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The notion of an attractor has been widely employed in thinking about the

nonlinear dynamics of organisms and biological phenomena as systems and

as processes. The notion of a landscape with valleys and mountains encod-

ing multiple attractors, however, has a rigorous foundation only for closed,

thermodynamically non-driven, chemical systems, such as a protein. Recent

advances in the theory of nonlinear stochastic dynamical systems and its

applications to mesoscopic reaction networks, one reaction at a time, have

provided a new basis for a landscape of open, driven biochemical reaction

systems under sustained chemostat. The theory is equally applicable not

only to intracellular dynamics of biochemical regulatory networks within

an individual cell but also to tissue dynamics of heterogeneous interacting

cell populations. The landscape for an individual cell, applicable to a popu-

lation of isogenic non-interacting cells under the same environmental

conditions, is defined on the counting space of intracellular chemical compo-

sitions x ¼ (x1,x2, . . . ,xN) in a cell, where x‘ is the concentration of the ‘th

biochemical species. Equivalently, for heterogeneous cell population

dynamics x‘ is the number density of cells of the ‘th cell type. One of the

insights derived from the landscape perspective is that the life history of

an individual organism, which occurs on the hillsides of a landscape, is

nearly deterministic and ‘programmed’, while population-wise an asynchro-

nous non-equilibrium steady state resides mostly in the lowlands of the

landscape. We argue that a dynamic ‘blue-sky’ bifurcation, as a represen-

tation of Waddington’s landscape, is a more robust mechanism for a cell

fate decision and subsequent differentiation than the widely pictured

pitch-fork bifurcation. We revisit, in terms of the chemostatic driving

forces upon active, living matter, the notions of near-equilibrium thermo-

dynamic branches versus far-from-equilibrium states. The emergent

landscape perspective permits a quantitative discussion of a wide range of

biological phenomena as nonlinear, stochastic dynamics.
1. Introduction
Living organisms are complex; they are collective behaviours of many interact-

ing individuals each with an internal dynamics of its own. At the level of a

single cell, the individuals are the major biochemical players, e.g. polymerases,

transcription factors, signalling kinases and GTPases, that form an intracellular

biochemical reaction network. Single-molecule biophysics has established that

individual protein molecules actually have ‘molecular individualism’ [1,2].

However, a population of ‘identical’ protein molecules usually can be accu-

rately characterized statistically, in terms of a few key kinetic parameters: a

diffusion constant in an aqueous solution at room temperature, a few rate
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constants for conformational transitions and a pair of

rate constants for the bi-molecular association–dissociation

reaction with a substrate.

An analogous kinetic picture exists for a tumour consist-

ing of distinct cell subtypes, even within an isogenic, clonal

cell population. Given what is now known as the ‘non-genetic

heterogeneity’ of cell phenotypes, the cells are the individ-

uals: phenotypic switching of each individual cell can be

thought of as uni-molecular conformational transitions. Cell

birth and death processes can be mapped to the synthesis

and degradation of a biochemical species, etc. Then at the

whole tumour level, there is an interactive cell population

dynamics that involves autocrine and paracrine cell-to-cell

communication that influences the rates of the above pro-

cesses, as well as cell migration, predation and prey, etc.

Classifying isogenic individual cells according to biomarkers,

gene expression patterns and biological functions is one of

the most important tasks in this study of non-genetic hetero-

geneity using single-cell technologies; this is not very

different from identifying conformational states of biomacro-

molecules, as a central task of physical biochemistry using

spectroscopies. Indeed, the experiments of extracting the

cells in the tail of a population distribution and observing

the repopulation kinetics [3] share the same idea as a laser

ablation of protein conformations followed by observing

relaxation kinetics [4].

The dynamics of both a biochemical reaction network and

a heterogeneous cell population can be quantitatively repre-

sented in terms of a nonlinear, stochastic dynamical system

(NSDS) [5–7]. One of the essential new insights from the

NSDS theory is the existence of an emergent, global, non-

equilibrium landscape that represents the dynamics. This

landscape is not the ‘mechanism’ of the dynamics per se,

rather it represents Onsager’s thermodynamic force that is

responsible for the non-equilibrium kinetic transients in the

system.1 This perspective agrees with what K. Pearson [10]

once said, ‘[a]ll laws must ultimately be merged into laws

of motion’, and fits P. W. Anderson’s [11] theory on the

emergent phenomenon that ‘each level can require a whole

new conceptual structure’.

We make a distinction in the terminologies of ‘non-

driven’ and ‘equilibrium’: an equilibrium is a stationary

state of a non-driven system which can also undergo time-

dependent processes that are progressing towards the

equilibrium. The stationary state of a thermodynamically

driven system, however, will be a non-equilibrium steady

state (NESS) [12,13].

Epistemologically, it is also important to draw a line

between the theory of ‘combinatorial landscapes’ [14] and

the theory of ‘emergent landscapes’. The former was motiv-

ated mainly from optimization problems and the growing

usages of the landscape concept in protein science. The

existence of a scalar function in these problems is considered

as given; it either epitomizes the engineering objective,

the quantity to be optimized, or is guaranteed by the equili-

brium physics of systems without a thermodynamic driving

force. By contrast, the significance of the latter, as a

scientific theory, is to establish the existence of a landscape

function in the first place, and to demonstrate its relevance,

as well as possible computations, for driven stochastic

dynamical systems.2

With a given landscape, be it from engineering, equili-

brium physics or emergence, the mathematical and
computational challenges are the same as those for non-

convex problems. In protein science, it usually depends on

the biological questions whether one considers certain types

of atomic motion in a protein as merely structural fluctu-

ations and others as conformational transitions [22–27]. The

distinction can never be made completely clear, especially

for proteins with a rugged free energy landscape [4,14].

This is a valuable lesson for current single-cell biology and

theories of the emergent landscape.

