components of the

elastic stress: L(s) ¼ pL(s)sin 2u0 2 Fp(s 2 L)/(1 þ kr), N(s) ¼

pN(s)cos 2u0. Polynomials pL(s) and pN(s) are of second

order with respect to arclength s with coefficients pro-

portional to zb and _g and they also depend on shape

parameter b, flagellum length L, body length ‘ and drag coef-

ficient kr (see table 2 with the list of parameters). The second

term in the expression for the tangential component of the

elastic stress is due to the propulsion force which acts in

the tangential direction t with the strength Fp. We also

found the asymptotic expression for the flagellum shape

described by the slope angle: u(s) ¼ u0 þ 1pu(s) cos 2u0,
where pu(s) is a polynomial of fourth order with respect to

arclength s and coefficients depending on b, ‘, L, kr. Details

of derivation for L, N and u with explicit formulas for coeffi-

cients of polynomials pL, pN and pu can be found in the

electronic supplementary material.

The distribution of orientation angles P(u0) from equation

(2.1) is in general a function of both angle of the body u0 and

time t. It satisfies the Liouville continuity equation

@

@t
Pðu0, tÞ þ @

@u0

Tshear þ Tflagellum

zr
Pðu0, tÞ

� �
¼ 0

and
Ð2p
0

Pðu0, tÞdu0 ¼ 1,

9>>>=
>>>;
ð2:5Þ

where Tshear and Tflagellum are torques exerted on the body of

the bacterium by the background shear flow and by the

flagellum, respectively. Parameter zr is the rotation drag

coefficient, and (1/zr) (Tshear þ Tflagellum) is the angular

velocity of the body caused by shear and flagellum. It is

well known [42] that Tshear can be explicitly written as a

function of u0:

Tshear ¼ � _gzrðð1� bÞ sin2 u0 þ b cos2 u0Þ

¼ � _gzr

2
ð1� ð1� 2bÞ cos 2u0Þ: ð2:6Þ

The equation zr(du0/dt) ¼ Tshear (u0) is known as the Jeffery

equation for rotating ellipses in shear flow [42,50]. To compute

Tflagellum ¼ (‘/2) Njs¼0, one needs to solve the elasticity

equations for the flagellum. However, using the asymptotic

method as 1�1, it is possible to represent Njs¼0 (and, thus,

Tflagellum) as a function of u0, which results in a closed form

of equation (2.5). The resulting equation is the same as the

Jeffery equation for ellipses with the effective shape parameter

b ¼ rb/(1 þ 2r) in place of b. In other words, an ellipse with a

rigid flagellum has the same trajectories as a more prolate

ellipse with no flagellum. The equilibrium distribution

which satisfies equation (2.5) for 1� 1 is given by

P(u0) ¼ q
2p

1

1� (1� 2b) cos (2u0)
, ð2:7Þ

where constant q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (1� 2b)2

q
is introduced, so P(u0)

satisfies the normalization condition in (2.5). The effective

viscosity is the suspension’s time-independent property.

Since solutions of equation (2.5) for 1� 1 converge to the equi-

librium distribution (if one assumes a small rotational



Table 2. Main model parameters.

parameter typical value description

L 1.2�1025 m flagellum length

‘ 0.5�1025 m body length (major axis

of ellipse)

d 7�1027 m body thickness (minor

axis of ellipse)

b 0.0162 body shape parameter,
d2

‘2þd2

_g 0.1 s21 shear rate

h0 1023 Pa s viscosity of the

surrounding fluid

Fp 1027 N m2 propulsion force

Kb 3�10223 N m2 flagellum bending

stiffness

zb 1023 N s m22 drag coefficient per unit

length for the

flagellum

zh 1.6�1028 N s m21 drag coefficient for the

body

zr 6.7�10220 N s m rotational drag

coefficient for the

body

a 2 drag anisotropy factor

kr 0.65 Lzb/zh (auxiliary

parameter)

r 0.41 ‘/L

1 0.07 L4 _gzb=Kb
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diffusion), we use P(u0) from equation (2.7) when applying

equation (2.1).

Substituting the asymptotic expansions into formula (2.1),

the effective viscosity of the dilute suspension of flagellated

swimmers is expressed as

heff � h0

h0

¼ F
L3

h0

Zelastic(b, r)�F1
FpL2

h0 _g
Zprop(b, r), ð2:8Þ
where F is the number density of bacteria in the suspension

and expressions for the elastic and propulsion contributions,

Zelastic and Zprop, can be found in electronic supplementary

material, section 2.5; both Zelastic and Zprop are positive.

