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Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in

biology. They are considered in textbooks as simple filaments with larger

stiffness. Recent observations of flagellar counterbend, however, show that

induction of curvature in one section of a passive flagellum instigates a com-

pensatory counter-curvature elsewhere, exposing the intricate role of the

diminutive cross-linking proteins at large scales. We show that this effect,

a material property of the cross-linking mechanics, modifies the bundle

dynamics and induces a bimodal L2 2 L3 length-dependent material

response that departs from the Euler–Bernoulli theory. Hence, the use of

simpler theories to analyse experiments can result in paradoxical interpret-

ations. Remarkably, the counterbend dynamics instigates counter-waves in

opposition to driven oscillations in distant parts of the bundle, with poten-

tial impact on the regulation of flagellar bending waves. These results have a

range of physical and biological applications, including the empirical

disentanglement of material quantities via counterbend dynamics.
1. Introduction
The spontaneous generation of harmonic bending waves along a sperm flagel-

lum has been a source of fascination since it was reported on in the late

seventeenth century [1]. It was not until 1968, however, that the fundamental

mechanism behind the flagellar wave propagation was unveiled [2–4]. ATP-

induced inter-microtubule tangential motion is converted into transversal

forces that are capable of bending the flagellar assembly altogether, laying

the empirical basis for the sliding filament theory for eukaryotic flagellum.

Notably, almost one decade before the discovery of the interfilament sliding

[2,3,5], the existence of such active elements along the sperm flagellum was the-

orized via a simple fluid–structure interaction model [6]. Machin demonstrated

that the combined action of viscous and elastic dissipation experienced by a

slender filament rapidly damps any driven oscillation along its length, thus

requiring the action of contractile elements in order to sustain large waving

amplitude [7]. Later, Wiggins & Goldstein [8] elegantly demonstrated that the

elastohydrodynamics of any simple Euler–Bernoulli filament moving in a vis-

cous fluid leads to a hyperdiffusive dissipation of bending, characterized by a

bending penetration length ‘v, which can be further exploited to extract

material parameters from biological filaments in a wide range of length

scales [9]. Hitherto, the elastohydrodynamics of active and passive filaments

have generated a vast literature of analytical, computational and empirical

studies across disciplines [10–19].

Despite the inherent complexity of filament bundles [20–31], as exemplified

by the axonemal flagellum [23,24], with its 9 þ 2 cross-linked microtubule doub-

lets arranged in a cylindrical fashion [23], the textbook elastic bending stiffness

has been estimated using a simplistic linear relation between bending moment

and curvature [27–31], as derived from Euler–Bernoulli rod theory [32].

Incidentally, the inadequacy of classical rod theories, from Euler–Bernoulli to

Timoshenko–Cosserat [32], emerged via paradoxical counterbend empirical

responses, figure 1a, first observed by Lindemann and colleagues [33,37], and
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Figure 1. The counterbend phenomenon and geometry of deformation: (a) Micrograph showing the static configuration of a sea urchin sperm rendered passive with
its head attached to the coverslip while forced externally by a microprobe [33], together with the geometrically exact filament-bundle model prediction. Red curve
shows the model curve fitting result from Gadêlha et al. [34]. (b) Two-dimensional representation of the axoneme and the sliding filament mechanism with basal
compliance [7,34 – 36]. Micrograph adapted from Gadêlha et al. [34]. (Online version in colour.)
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later captured via a geometrically exact mechanical model by

Gadêlha et al. [34] (figure 1a). These studies revealed how the

induction of curvature in one section of a passive sperm

flagellum instigates compensatory counter-curvature else-

where, namely the counterbend phenomenon [33,37]. They

established the critical role of the diminutive elastic linking-

proteins while instigating large-amplitude deformations,

inherently coupling distant parts along the bundle assembly,

despite their small slenderness ratio [33,34,37]. More recently,

the counterbend phenomenon was also exploited in order to

extract material quantities from Chlamydomonas flagella [38],

despite the relatively short-length flagella. The dynami-

cal response of the counterbend phenomenon in passive

cross-linked bundles still remains unexplored in the literature.

The discovery of the counterbend phenomenon high-

lighted the current need to reassess both the established

material measurements [20–22,25–31,35] and the resulting

mechanical response, from statics to dynamics, of cross-

linked filament bundles [27–31]. The former is crucial in a

broad range of biological structures, from the cytoskeleton

of eukaryotic cells to cellular division, cross-bridge muscle

contraction and locomotion, via structures like the axoneme.