The mathematical theory of an NSDS reveals a particular

method to ‘discover’ the emergent landscape [20,21,28]: in

principle, if one can measure the ergodic probability distri-

bution pss
V(n1, n2, . . . ,nN) for the NESS of a dynamical

system, where nk is the population size of the kth species

and V is the geometrical size of the reaction system, then

the landscape

w( x) ¼ � lim
V!1

ln pss
V(Vx1,Vx2, . . . ,VxN)

V
, ð1:1Þ

in which x ¼ (x1, x2, . . . ,xN) and xk ¼ nk/V is the number den-

sity of the kth subpopulation. Of course, in reality this is not

feasible since a biological organism has only finite nk’s, and

its environment is constantly changing. Still, the mathemat-

ical object in (1.1) provides the theory in [29] with a

rigorous foundation [20,21,30]. In fact, the act of taking all

nk ! 1 echoes a fundamental idea in condensed matter

physics [11]: ‘It is only as the [system] is considered to be a

many-body system—in what is often called the N ! 1

limit—that [emergent] behaviour is rigorously definable’.

In the present review, we discuss and investigate some

key consequences of this landscape perspective of living, bio-

logical processes. The presentation is structured as follows. In

§2, using a simple enzyme kinetic model as illustration, we

introduce the emergent landscape w(x) in an explicit formula.

We show, in particular, that, when the chemical reaction

system is situated within an equilibrium environment, this

w(x) is precisely the Gibbs free energy function for a closed

chemical system: the partial derivative @w(x)/@xk then is the

chemical potential of the kth species, and the steady state at

the global minimum of w(x) satisfies the detailed balance.

We then illustrate that, for the same enzymatic reaction

system under a sustained chemostatic chemical potential

difference, its w(x) is a global property of the NESS kinetics,

which has a sustained non-zero flux. The local transition

rates and the emergent global w need not to be consistent.

Recall that, for non-driven chemical kinetics, the equilibrium

energy landscape is related to both equilibrium probability

distribution and kinetic transitions between two energy

wells; for driven biochemical kinetics, global and local

kinetic landscapes are no longer the same [30,31]. There is a

breakdown of the detailed balance.

In §3, we study a nonlinear kinetic model in which an

increasing chemostatic driving force Dmext leads to a

saddle–node (blue-sky) bifurcation. Using a specific reaction

scheme known as the Schlögl model [32], the explicit formula

for the non-equilibrium, emergent global w can be again

obtained. We then revisit and refine the notion of ‘thermo-

dynamic versus kinetic branches’ of steady states

articulated in [33]. The notion of states that are near to or

far from equilibrium naturally arises: the former is a continu-

ation of the equilibrium steady state from which the latter

is separated by a barrier; a spontaneous catastrophe
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that causes a transition from the latter to the former is

exponentially rare in an autonomous system.

Describing a biological organism, such a bifurcation struc-

ture is encoded in a much larger global landscape. In §4, we

explore the notion of self-organization from an inanimate

near-equilibrium state to a far-from-equilibrium state, not

by chance but by necessity [34]. Through an explicit formula,

we show that such a system will have an emergent global w

that has remarkable resemblance to C. H. Waddington’s

epigenetic landscape for cell differentiation [35]. Indeed, we

see differentiation in a broader sense as ‘emergence of a

new state’, which is precisely what the theory of nonlinear

bifurcation seeks to characterize and what Waddington’s

landscape tries to represent. In physics, phase transition

with symmetry breaking is the process that generates new

states of matter [11,36]; it should not escape the reader’s

notice that a saddle–node bifurcation is the manifestation

of the same phase transition, realized in a mesoscopic-sized

system and viewed at a relatively short time scale [37,38].

The landscape provides a global perspective of a life-

history of an autonomous individual organism under a

stationary environment. The overall trend is that of a down-

hill motion on a ‘hillside’, which is nearly deterministic and

programmed. The major milestone events are ‘shallow’

local minima on the hillside. In §5, we discuss the dialectical

views of, on the one hand, a stochastic NESS that occurs

within a landscape basin, which can of course contain

many smaller basins; and on the other hand, the ‘downhill

flow’. What should be considered as a basin and what

should be considered as a hillside, of course, depends on

one’s biological question. By self-organization, we mean a

process with which some form of overall order spon-

taneously arises from local interactions independent of

initial conditions. In the landscape perspective, such behav-

iour is represented by an attractor and the basin associated

with it.

The paper concludes in §6, in which we compare and con-

trast the NSDS theory with two other prominent schools of

thought: the theory of complex systems biology [39] and

Eigen–Schuster’s theory of replicator dynamics [40]. In

addition, we discuss the relation among the emergent land-

scape perspective, statistical certainty and reconstruction of

the sequential steps leading to a rare event, as well as the

nature of living matter.
2. Emergent landscape of a simple enzymatic
reaction in a non-equilibrium steady state

2.1. Cyclic enzymatic reactions as a caricature of open
chemical systems

Let us first consider a single enzyme molecule E that catalyses

a reversible biochemical reaction between S and P, as shown

in figure 1, one molecule at a time [41].

It is important to note that there are two types of reaction

rate constants in figure 1: first-order k21, k+2, and k3 for

unimolecular reactions, and second-order ko
1 and ko

23 for

bimolecular reactions Eþ S! ES and E þ P! EP, respect-

ively. However, if an open chemical reaction system is

sustained under a chemostatic environment, such as bio-

chemical reactions inside a single cell in a Petri dish, then

the concentrations of S and P are expected to be sustained
externally to the reaction system. In this case, one can lump

ko
1[S]ext;k1 and ko

23[P]ext;k23. In such a system, let us further

assume that each of the six first-order, or pseudo-first-order,

reactions is elementary: that is, it has an exponentially distrib-

uted waiting time for the enzyme to jump from one state to

another. The jump is instantaneous; the time is in the waiting

and the mean time is the reciprocal of the first-order, or

pseudo-first-order, rate constant of the reaction.