Equation (2.8) implies that the change of the effective

viscosity is obtained by the interplay between elastic and

propulsion contributions. Namely, whatever the para-

meters b and r are, the propulsion decreases the viscosity,

whereas the elastic part of the stress tends to increase the

viscosity (figure 2). For small r (i.e. long flagella), Zprop

behaves as 1/r5 whereas Zelastic behaves as 1/(r2log(r)).

This implies that for r small enough, the propulsion should

dominate elasticity.
2.1.3. Numerical study
We performed computational analysis of MMFS and com-

puted the effective viscosity heff as well as propulsion and

elastic contributions hpropulsion and helastic. The expected

value integral in the r.h.s of equation (2.1) was approximated

by the time average of its integrand.

For large Kb (small 1), the results of the numerical sol-

ution are in a good agreement with asymptotic expression

equation (2.8) (figure 2 and table 1). Note that the asymptotic

parameter 1 is proportional to L4, so the agreement between

numerical and asymptotic solutions is lost for small r (long

flagellum). The set of values of the flagellum length L for

which the decrease in viscosity is observed depends on the

bending stiffness Kb. Table 1 compares results of asymptotic

approach and numerical solution; the threshold values of L,

r and 1 required for a decrease of viscosity are given.

For the following model parameters: Kb ¼ 3�10223 N m2,

h0 ¼ 1023 Pa s, L ¼ 12 mm and Fp ¼ 1.5 mN m21; asymptotic

and numerical values of heff are in agreement with exper-

iment [9], i.e. we predict a decrease in effective viscosity

of �10% for the number density of F ¼ 5�109 cm23 (see

the part F , 109 cm23 of fig. 3 in [9]). The overall viscosity

reduction is somewhat smaller than observed experimentally.

It was shown that multiple physical factors may contribute to

the viscosity reductions, including long-range hydrodynamic

interactions between the bacteria [51], curvature of the flow

streamlines [19] and tumbling [29].

Certain flagellated bacteria have the ability to swim

through environments of relatively high viscosity [52–54].

Moreover, the bacteria maintain an almost constant speed

independent from the fluid resistance they encounter. In

the first approximation, the velocity of bacteria is �Fp/h0.

Therefore, bacteria increase their propulsion force while

surrounded by a more viscous fluid. In such a fluid (h0 ¼

5.1023 Pa s and Fp ¼ 1.5 mN m21), we predict a decrease of

viscosity for r , 0.55 (r ¼ 0.5 for B. subtilis) (figure 2c). For

higher b values, the decrease of effective viscosity also

occurs for shorter flagella (figure 2d ).

2.2. Flagellated swimmers can escape from the wall
Here, we consider how flagellar flexibility assists a bacterium

to escape from the wall. A swimmer can be entrapped by a

wall such that its orientation is perpendicular to the wall.

This kind of entrapment may happen, for example, in lyotro-

pic (water soluble) nematic liquid crystal with the

homeotropic surface anchoring [38,40] (the liquid crystal

director is perpendicular to the wall). Since the bacteria

tend to align with the nematic director, they eventually

become perpendicular to the wall (for simplicity we neglect

here the effects associated with the anisotropic elastic and vis-

cous torques exerted by the liquid crystal on a bacterium).

Moreover, motile bacteria would hit the wall. However,

due to flagella rotation and bending, this perpendicular

alignment may become unstable.

Settings of the problem are as follows. The bacterium’s

body initially has the orientation u0 ¼ p, that is, the body is

oriented horizontally, pointing to the right, at the vertical

wall x ¼ 0. The flagella is initially slightly perturbed from a

straight configuration (while unstable, perfectly straight

flagella will lead to no motion). The bacterium’s body experi-

ences three torques: (i) due to the flagella, applied at the point

of its attachment to the body, (ii) due to the wall, applied at
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the point of touching the wall (if the body does not touch the

wall, then this torque is 0) and (iii) due to the surrounding

viscous fluid (figure 3a).

We use MMFS with a modification to take into account

the additional torque when the swimmer is touching the

wall. A variety of non-trivial dynamic regimes was numeri-

cally observed depending on the values of the bending

stiffness of the flagellum, Kb, all other parameters being

fixed; their values can be found in table 2. Numerical analy-

sis shows that qualitative behaviour of the swimmer

depends on the bending stiffness of the flagellum, Kb.

If Kb , 5�10224 N m2 (relatively ‘soft’ flagellum), the

swimmer rotates and swims parallel to the wall. Thus, in

this case, though the swimmer is not immobilized at the

wall, it is still entrapped by the wall and cannot escape.