A fundamental challenge, both experimentally and theoreti-

cally, is, therefore, to understand how this complex

structure yields bulk material properties and overall cellular

mechanical responses and, ultimately, function. In active

bundles, the consequences of using inadequate material par-

ameters, which have been used for the past 30 years to

investigate flagellar waves [7,11,38–49], are still unknown.

This is further confronted with an increasing number

of, repeatedly contradicting, active control models for the

flagellar wave coordination [7,11,36,40,41,44,45,47–52]. Para-

doxically, in order to induce bending waves, flagellar control

models rely on the implementation of filament-bundle defor-

mations, in distinct material directions, that are yet to be

scrutinized in isolation, from curvature [39,41,46,49] to inter-

filament sliding [7,11,36,45,52,53], and axial distortions

[44,47,50]. This is aggravated by the strong coupling between

the unknown activity, and the passive and dissipative com-

ponents, leading to the non-identifiability of parameters

when contrasted against experiments [54,55]. Without the dis-

entanglement between the passive and active elements, and

without the rationalization of the resultant mechanical

response of cross-linked filament bundles, it is unclear, for
example, which competing flagellar control hypothesis

[7,11,36,40,41,44,45,47–51], if any, is able to provide a quanti-

tative understanding of the flagellar regulation and, crucially,

function of the internal mechanics and structure. Indeed, any

comprehensive model of flagellar bending self-organization

depends on reliable measurements of mechanical and material

properties of the system in the absence of activity [34,38].

Here, we complement the seminal work by Machin [6]

and Wiggins & Goldstein [8] on the dynamics of passive fila-

ments, and demonstrate how the nanometric cross-linking

proteins that are present in passive cross-linked filament bun-

dles instigate novel dynamical counterbend phenomena. This

is in contrast with previous models on flagellar wave coordi-

nation [7,11,36,40,41,44,45,47–52], which incorporate the

cross-linking interaction in conjunction with molecular

motor dynamics. We consider the dynamical situation in

which only the structural passive elements are present. For

axonemal filament bundles, this corresponds to the empirical

situation in which molecular motors are rendered passive

[33,37,38]; figure 1a. The filament-bundle elastohydrodyna-

mical model unveils the occurrence of counter-travelling

waves in distant parts of bundle, reducing the propulsive

potential of driven oscillations, and even reversing the pro-

pulsive direction, from pushing to pulling hydrodynamics.

We show that the interplay between the interfilament sliding

at the base and cross-linking dissipation elsewhere gives rise

to a bimodal L2 2 L3 length-dependent material response

that departs from canonical Euler–Bernoulli theory. Hence,

the use of simpler rod theories to analyse experiments can

result in paradoxical interpretations. Furthermore, the coun-

terbend dynamics offers a robust way to measure material

quantities empirically, bypassing cumbersome force-displa-

cement experiments at the microscale [30,31,33,37,38]; figure

1a. These results further suggest that the dynamical coun-

ter-wave phenomena is likely to play a critical role on the

waveform organization, and the subsequent wave direction,

of long flagella [48,49,56].
2. Cross-linked filament-bundle
elastohydrodynamics

We consider a planar representation of cross-linked filament

bundles and flagellar axonemes, as depicted in figure 1b,
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used interchangeably hereafter, composed of two elastic,

inextensible filaments that resist deformation with an

elastic bending modulus E [7,34–36]. Each constituent

filament r+(s, t) ¼ r(s, t) + a=2n̂(s, t) is separated by a

distance a, much smaller than the filament length a� L,

normal to the centre line r(s, t) at every point in arclength s
and time t. Geometry constrains the normal vector

n̂(s, t) ¼ � sinaex þ cosaey to the plane, where a is the angle

between the fixed frame x-axis and the tangent to the centre

line t̂ ¼ rs. Like a rail-track [35], the constituent filaments

travel distinct contour lengths forcing a geometrical arclength

mismatch D(s, t) ¼ D0(t) þ a(a(s, t) 2 a0(t)), where D0 and a0

are the length mismatch and tangent angle at s ¼ 0 (figure

1b). Points of equal contour length along the filament bundle

are connected by elastic links which generate a shearing

force, and thus an internal moment, proportional to the sliding

displacement f(s, t) ¼ kD(s, t) with an elastic sliding resistance

k. At the basal end, the additional connecting compliance

across the filaments, commonly found in spermatozoa and

inhomogeneous bundles, is Hookean keD0(t) ¼ �
Ð L

0 f(s0, t) ds0

with a spring constant ke [34,36] (figure 1b).