The probability of the enzyme being in any one of the

three states at time t, then, follows the chemical master

equation [42–45]

dpEðtÞ
dt

¼ k3pEP � ðk�3 þ k1ÞpE þ k�1pES,

dpESðtÞ
dt

¼ k1pE � ðk�1 þ k2ÞpES þ k�2pEP,

dpEPðtÞ
dt

¼ k2pES � ðk�2 þ k3ÞpEP þ k�3pE:

9>>>>>>=
>>>>>>;

ð2:1Þ

With all k’s being non-zero, it is easy to show that this set of

equations has a unique steady-state probability distribution

p ¼ (pE, pES, pEP).

Let us now consider a system that consists of N enzyme

molecules in a reaction volume V, each undergoes the reac-

tions in figure 1, among which nE, nES and nEP ; N 2 nE 2

nES are the molecular numbers in state E, ES and EP in the

steady state. nE, nES, nEP still have fluctuations, no matter

how large N is, as long as it is not infinite. Then, the

steady-state probability

PrfnE ¼ n1, nES ¼ n2, nES ¼ n3g ¼
N!

n1!n2!n3!
pn1

E pn2

ESp
n3

EP

≃ e�Vwðx1,x2,x3Þ

ZðVÞ , ð2:2Þ

in which x1 ¼ nE/V, x2 ¼ nES/V and x3 ¼ nEP/V are the con-

centrations of E, ES and EP, respectively. And

w(x1, x2, x3) ¼ x1 ln
x1

pE

� �
þ x2 ln

x2

pES

� �
þ x3 ln

x3

pEP

� �
ð2:3Þ

and

Z(V) ¼
ð

x1þx2þx3¼xtot

e�Vw(x1,x2,x3) dx1 dx2 dx3: ð2:4Þ

In the state space of the concentrations of chemical species

x ¼ (x1, x2, x3), we call w(x) in (2.3) a global, kinetic or

non-equilibrium landscape. Let us introduce three partial

derivatives

@w

@x1
¼ ln x1 � lnpE þ 1,

@w

@x2
¼ ln x2 � lnpES þ 1,

@w

@x2
¼ ln x3 � lnpEP þ 1:

9>>>>>>=
>>>>>>;

ð2:5Þ

We note a very important mathematical result: if the six k’s

satisfy the detailed balance: pEk1 ¼ pESk21, pESk2 ¼ pEPk22

and pEPk3 ¼ pEk23, then

@w

@x2
� @w

@x3
¼ ln

k2

k�2

� �
þ ln

x2

x3

� �
, ð2:6Þ

in which k2/k22 is actually the equilibrium constant between

ES and EP. In fact, (2.6) multiplied by kBT is the standard

chemical potential difference mES 2 mEP for the ideal solution

of the enzyme molecules. Therefore, w(x1, x2, x3) is the Gibbs
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Figure 1. Kinetic scheme for a reversible enzymatic reaction with substrate S
and product P. k21, k2, k22 and k3 are first-order rate constants; and ko

1 and
ko

23 are second-order rate constants. The system of biochemical reactions is in
equilibrium if and only if the concentrations of S and P, [S] and [P], satisfy
k1k2k3 ¼ k23k22k21, in which pseudo-first-order rate constants k1 ¼ ko

1[S]
and k23 ¼ ko

23[P].

C

2 3
1

1

1

1
A B

Figure 2. A particular example of the enzymatic reactions in figure 1. Since the
k1k2k3 ¼ 1 = k21k22k23 ¼ 6, the system is driven under a chemostatic
chemical potential DmPS¼ kBT lng, where g ¼ k1k2k3/(k21k22k23).
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potential function of the equilibrium system, and @w/@xk

then is the chemical potential of the species k.

2.2. Landscape, detailed balance and the Gibbs
potential function

The Gibbs function represents the thermodynamics of a spon-

taneous process in a closed, non-driven chemical reaction

system towards its chemical equilibrium. In the above

simple example, this is encoded in the detailed balance

assumption we made. The mathematical results in equations

(2.2)–(2.4), however, are equally valid for driven, open

chemical systems with a chemostat. Therefore, they are appli-

cable to the biochemical reaction networks in living cells. In

fact, we note that

Dm21þDm32þDm13¼kBT ln
k1x1

k�1x2

� �
þln

k2x2

k�2x3

� �
þln

k3x3

k�3x1

� �� �

¼ kBTln
k1k2k3

k�1k�2k�3

� �

¼ DmPS¼Dmo
PSþkBTln

½S�ext

½P�ext

 !
: ð2:7Þ

In a living cell, almost no biochemical reaction is at its

chemical equilibrium. The expression in (2.7) is precisely

the amount of chemical potential difference between a sub-

strate molecule S under concentration [S]ext and a product

molecule P under concentration [P]ext. If S and P are in a

chemical equilibrium, then the ratio of rate constants inside

the [������]¼1, which is the well-known Wegscheider–Lewis

cycle condition [46,47].

2.3. The emergent global landscape
Therefore, with a sustained, external chemostatic chemical

driving force DmPS, an open reaction ‘network’ inside a

living cell like the one in figure 2 is the rule rather than an

exception.

In figure 2, we see locally that the probability of A! C is

twice as likely as A! B. However, the steady-state prob-

ability distribution for the three-state kinetic cycle is

pA ¼
1

4
, pB ¼

1

2
and pC ¼

1

4
: ð2:8Þ

Note that this set of distributions has the following,

important characteristics:

pAkAB � pBkBA ¼ pBkBC � pCkCB ¼ pCkCA � pAkAC

¼ �0:25, ð2:9Þ
in which kXY is the transition rate constant from state X to

state Y . There is a sustained net circular flux going from

B! A! C! B, one-quarter of a round per unit time,

driven by an external Dm ¼ 2 kBT ln 3 , 0.