For bending stiffness in the range of 5�10224 N m2 , Kb ,

2.2�10223 N m2, the swimmer eventually swims away from

the wall, hence showing the ability to escape due to the fla-

gellum. However, in the range 1.5�10224 N m2 , Kb ,

9.1�10224 N m2 (pink interval in the centre in figure 3b), the

swimmer escapes from the wall but keeps turning due to

non-zero N0, eventually reorients against the wall, hits it,

escapes again, turns around, hits the wall again, etc. In other

words, the swimmer executes loops at the wall. In this case,

we count that the swimmer is trapped. For the large bending
stiffness, Kb . 2.2�10223 N m2 (‘almost rigid’ flagellum), as

is expected for the rigid flagellum, the swimmer rotates by

p/2 and then swims parallel to the wall (figure 3b,c; electronic

supplementary material, videos S1–S4). The difference

between ‘soft’ and ‘almost rigid’ cases is that for a ‘soft’ flagel-

lum the body exhibits visible oscillations due to buckling

instability, whereas in the other case, it swims straight, parallel

to the wall. This non-trivial qualitative behaviour of the swim-

mer depending on Kb is also observable when no obstacle is

present in the fluid. Regardless of initial flagella shape the

swimmer eventually either orients itself towards a certain

direction and swims straight or exhibits periodic oscillations

(figure 3d ) for the case with no background flow; more compli-

cated dependence on Kb of the large time behaviour of the

swimmer was observed in Poiseuille flow; see fig. 3(e) in [27];

see also electronic supplementary material, video S5). These

differences in qualitative behaviour may serve as a basis to

isolate bacteria with bending stiffness in a given range (or

equivalently, different numbers of flagella since effective Kb

is proportional to the number of flagella).

3. Discussion
We provide a heuristic explanation why the flagellum helps

decrease the viscosity. For the illustration, we will use the
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attached to the body at point R. Three forces act on the body: the normal force coming from the flagellum N0, the wall reaction Fwall and the fluid over the boundary
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force dipole representation of a bacterium, that is, the rep-

resentation by two forces of equal magnitude and opposite

directions. In [4], it was shown experimentally that the flow

from a swimming bacterium is well approximated by the

flow generated by a force dipole. Above we mentioned that

such a representation is not sufficient for our purposes to

study the impact of flexible flagellum. However, for the

sake of simplicity the force dipole model is sufficient if we

allow the dipole not to be straight: the line connecting points

where two opposite forces are exerted is not necessarily

parallel to these forces (figure 4b).

In the case of straight dipoles, that is, when the flagellum

is rigid and straight, swimmers with orientations u0 ¼ p/4 or

u0 ¼ 5p/4 enhance the fluid flow, whereas swimmers with

orientations u0 ¼ 3p/4 or u0 ¼ 7p/4 decrease the fluid flow

(figure 4a). The symmetry in the body orientation distribution

does not change the viscosity. The flexibility of the flagellum
breaks the symmetry in the dipole orientation distribution

(figure 4b). Thus, owing to the flagellar bending, a bacterial

body oriented at either p/2 or 3p/2 (neutral for heff if the

flagellum is straight) creates a force dipole oriented close to

7p/4 or p/4, respectively. As a result, on average, the orien-

tations helping the fluid to flow, and thus to increase the

background shear, are more likely than other orientations,

and, therefore, the viscosity is decreased if the flagellum

can bend.

In contrast with [43], the propulsion contribution to heff

has no apparent singularity for the strain rate _g ¼ 0 (which

is regularized by an infinitesimal rotational diffusion), and

in the first approximation (rigid flagellum) it does not

depend on the shear rate. This singularity is regularized

because 1 is proportional to 1= _g. The bulk stress depends on

how much the flagellum bends, which is in the first approxi-

mation directly proportional to the bulk rate of strain. As a
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Figure 4. Illustration of the viscosity reduction due to flagellar bending. Force dipole (red arrows) exerted by the swimmer on the fluid, for different body orien-
tations ip/4, i ¼ 0, . . ., 7. Blue arrows illustrate background shear flow. (a) Swimmers with a rigid flagellum: orientation of the bacterial body coincides with the
orientation of the force dipole. (b) Swimmers with a flexible flagellum: orientation of the force dipole differs from the orientation of the swimmer and the corre-
sponding force dipole amplifies the background shear flow. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20161031

8

result, the shear rate modifies linearly the propulsion stress;

then their ratio is constant in _g: as _g! 0 (and, thus, 1! 0),

the propulsion contribution to the effective viscosity equals

2F(L6zbFp/Kb)Zprop(b, r). Thus, the small strain rate _g limit

is well defined, and leads to a specific value of the effective vis-

cosity even in the absence of fluctuations. This result is in

agreement with the experiment [11] where a well-defined

value of effective viscosity was observed for small shear rates.
4. Conclusion
In this work, we demonstrated how the flexibility of bacterial

flagella affects macroscopic properties of suspension of

microswimmers. We found that flagellar bending may lead

to a decrease of the effective viscosity in the absence of

random reorientations. This effect is amplified with the

increase of the viscosity of the suspending fluid since many

bacteria often increase their propulsion force [52–54]. More-

over, we showed that flagella buckling may assist bacteria

to escape entrapment at the wall. Our findings highlight

the wealth of new intriguing phenomena stemming from

the flexibility of the swimmer’s body that include reduction

in the viscosity, escape from the wall entrapment, migration

towards the flow centre line and many others.