For asymptotically slender filament bundles, the hydro-

dynamic forces experienced by an infinitesimal element is

anisotropic and linearly related to the local velocity

fvis ¼ �z?(n̂:rt)n̂� zk (̂t:rt )̂t, where z?, zk are the lowest order

resistive coefficients derived from inertialess hydrodynamics

[27,28]. Contact forces are not defined constitutively due to

the inextensibility constraint [32]. The filament-bundle elasto-

hydrodynamics is governed by the balance of contact forces

and contact moments

� Eassss þ a2kass ¼ z?at, ð2:1Þ

simplified here for small curvatures [8,9,11,36]. The filament-

bundle shape is given by the initial value problem

r(s, t) ¼ r(0, t)þ
Ð s

0 ( cosa(s0, t), sina(s0, t)) ds0 for an arclength

s and time t. Boundary conditions ensure the total balance of

forces, F(s) ¼ 2 Eass þ af(s, t), and torques, M(s) ¼ �Easþ
a
Ð L

s f(s0, t) ds0, acting on the bundle [32,34], as detailed in the

electronic supplementary material, S1. The resulting cross-link-

ing mechanics couples distant parts along the bundle via the

total momentum balance, now modified non-locally by

f(s, t) ¼ � k2a
kLþke

Ð L
0 ðaðs0Þ�a0Þ ds0 þ kaðaðsÞ�a0Þ

(the electronic supplementary material, S1). Dissipation from

different material directions are mediated by the hydro-

dynamic drag. The filament-bundle dynamics is dictated by

the interplay between the elastohydrodynamic hyperdiffusion

[8,9] and the cross-linking diffusion [7,35,36]. These boundary

moments alter the hyperdiffusion balance in equation (2.1) and

instigate novel long-range phenomena as we explore below.
2.1. The counterbend dynamics: angular actuation
The post-transient behaviour of the shape dynamics is

captured by single frequency solutions of the form

a(s, t) ¼ Re{~a(s) e�ivt}. After convenient rescaling, the

eigenvalue problem reduces to r4 2 mr2 2 i Sp4 ¼ 0, with

eigenfunctions a(s, t) ¼ Re{
P4

j¼1 Cj erjs�it}, where the coeffi-

cients Cj are determined by non-local boundary moments

(the electronic supplementary material, S1). The dimension-

less filament-bundle compliance parameter, also referred to

as sperm number, Sp ¼ L(z?v/E)1/4, captures the battle
between elastic and viscous forces [8], while the sliding resist-

ance parameter, m ¼ a2L2k/E, compares bending stiffness

with the cross-linking resistance [34,36]. The basal compli-

ance is given by g ¼ kL/(kL þ ke), and varies from g ¼ 0,

corresponding to no interfilament sliding at the base, to

g ¼ 1, for free basal sliding [34,36].

The emergence of the non-local, counterbend dynamics is

depicted in figure 2 for a sinusoidal angular actuation of the

proximal end (electronic supplementary material, Movie S1)

with rt(0, t) ¼ 0, and zero force and torque condition at the

distal end (the electronic supplementary material, S1). An

angular amplitude of 0.4362 rad is used to limit the maxi-

mum radius of curvature to 0.1. Figure 2 contrasts Machin’s

original solutions, figure 2a,b, with the filament-bundle

post-transient dynamics, figure 2c,d. Travelling waves orig-

inating from the distal end, indicative of the non-local

counterbend effect [34], can be clearly seen in figure 2c,d.

A relatively small sliding displacement D (overlaid colour

in figure 2c,d ), equivalent to only half of the bundle diameter,

is capable of deforming the bundle non-locally with the same

magnitude of the imposed actuation.