We also note several very important features of this

system which has no detailed balance. First, pB/pC ¼ 2 =

kCB/kBC ¼ 3. Second, the NESS state probabilities for B and

C, pB:pC ¼ 2, are very different from the kAB:kAC ¼ 1
2. In

other words, the local dynamics among the connected

states is completely different from the global, long time prob-

ability p ¼ (pA,pB,pC). The steady-state probability p has the

ultimate permanence.

Just as in the equilibrium chemical thermodynamics, the

p, being something ‘invariant’, has a fundamental role to

play in the macroscopic dynamics of the simple system in

figure 2. Following the steps in equations (2.2)–(2.4), on

the space of the concentrations of chemical species x ¼

(xA, xB, xC), we have w in (2.4) again, but this time as an

emergent global landscape.

Consider now the corresponding macroscopic reaction

system with concentrations xA(t), xB(t) and xC(t) for the mol-

ecules in the three states. Then they follow the deterministic

kinetic equation

dxA

dt
¼ xC � 3xA þ xB, ð2:10aÞ

dxB

dt
¼ xA � 2xB þ 3xC, ð2:10bÞ

dxC

dt
¼ xB � 4xC þ 2xA: ð2:10cÞ

We have the important mathematical result that

d

dt
wðxAðtÞ,xBðtÞ,xCðtÞÞ ¼

X
j¼A,B,C

@w

@xj

� �
dxjðtÞ

dt

¼
X

j¼A,B,C

dxjðtÞ
dt

ln
xj
pj

� �
¼ xC ln

xA

xC

� �
þ xB ln

2xA

xB

� �

þ xA ln
xB

2xA

� �
þ 3xC ln

xB

2xC

� �
þ xB ln

2xC

xB

� �
þ 2xA ln

xC

xA

� �

� xA� xC þ 2xA � xB þ
xB

2
� xAþ

3xB

2
� 3xC

þ 2xC � xB þ 2xC � 2xA ¼ 0:

That is,

d

dt
w(xA(t), xB(t), xC(t))� 0: ð2:11Þ

All the above x’s are non-negative and we used the inequality

ln x � x 2 1. The emergent w has a similar property to the

Gibbs function for a closed chemical reaction system. Inequal-

ity (2.11) is one origin of the organizational power of a global

landscape.
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Figure 3. Steady states as functions of a parameter l in a nonlinear dyna-
mical system that undergoes a saddle – node bifurcation. The bifurcation is
also called blue sky since a pair of stable and unstable steady states appears
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2.3.1. Local transition rates and emergent global w
Fundamentally different from the equilibrium free energy

landscape weq(x), which predicts the equilibrium probability

distribution as well as the ratio of the transition rates of a

reversible reaction, non-equilibrium theory has a global

potential and a local potential, and they are different

[30,31]. The global potential is related to the NESS probability

distribution, while the local potential is related to the tran-

sitions between two adjacent basins of attraction. The

relationship between the global and local potentials is very

much analogous to the p’s in equation (2.8) and the ratios

of the rate constants in figure 2. Actually, in this work, the

term ‘non-driven chemical system’ is synonymous with

‘chemical system without chemostat’; thus, the pseudo-rate

constants satisfy the detailed balance, and the local and

global potentials are the same.

‘out of the blue’ at F, and at C. The green S-shaped curve shows three steady
states when l is in the range of (l1, l3). The middle branch (FC) represents
an unstable steady state. For a rapidly decreasing (increasing) l, the x follows
the upper (lower) branch and then the F ! B (C ! E) transition to the
lower (upper) branch. In the presence of fluctuations and with a slowly chan-
ging l, the average value of x, kxl, changes with l as shown by the blue
dashed curve. The dashed blue curve becomes steeper and steeper with
decreasing noise (not shown). In the limit of zero noise, it becomes
the red, discontinuous curve, with a critical parameter value at l2. In the
zero-noise limit, the system behaves differently from that predicted by
the deterministic dynamics.

14:20170097
3. Nonlinear bifurcation and far-from-
equilibrium state of a system

In §2, we have illustrated several key non-equilibrium features

of an open biochemical reaction network. Nonlinearity with

multi-stability is another key characteristic of biochemical

reaction networks with feedback regulations [48]. A saddle–

node (or blue-sky) bifurcation is one of the widely observed

dynamic ‘mechanisms’ for how a system shifts from having

a unique steady state to having multiple stable steady states,

e.g. attractors.

To illustrate this feature, let us consider the nonlinear

reaction kinetics in (3.1). Gene regulatory networks of transcri-

ption factors, phosphorylation–dephosphorylation signalling

networks with feedback regulation, and many other biochemi-

cal processes can be mapped to this simple nonlinear chemical

reaction system, as a ‘model of models’ [49,50].

A saddle–node bifurcation with catastrophe is the signa-

ture phenomenon of a phase transition on a relatively short

time scale. For a nonlinear dynamical system with a par-

ameter l, it predicts a range of the parameter, the interval

(l1,l3) in figure 3, at which two stable steady states (i.e.

three steady states when a saddle point is included) are possi-

ble, depending on the initial condition of the dynamical

system. With the presence of fluctuations, the mean

value of their probability distribution changes with l.

The sharpness of the transition curve, however, increases

with decreasing noise. Then in the limit of zero noise, coexis-

tence can only occur at one, ‘critical’ parameter value [38,48],

the l2 in figure 3. This is what physicists call a first-order

phase transition.

3.1. Bistability in a nonlinear reaction system
We shall be particularly interested in how the Dm from the

chemostat induces bistability in an open chemical reaction

system [51]. Using the Schlögl model [32,52,53],

Aþ 2X O
kþ1

k�1

3X, X O
kþ2

k�2

B, ð3:1Þ

as an example, we shall establish a connection between the

non-equilibrium thermodynamics and nonlinear kinetics.