Here, we approximated helical flagella by an elastic beam

with the propulsion force distributed uniformly along the

beam. Obviously, this approximation neglects intrinsic chiral-

ity of the flagellum, which leads to its clockwise rotation and

counter-clockwise rotation of the head. The chirality of the

flagellum can be responsible for such phenomena as rheo-

taxis [18] and circular motion near the wall [34].

Incorporating flagellar chirality into our analysis would be

desirable, but technically challenging. We anticipate that the

torques arising from the helical shape of the flagellum are

negligible compared with the bending stresses considered

here, and, thus, do not affect the phenomena considered in

this work (see electronic supplementary material, section 3).

While these torques are small, on a long time scale they can

possibly result in more complex near-wall three-dimensional

trajectories. For example, looping motion in the direction

perpendicular to the wall can be combined with in-plane

circular motion.
5. Material and methods
As mentioned at the end of §1, in this work, we extend the model

from [27] which is abbreviated as MMFS. Given the initial state of

the swimmer (orientation of the body and the shape of the flagel-

lum at time t ¼ 0), MMFS entirely determines the state of the

swimmer for all times t . 0. The unknown quantities of MMFS

are the orientation of the body u0(t), the elastic stress of the flagel-

lum Q(s,t), and the tangential angle u(s, t) of the flagellum at the

point corresponding to arclength parameter s; s ¼ 0 is at the

body/flagellum interface and s ¼ L is at the free end of the flagel-

lum. Using basic geometric formulas, given Q(s, t), u(s, t) and

u0(t), one can recover the trajectory of the swimmer, the

shape and the location of every point of the flagellum X(s, t) ¼
(x(s, t), y(s, t)). MMFS requires solving a coupled system of an

ordinary differential equation for u0(t) and partial differential

equations for u(s, t) and Q(s, t). Electronic supplementary

material, S1, contains the full description of MMFS.

The underlying physical assumptions of MMFS are the fol-

lowing: (i) the two-dimensional swimmer is composed of a

rigid ellipse (body) and a flexible one-dimensional segment (fla-

gellum) of length L; the flagellum is rigidly attached to the body

(clamped); (ii) elastic and propulsion forces on the flagellum gen-

erate the thrust force which balances the drag force and leads to

the motion of the swimmer; (iii) a propulsion force is uniformly

distributed along the flagellum; and (iv) background flow is not

modified by the flagellum. The shape of the body (which is an

ellipse) is described by parameter b ¼ d2/(‘2 þ d2) where ‘ and

d are the major and minor axes, respectively. Small b corresponds

to rod-like bodies, and b ¼ 1
2 corresponds to spheres. The full list

of model parameters as well as their typical values can be found

in table 2.

We stress here that a bacterial flagellum is a flexible helical

filament which exhibits propeller-like motion by rotating

around its helical axis, and these rotations generate the propul-

sion force. In MMFS, according to (ii) above, this corresponds to

the thrust force having two separate components: due to flagel-

lar bending (the elastic force) and due to the propulsion

mechanism (the propulsion force). Moreover, flagellar bundle

is modelled as a one-dimensional (curved) segment in a plane

with no helical structure, since the propulsion force already

takes into account the helical structure of the flagellum and its

axial rotation. These approximations are needed to make the

model tractable analytically. We show in this work that despite

these simplifications MMFS captures important phenomenol-

ogy: viscosity reduction and escape from the wall. We model

peritrichously flagellated bacteria (such as Bacillus subtilis) and
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the one-dimensional curve segment represents not a single

flagellum but a flagellar bundle in which each flagellum is

connected to a body by the hook, which is more flexible than

the flagellum. These very short hooks (with the length of

about only 50 nm) are randomly distributed along the bacterial

body, and the clamped boundary conditions effectively replace

the hooks and individual flagellar filaments before they

assemble in a single bundle. For a computational model that

takes into account a flexible hook explicitly, we refer to [55].

A somewhat similar approach was considered in [56] to study

magneto-elastic filaments.
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