The amplitude modulation A(s), phase F(s) and velocity of

propagation vp(s) ¼ 1/@sF are depicted in figure 3, following

suitable transformation to solutions of the form a(s, t) ¼
A(s)cos(t 2 F(s)). The abrupt change in wave direction is

triggered by the loss in monotonicity of the phase. Non-local

counter-waves propagate in the opposite direction from the

distal end with a non-uniform decaying magnitude along the

arclength due to the high-order dissipation. This is in contrast

with the one-directional wave propagation of Euler–Bernoulli

filaments,m ¼ 0 in figure 3. The sharp change in wave direction

coincides with reduced wave amplitudes at this point in

arclength (figure 3). Interestingly, the non-local actuation of

cross-linking moments at distal parts of the bundle is delayed

by the overdamped dynamics, as indicated by the proximal–

distal phase difference. Higher Sp causes larger proximal–

distal phase mismatch, faster decay of the counterbend wave

speed and amplitude, indicative of a destructive interference

between proximal and distal waves in figures 2d and 3b,

demonstrated by the sharp jump in phase in figure 3.

The counterbend dynamics impacts significantly the

resulting hydrodynamic propulsion. The time-averaged pro-

pulsive force �Fx exerted by fluid on the filament bundle is

obtained by integrating the x component of the local drag

force, fvis ¼ �z?(n̂:rt)n̂� zk (̂t:rt )̂t, along the length of the

bundle and averaging over one period of oscillation

[8,9,14,15,57], as detailed in the electronic supplementary

material, S1. Owing to the symmetry of the oscillations

around the x-axis, the y component of the propulsive force

averages to zero. Following [8,15], we conveniently rescale

length by (E/vz?)1/4 and time by 2p/v, so that the averaged

propulsive force in the x-direction may be written as

�Fx ¼
vz?
2p

ffiffiffiffiffiffiffiffiffiffi
E

vz?

s
YxðSp,m, gÞ

with a common elastohydrodynamic factor multiplying the

force scaling function Yx(Sp, m, g), which is now modified by

the cross-linking mechanics. The force scaling function

Yx(Sp, m, g) depicted in figure 4 captures the comparative pro-

pulsive potential between different points in the parameter

space (Sp, m, g), where ��Fx is the force exerted by the fluid

on the filament bundle [8,15,57]. For a simple Euler–Bernoulli
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filament (m ¼ 0), dashed curve in figure 4, the propulsive force

is always positive, except for effectively stiff filaments (Sp ¼ 0),

in which no propulsion can be generated Yx ¼ 0 [8,15,58]. This

is in accordance with Purcell’s scallop theorem, where no net

propulsion can be achieved via time-reversible motion in iner-

tialess fluids [8,15,58]. As Sp increases, the filament becomes

effectively more flexible, breaking Purcell’s scallop theorem,

thus inducing an increasingly large hydrodynamic propul-

sion, characterized by the emergence of a maximum value

(dashed curve in figure 4). Increased filament floppiness,

large Sp, causes the hydrodynamic force to decay and plateau.

In this limit, the main contribution of the propulsive force

arises from the tangential component of the hydrodynamic

drag. Floppy filaments are unable to induce sizeable defor-

mations, causing the filament to move effectively back and

forth tangentially, along its length in the x direction. The
sweet spot of the hydrodynamic propulsion depicted in

figure 4 (dashed curve) is the signature of the competition

between viscous drag and bending stiffness, captured by the

so-called penetration length ‘v ¼ (E/vz?)1/4 [8,9,15]; first pre-

dicted by Wiggins & Goldstein [8] and empirically observed

by Yu et al. [15].

A very distinct scenario is observed for filament bundles.

As the basal compliance becomes stiffer, by reducing g,

the cross-linking mechanics switch from a mostly local

contribution with small counterbend deformations (g ¼ 1 in

figure 4), to non-local effects, with increasingly large

amplitudes at the distal end (g ¼ 0 in figure 4, inset).

Ultimately, this causes the propulsive force to vanish (circles

in figure 4), and even switch the propulsive direction

(negative values of Yx), thus equivalent to a backward net

motion. Imposed oscillations are now counteracted by
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waves travelling in opposition at distal parts of the bundle

(compare top and bottom net plots of each inset indicated by

an asterisk in figure 4). Small values of g increases the non-

local counterbending amplitude and causes the propulsive

force to switch direction (negative values) as Sp increases

(g ¼ 0, 0.4 and 0.6 in figure 4). However, similarly to the

Euler–Bernoulli case, increased floppiness of the filament

bundle, i.e. large Sp, causes the amplitude of deformation

to decay (both amplitude of imposed oscillation and coun-

ter-waves), reducing in this way the magnitude of the

propulsive force which is now characterized by the appear-

ance of a minimum value (see g ¼ 0 in figure 4).