Let the concentrations for X, A and B be x, a and b, with a
and b being sustained by an environment while x changes

dynamically. The reaction, thus the x(t), eventually reaches
the chemical equilibrium if the environmental concentrations

a and b satisfy

g ;
akþ1kþ2

bk�2k�1
¼ 1: ð3:2Þ

Note that the equilibrium constant for the ‘overall reaction’

A O
KAB

B

is simply KAB ¼ kþ1kþ2/k21k22. Therefore,

kBT ln g ¼ kBT ln KAB þ kBT ln
a
b

� 	
¼ DmBA, ð3:3Þ

which is the chemostatic chemical potential difference from

the environment upon the system. If DmBA = 0, the reaction

reaches a NESS. The nonlinear dynamics of x(t) follows the

law of mass action,

dx(t)
dt
¼ �k�1x3 þ kþ1ax2 � kþ2xþ k�2b: ð3:4Þ

Introducing non-dimensionalized t ¼ kþ2t and u ¼ (k21/

kþ2)1/2x, then

du
dt
¼ �u3 þ gau2 � uþ a

¼ ðu2 þ 1Þða� uÞ þ ðg� 1Þmu2;

in which

a ¼ k�1

kþ2

� �1=2 k�2b
kþ2

:

When g ¼ 1, for example, DmBA ¼ 0, and the system

approaches its unique equilibrium steady state ueq ¼ a.

Figure 4 shows chemical steady state(s) u* as a function, or

three functions, of the chemical driving force lng ¼ DmBA/

kBT. In a NESS, there is a sustained net transport flux in the

reaction system, Jness ¼ kþ1ax*2 2 k21x*3 ¼ k2x* 2 k22b, from
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Figure 4. Bifurcation diagram for nonlinear dynamics (3.5) with a ¼ 0.1.
The steady state(s) is u* and the steady-state flux is (u* 2 a). When
lng ¼ 0, the chemical steady state is unique, which is an equilibrium
state with u* ¼ a and zero flux. The blue, lower branch, therefore, is a con-
tinuation of the equilibrium state, which we shall call the near-equilibrium
branch. A saddle – node bifurcation occurs at lng ¼ 2.938, when a pair of
stable (orange, upper branch) and unstable (red, dashed branch) states
emerge. The orange far-from-equilibrium branch is separated, thus protected,
from the near-equilibrium branch by the red dashed line. When lng . 3.30,
no spontaneous rare event can occur that endangers the far-from-equilibrium
state. A distinct state of active matter arises. At a macroscopic scale and in an
ergodic limit, the two branches coexist only at a single critical value of g* ¼
20.36, lng* ¼ 3.014 [ (2.938, 3.30).
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A to B when mA . mA. In the non-dimensionalized variables,

u* is related to g through g ¼ u*/a þ 1/au* 2 1/u*2.

With increasing g, the system, driven stronger and stronger,

is further and further away from its chemical equilibrium, but

the uss represented by the blue branch in figure 4 changes very

little. One can use

duss

dg
¼ dg

duss

� ��1

¼ au�3

u�3 � u� þ 2a
ð3:6Þ

as a measure for characterizing the responsiveness of u* with

increasing g. Equation (3.6) indicates that, when u*� 1, the

response is nearly zero; however, if u*� 1, then the response

is approximately linear with slope a. When g . 2.938, a new

(orange) stable steady state appears, out of the blue, far from

the equilibrium. The near- and far-from-equilibrium steady

states are separated by an unstable steady state, represented

by the red dashed line. The far-from-equilibrium (orange)

steady state is characterized by several fundamental features:

(a) It is robust against internal and external perturbations

due to the attractorial structure. In condensed matter

physics, ‘robustness’ has been called ‘rigidity’ [11] and

‘protected behaviour’ [37], among many other terms.

(b) Starting from the near-equilibrium branch, reaching the

far-from-equilibrium state spontaneously is an exponen-

tially rare event, which takes an exponentially long time.

This is another meaning of ‘being far’, in a kinetic sense.

(c) The appearance of the far-from-equilibrium branch is an

emergent phenomenon with a dynamic symmetry

breaking [36,38].

(d) Finally, but not the least, with a sufficient energy supply

g� 1, the far-from-equilibrium state reaches complete

‘safety’ without the possibility of accidental deterio-

ration to the blue branch: the near-equilibrium branch

disappears completely from the state space.
One naturally identifies the far-from-equilibrium orange

branch as a ‘new form of matter’: in the macroscopic limit,

there is a discontinuous phase transition; the near- and far-

from-equilibrium branches only coexist at a critical condition

of g*.

The g* can be obtained from the emergent landscape of

the system (3.1). The landscape can be computed [54,55]:

wðuÞ ¼
ð

ln
uþ u3

aþ agu2

� �
du

¼ u ln
uð1þ u2Þ
að1þ gu2Þ

� �
� uþ 2 arctanðuÞ � 2ffiffiffi

g
p arctanð ffiffiffigp uÞ:

ð3:7Þ

It is a Lyapunov function for the solution of the differential

equation (3.5), u(t):

d

dt
w[u(t)] ¼ du(t)

dt
ln

uþ u3

aþ agu2

� �
� 0: ð3:8Þ

Figure 5 shows the w(u) for a ¼ 0.1 and several different

values of g. The value of g* is found to be 20.36.

3.1.1. Breakdown of ergodicity and symmetry breaking at the
mesoscopic scale

Symmetry breaking has always been a phenomenon of time

scales. Anderson [11] used progressively larger and larger mol-

ecules as an illustration to show that from the possibility of

jumping among different ‘attractors’, within a reasonable

time scale, to impossible, ‘the symmetry laws have been, not

repealed, but broken’. In modern theory of dynamical

systems, this is called a breakdown of ergodicity.