The zero values of Yx for g ¼ 0, 0.4 and 0.6, circles in

figure 4, are therefore a genuine manifestation of the perfect

hydrodynamic balance between the imposed oscillation at

the proximal end and the counter-waves at the distal end,

with amplitudes modulated by the effective bundle stiffness

Sp. Increased bundle floppiness causes the counter-wave

amplitude to vanish, thus the change in sign to positive

values of the propulsive force �Fx before it plateaus to a con-

stant positive level, similarly to the Euler–Bernoulli

filaments. The lower plateau value for filament bundles is

due to the added effective stiffness arising from the cross-

linking mechanics. The separatrix in figure 5 captures the

region in parameter space where the local extrema of

Yx(Spm) changes sign, the non-trivial roots of Yx (circles) in

figure 4. This indicates the region where a significant influ-

ence of non-local counterbend effect is predicted, and

illustrates how the triad (Sp, m, g) may be conveniently

tuned to achieve zero, forward or backward propulsion

(figure 5). Reversal in swimming direction may be achieved

by simply increasing the frequency of oscillation for instance,

recalling that Sp ¼ L(z?v/E)1/4. It is worth noting that the

cross-linking dissipation does not affect the main elasto-

hydrodynamic characteristics, governed by the penetration

length ‘v ¼ L/Sp [8], as indicated by the positive asymptote

for both Euler–Bernoulli filaments and filament bundles

in figure 4.
2.2. The bimodal length-dependent relaxation
dynamics

The cross-linking mechanics introduces a diffusion-like time

scale, L2z?/a2k, with a somewhat weaker L2 geometrical

dependence, in addition to the high-order, hyperdiffusive

scaling L4z?/E. Indeed, the cross-linking resistance m ¼

a2L2k/E contrasts the elastohydrodynamic and cross-linking

time scales. The cross-linking resistance depends on geo-

metrical aspects of the bundle, as m measures the ratio

between the natural cross-linking elastic length ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E=a2k

p
relative to total axial length via m ¼ (L/‘)2. The cross-linking

elastic length ‘ has an important biophysical interpretation: it

is the dimensional length by which cross-linking effects

become prevalent. The cross-linking mechanics become

increasingly important when L . ‘, while the opposite is

found for L � O(‘) or smaller. The latter entails the possibility

of studying relaxation counterbend phenomena by only

varying the length of the filament bundle, and motivates

rescaling m relative to the reference length L0, so that

m(L) ¼ L2m0, m0 ¼ a2L2
0k/E and now L ¼ L/L0, with smallest

dimensionless length L ¼ 1.

The non-local, counterbend dynamics decaying from

initial data, with an amplitude an, is depicted in figure 6

for filament bundles that are clamped at the proximal

end (the electronic supplementary material, S1). This is

characterized by an effective relaxation constant l24
n

via a(s, t) ¼
P

n anSn(s) e�l
4
nt, with Sn ¼ C1 sin(q1n

s) þ C2

cos(q1n
s) þ C3 sinh(q2n

s) þ C4cosh(q2n
s) for a given participat-

ing mode n. The triad of dissipative contributions acts as an

effective dispersion medium for both bending and cross-link-

ing deformations, dictated by the same dispersion relation.

However, the mode shape is captured by the wavenumber–

eigenvalue coupling qln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 4l4
n

q
þ (� 1)lm

� �
=2

s
for

l ¼ 1, 2, which is not only influenced by the effective

relaxation constant, reminiscent of pure high-order

elastohydrodynamic dissipation, but also by the cross-linking

diffusion. Boundary conditions define the transcendental

solvability condition for ln, which depend implicitly on both

m and g, with an infinite number of mode solutions for each
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case m ¼ 100 and g ¼ 0. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170065

6

parameter set. Curve-fitting expressions for l1 obtained from

numerical solutions are presented in the electronic

supplementary material, S1.