A periodic chemical oscillation is a form of temporal

symmetry breaking. Systems with detailed balance cannot

oscillate. Cellular biochemical reaction networks are full

of kinetic cycles. Indeed, as pointed out in [11], ‘Temporal

regularity is very commonly observed in living objects’.

3.2. Thermodynamic versus kinetic branches of
non-equilibrium state of matter

A piece of inert material under a non-equilibrium condition

will have transport fluxes. Even though the flux could be

too small to measure, it is nevertheless not at equilibrium.

Still, many people would not call such a system ‘active’.

Furthermore, when the fluxes are really small, they follow

Onsager’s linear theory of irreversibility. Is there a qualita-

tive difference between these non-equilibrium systems and

systems that are ‘far from equilibrium’?

To distinguish the former from the latter, Nicolis &

Prigogine [33] articulated the notion of an ‘equilibrium

branch’ in phase space, and the emergence of a ‘kinetic

branch’, or dissipative structure, through a transcritical bifur-

cation, as shown in figure 6. The bifurcation parameter here

represents the distance from equilibrium.

A little detour concerning the transcritical bifurcation. Its

canonical form is [56]

dx
dt
¼ x2 � (l� lc)x, ð3:9Þ

which has an exchange of stabilities between the two

branches of steady states, x1 ¼ 0 and x2 ¼ l 2 lc, at l ¼ lc;

it is always the lower branch that is stable. However, the trans-

critical bifurcation is imperfect [56]. For example, let lc ¼ 0
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and consider

dx
dt
¼ x2 � lx� e, ð3:10Þ

with e . 0. In this case, the two branches are

xþ(l) ¼ lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4e

p
2

and

x�(l) ¼ l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4e

p
2

:

ð3:11Þ

They never cross. Bifurcation behaviour that cannot persist

under an e-perturbation, such as the systems in (3.9) and

(3.10), is called imperfect. Thus, in biological terms, the

bifurcation phenomenon is not robust.

We should not build a scientific theory about dissipative

structure based on such a mathematical concept. Rather, we

shall refine the notions of ‘thermodynamic branch’ versus

‘kinetic branch’, or, alternatively, inanimate near-equilibrium

branch versus far-from-equilibrium branch [5] in terms of

the saddle–node bifurcation discussed in §3.1 and depicted

in figure 4. The saddle–node bifurcation, together with the

catastrophe phenomenon, is robust [38].

We suggest the term inanimate branch as the non-

equilibrium continuation (g . 1) of the thermodynamic

equilibrium to describe the branch of steady state that passes

through the equilibrium ueq¼ a when g ¼ 1. Then the far-

from-equilibrium branch has an ‘energy barrier’, the red

dashed line, that separates itself from the inanimate branch.

The notions of near and far from in this sense are separated
by an insurmountable barrier in the macroscopic limit. They

are qualitatively different.
4. Physics of complexity meets Waddington
With the concept of near- versus far-from-equilibrium states

of a system established, one naturally asks whether and

how a chemical reaction system under a suitable external

chemostat can spontaneously organize itself into a far-from-

equilibrium state, not by chance but by necessity [34]. More

precisely, how an autonomous chemical reaction system

starts in a near-equilibrium state and reaches a driven

steady state that is far from equilibrium. As we have dis-

cussed earlier, the notion of self-organization precisely

reflects an independency from the initial situations: different

systems all reach the same final state; the entire self-

organizing process, thus, is a slow kinetic transient very

much like the living process of organism development.

In other words, we envision that the g-axis in figure 4

actually represents a slowly varying dynamic variable. With

such a multi-scale evolving dynamics, a system with any

initial condition, originating at lng ¼ 2, will rapidly settle

into the blue, near-equilibrium branch, but ultimately be in

a far-from-equilibrium state on the orange branch when

lng ¼ 4.

4.1. Self-organization and differentiation
In terms of the landscape, one of the simplest realizations of

such a multi-scale self-organizing reaction kinetic system is to

‘embed’ a saddle–node bifurcation structure, such as the one

in figure 4, into an autonomous dynamics, with the bifurcation

parameter being a slowly changing dynamic variable. In other

words, we ‘stitch’ the one-dimensional landscapes in figure 5

into a single two-dimensional landscape with the g as the

second dimension, which contains the interval (18.9, 27.1)

and goes downward with increasing g.

Let us consider the following kinetics scheme:

Aþ 2X O
kþ1y

k�1

3X, X O
kþ2

k�2

B, Y O
kþ3

k�3

C, ð4:1Þ

in which now a chemical species Y serves as a catalyst for the

reaction A þ 2X! 3X. The kinetic system, according to the

law of mass action, then is

dx
dt
¼ �k�1x3 þ kþ1ayx2 � kþ2xþ k�2b,

dy
dt
¼ �kþ3yþ k�3c:

9>=
>; ð4:2Þ
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If the rate constant k23� k+ 2, then one can simply use the

value y as a bifurcation parameter for the fast dynamics of

x(t), while the y itself changes with time very slowly y(t) ¼
y* þ [y(0) 2 y*]e2kþ3t, where y* ¼ k23c/kþ3, and gy(0) , 18.9

and gy* . 27.1.