The non-local cross-linking diffusion introduces a bimo-

dal length-dependent material response, as illustrated in

figure 6 for the relaxation time of the fundamental mode

t1ðLÞ ¼
L

l1ðLÞ

� �4

:

The relaxation dynamics of Euler–Bernoulli filaments decay

with a characteristic L4-dependence associated with the fila-

ment elastohydrodynamic hyperdiffusion [8]. When m ¼ 0,

l1 is a constant solely defined by boundary conditions, thus

t1/ L4 as discussed above. This canonical case is shown by

the black straight curve in figure 6, also indicated by the

‘/L4’ at the top right corner of figure 6. The relaxation

dynamics of filament bundles, on the other hand (depicted

by the light blue and dark blue curves), deviate from the cano-

nical L4-dependence (straight black curve) as L increases, or

equivalently m (the top horizontal axis in figure 6 shows the

associated m values via the relationship m(L) ¼ L2m0). This is

due to the fact that, for filament bundles, l1 ¼ l1(L), thus

inducing an additional length dependence on the denomi-

nator of t1. This causes the relaxation time to gradually

deviate from the classical L4-dependence, with greater magni-

tude as L increases, depending on the details of the basal

compliance. For g ¼ 0, the deviation from the Euler–Bernoulli

case starts approximately from m . 1, while, for g ¼ 1, it

occurs for approximately m . 10. An L2 asymptote arises for

long filament bundles with g ¼ 0, while for g ¼ 1 the tran-

sition is to an L3 behaviour instead. These long-length

asymptotes are indicated by the dashed grey curves labelled

by ‘/L3’ and ‘/L2’ at the bottom left corner of figure 6.
The length-dependent transition between L2 and L3

asymptotes for long filament bundles is governed by the

basal compliance. This g-dependence is depicted in

the inset (a) of figure 6, which plots the exponent z of the

relationship t1/Lz in the limit of large L. For asymptotically

long filament bundles, the exponent of t1/Lz is quadratic

(z ¼ 2), and remains nearly quadratic until g approaches 1,

at which z ¼ 3. Such bijection of the material response entails

that simultaneous measurement of the bundle mechanical

properties, in different material directions, can be extracted

from simple relaxation experiments. In particular, increased

inter-filament sliding, concentrated towards the clamped

end, induces curvature reversal for long filament bundles

(figure 6 inset (b)), reminiscent of the counterbend phenom-

enon [34]. Boundary conditions require zero contact forces

and torques at the free end, while clamped constraint facili-

tates the accumulation of cross-linking sliding towards the

proximal end. Both bending and cross-linking deformations

relax towards the reference configuration with the same

effective rate l1. Figure 6 inset (b) shows the simultaneous

hyperdiffusive relaxation of bundle curvature (bundle

shape) and sliding displacement (overlaid colour) towards

the equilibrium straight configuration. Figure 6 thus sum-

marizes the impact of the cross-linking mechanics on the

relaxation time across the parameter space (g, m).
3. Discussion
We studied the transient and post-transient dynamics of over-

damped filament bundles that are interconnected by linking

elastic proteins. Deformations in distinct material directions,

arising from the cross-linking interfilament sliding and pure

bending deformation, are coupled with local slender-body

hydrodynamics. This leads to an effective dispersion mechan-

ism governed by the superposition of short- and long-range

dissipation mechanisms. Cross-linking stresses are trans-

mitted to distant parts of the bundle via boundary balance

of moments. The cumulative moments are able to surpass

the high-order elastohydrodynamic dissipation, and shape

the bundle structure non-locally, with increased influence

for long filament bundles, or equivalently, large m.

The delicate interplay between the interfilament sliding at

the base and the rest of the bundle results in a bimodal

dynamic response, which departs from the classical Euler–

Bernoulli theory [6,8,32]. When the basal sliding is permitted,

cross-linking diffusion is mostly local, and acts to effectively

reinforce the bundle structure. Long-range curvature-reversal

events, however, are magnified when the basal sliding is

constrained [34]. The counterbend dynamics generate

spontaneous travelling waves in opposition to driven oscil-

lations, which are capable of suppressing the propulsive

potential, and even reverting the direction of propulsion

(figure 4). Curvature perturbations diffuse more rapidly, a

hundred times faster than Euler–Bernoulli hyperdiffusion

with an equivalently higher bending rigidity (figure 6). Rela-

tively small cross-linking deformations, up to only 30% of the

bundle diameter, are capable of exciting large counterbend

modes (figure 6 inset (b)), and induce a bimodal L2 2 L3

length-dependent deviation from the L4-dependence of cano-

nical filaments. Paradoxical measurements may arise if

standard Euler–Bernoulli theory is used to interpret exper-

iments [29,31,33,37], as exemplified by the paradoxical
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length-dependent bending stiffness in microtubules [59].