Again, to obtain the emergent global landscape, one

needs to compute the NESS probability distribution accord-

ing to the NSDS in terms of the chemical master equation

[42–45]. When there is a separation of time scales, the

steady-state probability distribution pss
XY(‘, n) can actually

be obtained in two separated steps. First, one solves the

steady-state distribution for nX with nY ¼ n fixed. This

yields the so-called conditional probability pss
Xj Y(‘ j n). Then

one notices that the kinetics of Y is actually independent of

X in (4.2). Thus, one can solve the steady-state distribution for

nY, pss
Y (n). It can be shown that, when putting them together,

pss
XY(‘, n) ¼ pss

XjY(‘jn)pss
Y (n). pss

Y (‘) is called the marginal

probability of nY. Then one obtains a landscape

wðx; yÞ ¼ wXjYðxjyÞ þ wYðyÞ

≃ x ln
xð1þ x2Þ
að1þ yx2Þ

� �
� xþ 2 arctanðxÞ

� 2ffiffiffi
y
p arctanð ffiffiffiyp xÞ þ y

g
ln

y
~y�

� �
� y� ~y�

g
,

in which g ¼ kþ1kþ2a/k21k22b and ~y� ¼ (k�3c=kþ3)g.

With value a ¼ 0.1, g ¼ 30 and ~y� ¼ 20, figure 7 shows

the landscape with a narrow trough along x ¼ 0 for y , 15,

and a turning point facing an ‘open field with downhill’,

somewhere near y ¼ 20.

This example illustrates that one can certainly design a

kinetics with a landscape that leads a system from its begin-

ning state near an equilibrium to a final state far from

equilibrium, or, more generally, from a simple system to a

more complex one. It requires no stretch of the imagination

to think that Nature has adopted such a self-organizing

mechanism in the process of adaptive evolution; and that

thus biological organisms have co-opted such a ‘program’

in their genomes.
4.2. The biochemistry of a g-driven bifurcation
In a recent experimental investigation, the role of cellular phos-

phorylation potential, e.g. the g for ATP hydrolysis, on cell

(division) cycle progression has been carefully studied [57].

Cyclin-dependent kinase 1 (Cdk1), also known as cell division

cycle protein 2 homologue (Cdc2), is a highly conserved kinase

in cell cycle regulation (figure 8). In fission yeast Schizosacchar-
omyces pombe and in humans, it is encoded by the cdc2 gene,

and in the budding yeast Saccharomyces cerevisiae, by the

cdc28 gene. The Cdk1 kinase together with its protein

substrate and a cyclin form a tertiary complex within which

phosphorylation can occur. Phosphorylation of the various

protein substrates leads to cell cycle progression.

The kinase activity of the Cdc2/Cdc13 complex in fission

yeast, where the Cdc protein 13 is a B-type cyclin, is itself

regulated through a phosphorylation–dephosphorylation

cycle (PdPC), with the kinase Wee1 and the phosphatase

Cdc25: the dephosphorylation activates the kinase. The enzy-

matic activities of both Wee1 and Cdc25 themselves are

regulated by two respective types of PdPCs; and there are

feedback controls: the active Cdc12/Cdc13 is actually the

kinase for both Wee1 and CdC25 phosphorylations!

The transition from G2 phase to M phase in a yeast cell

cycle is considered to follow the dynamics of a bistable

system. The g-driven saddle–node bifurcation with a bifur-

cation diagram is remarkably similar to our figure 4 and

has been experimentally observed in the nucleoplasmic

extract of fission yeast S. pombe [57].

Finally, the widely employed notion of a cellular decision-

making ‘check point’ can in fact be mapped to the concept of

the transition state of a chemical reaction. It is located at the

saddle point of a landscape, the crossing of which is when

a transition from one basin of attraction to another occurs.

The biochemical network and its regulation involved in

the yeast cell cycle is one of the best understood cellular



rsif.roya

9
systems in terms of biochemical kinetics [58]. We expect that

the theory of NSDS and the notion of a landscape will also

provide insights into and aid the understanding of many

other complex biological processes.
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5. Irreversible living process on a landscape
One of the fundamental insights afforded by non-equilibrium

thermodynamics of NSDS is the replacing of the celebrated

entropy balance equation [33,59,60] dS[x]/dt ¼ s(x) 2 hd/T
by the free energy balance equation [5,20]:

d

dt
w[ x(t)] ¼ cmf( x)� s( x), ð5:1Þ

in which w(x) is the emergent global landscape of the NSDS,

cmf(x)	 0 is the rate of the chemostatic energy input into the

system, as a chemical motive force, and s 	 0 is the rate of

total entropy production. Furthermore, we know that dw/

dt�0 always. Therefore, the total entropy production rate,

s ¼ ( 2dw/dt) þ cmf, is the sum of contributions from two

different non-equilibrium processes: dw/dt represents the

dissipation associated with transient kinetic processes

and cmf(x) is the entropy production rate associated with

the chemostat. Although not precise, the former can be

viewed as an ‘internal irreversibility’ and the latter as arising

from non-equilibrium coupling between the system and its

environment.

In our previous work, attention has been paid mostly to

the NESS behaviour of stochastic chemical reaction systems

[12,13,48]. We shall now shift our attention to individual cells.
5.1. Major biological events occur on the ‘hillside’ of a
landscape

Two clonal cells with identical genomes can exhibit very

different phenotypes, best epitomized by the various cell

types in the body of multicellular organisms. To a biologist,

this is something that needs to be ‘explained’ since the tacit

expectation is that the same set of genes would dictate the

same cellular behaviour(s) and function(s). However, to a

chemist who studies single-molecule conformational tran-

sitions, and knowing that there is only a single copy of

DNA in a cell, it is the clonal cells’ very similar behaviour

that requires an explanation. This is a matter of perspectives;

and it can be illustrated cogently in terms of the emergent

global landscape. Figure 7 has a remarkable resemblance to

C. H. Waddington’s epigenetic landscape for cell differen-

tiation [35,61]. The emergent global landscape w rooted in

biochemical network dynamics transforms the biological

metaphor into a physicochemically based quantitative

description [62–64].