Indeed, the length deviation predicted here may be mista-

kenly interpreted as an effective length-dependent bending

rigidity via L4z?/E(L) [8], if rather the Euler–Bernoulli

theory is used; de facto, the Euler–Bernoulli theory is tra-

ditionally used since the first measurements of flagellar

bundles [27,29,31].

Static, force-displacement experiments that are often used

to probe flagellar material quantities [29,31,33,38] are cum-

bersome (figure 1a). They require high-precision force-

calibrated probes and micro-manipulators, and often rely

on the rare attachment of the filament’s tip to the coverslip

to microprobe actuation [29,31,33]. This proximity of the

filament bundle to the coverslip can interfere with the inter-

filament sliding due to surface adhesion, biasing in this

way force and shape measurements [34]. The counterbend

dynamics provides a simpler and robust empirical route for

the disentanglement of material parameters. This includes

measurements of the basal interfilament elasticity, despite

being deeply embedded at the connecting piece of the

bundle (figure 1). As a result, standard microfluidic designs

may be explored to induce shape changes dynamically [18].

Likewise, the dynamical counter-wave phenomenon may

also inspire the design of artificial swimmers [60] that are

able to reverse the swimming direction by simply increasing,

for instance, the frequency of oscillation (figure 4).

The counter-wave phenomena becomes increasin-

gly important for bundles longer than ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E=a2k

p
,

typically 5 mm for flagella [2,7,36,49,61,62]. Interestingly, the

majority of eukaryotic flagella exceed ‘ by a few orders of

magnitude, from approximately 30 mm for Chlamydomonas
and sea urchin sperm to almost 200 mm for quail sperm

[61,62]. Cross-linking effects may also become increasingly

important during flagellar growth, and influencing in this

way the wave coordination during flagellar reconstitution

in Chlamydomonas [63]. Molecular motors organization thus

may operate differently for L , ‘ and L . ‘. Indeed, local fla-

gellar control models [7,49] recently gained empirical support

when tested against short flagella experiments [49], a regime

where counterbend phenomenon may be negligible (L , ‘).

This is despite of the well-known negative support of curva-

ture control models [36,41], tested instead against long

flagella (L . ‘). The recurrent contradictions between sliding

and curvature control models [7,11,36,41,49,52] may suggest

the occurrence of distinct length-dependent flagellar regimes.

Linear models coupling the molecular motor reaction

kinetics with interfilament sliding spontaneously propagate

waves along the axoneme via a Hopf bifurcation [11,36,

42,45,48]. The resulting wave train is observed to move from

tip to base, i.e. in the direction opposite to what one would

expect from a local dissipation theory (when the interfilament

sliding is prevented at the base) [11,49,56]. Incidentally, the

basal compliance was observed to influence the direction of

wave propagation in flagella self-organization models [36,56],

demonstrating the sensitivity of the direction of the travelling

wave to details of the connecting piece (basal part) and bound-

ary conditions. This is in agreement with the bimodal response

predicted here (figure 2), in which counterbend is maximized

when g ¼ 0 [34]. The wave direction is influenced non-locally

by cross-linking effects whose magnitude is regulated by the

basal interfilament sliding (figures 2 and 6). This might explain

the surprising significance of the basal compliance during the

flagellar wave coordination observed recently in empirical
studies [61], and even flagellar synchronization that may

arise without recurring to hydrodynamical coupling [64].

Nevertheless, the mechanisms by which the flagellar wave

direction is selected is poorly understood. Previous studies

were reduced to the linear level, and at the nonlinear regime,

the dynamical instability generates unstable travelling waves

that can propagate in both directions, with potential for

multi-frequency modes [54,65]. The boundary conditions and

basal mechanics assist the mode selection nonlinearly, and

thus the direction of propagation, emphasizing how the flagel-

lar dynamics is critically dependent on the underlying

structural mechanics of the axoneme. Non-local hydrodynamic

interactions [62], transversal axonemal deformations [44,47]

and geometrical non-linearities [10,39] are also likely to affect

the emergence of self-organization in flagellar systems.

The high-order diffusive interaction, intrinsic to elastohy-

drodynamic systems in equation (2.1), is observed throughout

nature. In non-dilute systems, particles are affected by density

variations beyond the nearest neighbours via, for example,

biharmonic interactions ut ¼ D1r2u 2 D2r4u [66,67], thus clo-

sely related to equation (2.1). Despite the relatively short-range

influence, such higher-order diffusion instigates complex

spatio-temporal dynamics and self-organization in all fields of

science [68,69]. They drive instabilities and even mediate the

coexistence of spatial patterns and temporal chaos, as observed

in Kuramoto–Sivashinsky systems [69]. Other exemplars of

local, higher-order diffusion are found in Ginzburg–Landau

superconductors, spatial patterning in Cahn–Hilliard and

biochemical systems, plus generalized Fisher–Kolmogorov

models, water waves and continuum mechanics systems,

among others [66,68,69].

In contrast with canonical high-order diffusion systems

[66,68,69], the flagellar scaffold, or equivalently, any cross-

linked filament-bundle immersed in a viscous fluid is

governed by high-order dispersion medium that is inherently

non-local. Here, the biharmonic diffusion arises instead via a

local elastohydrodynamic dissipation [6,8], while the Fick-

ian-like interaction arises through the long-range coupling

reflecting the bundle mechanics [7,11,34,35], effectively con-

necting distant parts of the system via boundary bending

moments. This unveils the potential for rich long-range

phenomena via reaction–diffusion interactions [11,54,56],

from non-local pattern formation to long-range synchroniza-

tion of auto-oscillators, that are yet to be fully explored in the

realm of mathematical biology.

We hope that these results will inspire theoreticians and

experimentalists to study the dynamical effects of the coun-

terbend phenomenon in the filament bundle as found

throughout nature, including prospects for counterbend

reaction–diffusion systems in flagellar dynamics, effectively

bridging, non-locally, dynamical systems and PDEs.

Data accessibility. This work is based on a theoretical development and
generated no data.

Author’s contributions. R.C. carried out the mathematical modelling,
analysed the result and drafted the manuscript; H.G. carried out
the modelling, conceived the study, designed the study, coordinated
the study and drafted the manuscript. All authors gave their final
approval for publication.

Competing interests. We declare we have no competing interests.

Funding. R.C. thanks Cambridge Bridgwater Summer Research Pro-
gramme. H.G. acknowledges support by the Hooke Fellowship,
University of Oxford, and WYNG Fellowship, Trinity Hall,
Cambridge.



8
Acknowledgments. The authors thank Dr E.A. Gaffney for enlightening
discussions. We dedicate this work in memory of Prof. John
R. Blake, whose work and devotion will continue to inspire future
generations of scientists.
rsif.royalsocie
References
typublishing.org
J.R.Soc.Interface

14:20170065
1. Howards SS. 1997 Antoine van Leeuwenhoek and
the discovery of sperm. Fertil. Steril. 67, 16 – 17.
(doi:10.1016/S0015-0282(97)81848-1)

2. Satir P. 1968 Studies on cilia III. Further studies on
the cilium tip and a ‘sliding filament’ model of
ciliary motility. J. Cell Biol. 39, 77 – 94. (doi:10.
1083/jcb.39.1.77)

3. Summers KE, Gibbons IR. 1971 Adenosine
triphosphate-induced sliding of tubules in trypsin-
treated flagella of sea-urchin sperm. Proc. Natl
Acad. Sci. USA 68, 3092 – 3096. (doi:10.1073/pnas.
68.12.3092)

4. Warner FD, Satir P. 1974 The structural basis of
ciliary bend formation: radial spoke positional
changes accompanying microtubule sliding. J. Cell
Biol. 63, 35 – 63. (doi:10.1083/jcb.63.1.35)

5. Satir P. 1965 Studies on cilia: Ii. examination of the
distal region of the ciliary shaft and the role of the
filaments in motility. J. Cell Biol. 26, 805 – 834.
(doi:10.1083/jcb.26.3.805)

6. Machin KE. 1958 Wave propagation along flagella.
J. Exp. Biol. 35, 796 – 806.

7. Brokaw CJ. 1972 Flagellar movement: a sliding
filament model. Science 178, 455 – 462. (doi:10.
1126/science.178.4060.455)

8. Wiggins CH, Goldstein RE. 1998 Flexive and
propulsive dynamics of elastica at low reynolds
number. Phys. Rev. Lett. 80, 3879. (doi:10.1103/
PhysRevLett.80.3879)

9. Wiggins CH, Riveline D, Ott A, Goldstein RE. 1998
Trapping and wiggling: elastohydrodynamics of
driven microfilaments. Biophys. J. 74, 1043 – 1060.
(doi:10.1016/S0006-3495(98)74029-9)
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