First, biology focuses on major ‘life events’ in a living

system, while biochemistry usually focuses on a certain part

of the intracellular molecular reaction network. The former

is a ‘higher-level’ coarse-grained view of a living system. In

terms of a landscape then, for a biologist one should consider

a global topography and neglect all the minor roughness. In

this perspective, a single cell undergoes cell division to

become two daughter cells is non-stationary behaviour

which is a sequence of ’downhill’ events [65]. All interesting

biological processes, in a biologist’s perspective, are
non-stationary; therefore, all major biological events occur

on the ‘hillsides’ of a landscape.

What we learned from the landscape theory is that on a

hillside, at first-order approximation, the dynamics of differ-

ent individuals with the same initial condition actually do

follow the same deterministic equation as illustrated in §3.1.

The stochasticity is mostly reflected in the timing of various

events; and the time for an event to occur is more hetero-

geneous on a more rugged landscape. Differentiation,

therefore, indeed can be represented as a Waddington’s

landscape [62], such as figure 9.

Continuing this thinking, a path that crosses many con-

secutive barriers of approximately equal heights can be

considered as a path along a flat landscape. Only the one

saddle that has a significantly higher barrier, if it exists,

needs to be considered. Repeating this approximation signifi-

cantly reduces the ruggedness of a landscape, ultimately

transforming it into a landscape with a ‘smooth’ hillside.

Biochemical studies of intracellular processes, on the

other hand, focus either on the kinetics of an individual reac-

tion, which has very little relevance to the ‘global’ cell

behaviour, or on the steady state of a biochemical reaction

network. Therefore, the very nature of the biochemical

studies already puts the focus on an ‘attractor’ of a landscape.

A phenotypic switching then is associated with the transition

between two attractors. From the hillside perspective men-

tioned above, this is a very detailed, reductionistic view. On

the other hand, transient kinetic studies of a regulatory net-

work without stochasticity do not encompass the overall

landscape. Therefore, such studies, although valuable with

respect to quantitative details, are not capable of representing

the global ‘flow on a hillside of a rugged landscape’.
5.1.1. A need for single-cell kinetic studies
How can we experimentally obtain the global topography

of the landscape of a cell? One needs to carry out time-

dependent kinetic studies at the level of an entire single

cell. Melnykov et al. [66] have developed a fast relaxation

approach to single-cell biochemical kinetics based on light-

induced transcriptional perturbations. If expanded to all

relevant state-space dimensions by multiplexing, which is

in principle possible, these methods could have the potential

to open up a new vista to quantifying the emergent landscape

of biochemical reaction networks. One expects to witness a

growing research on whole-cell relaxation kinetic studies par-

allel to that of chemical and enzymatic reaction kinetic

studies in the 1970s using rapid relaxation methods [67–69].
6. Discussion
It is apt to recall a statement in [11]: ‘We recognize that the

[cell] is, after all, not macroscopic; it is merely approaching

macroscopic behaviour. . . . Starting with the fundamental

laws and a computer, we would have to do two impossible

things—solve a problem with infinitely many bodies, and

then apply the result to a finite system—before we syn-

thesized this behaviour’. The NSDS theory presented in this

work, together with the global, emergent landscape perspec-

tive, conceptually organizes the two impossible steps. It

shows that Waddington’s landscape metaphor has a

mathematical, chemical kinetic foundation [62,70].
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the U(x, y) is: _x ¼ �3x2 þ 2y, _y ¼ 2x þ 20. (c) A schematic for the ‘dynamic flow’ in (b). We suggest that this type of ‘blue-sky’ bifurcation structure is more
robust than the widely acknowledged ‘pitch-fork’ bifurcation pictured by C. H. Waddington. On the other hand, with the presence of noise, the two structures are
nearly indistinguishable.
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An NSDS, as a model, integrates some of the essential

thoughts of the Brussels school’s non-equilibrium thermo-

dynamics and the Stuttgart school’s synergetics and

symmetry-breaking as the mechanism for generating com-

plexity which originated from the phase transition lore in

condensed matter physics [5,38]. It also shares a great deal

of concepts, ideas and mathematical techniques with two

other bodies of work, one on constructive biology [39] and

another on the quasi-species model [71]. We particularly

notice the eloquent statement that ‘[o]ur knowledge of phys-

ical and chemical systems is, in a final analysis, based on

models derived from repeatable experiments’ [71], which

firmly puts ‘models’ as the source of knowledge.
6.1. The theory of complex systems biology
There are ample agreements between the NSDS theory and

the complex systems biology approach [39]. With a few

types of elements (e.g. very low heterogeneity among indi-

viduals) and a few simple rules for interactions, complex

behaviour can arise. The objective of the latter school is not

so much to search for ‘self-organization’ but for ‘emergent

universality’. This is further defined as follows [72]:
The approach that should be taken will be constructive in nature.
We combine several basic processes, and construct a class of
models, and to find universal logic underlying therein. With
this logic, biological systems are classified into some universality
classes. [An] organism, then, [is] understood as one representa-
tive for a universal class, to which the ‘life as it could be’ also
belongs.

. . .

Note the approaches for complex and complicated systems should
be distinguished. Since the latter are essentially understood as a
combination of simple processes, what should be done here is
to search for minimal sets of local processes that can fit real
data. On the other hand, for complex systems [( . . . )], such an
approach is not effective. One has to search for a general logic
why such a complex system is of necessity and universal.
The first paragraph does not give a clear distinction between

self-organization and emergent universality, per se. The real

difference resides in the ‘why such . . . is of necessity and

universal’. This is the ultimate question for biological science

[73]. The answer to this question can be precisely represented

in terms of a ‘landscape’, which quantifies ‘plausibility’.
Indeed, the logic of the theory of probability is to consider

‘all possible outcomes and their probabilities’ [74]: the ques-

tion of necessity is nothing but an overwhelming probability

of 1; and the issue of universality, such as theories of thermo-

dynamics and phase transition, has been most cogently

represented as limit theorems in probability [75–77]. In a

nutshell, the ‘constructive’ nature of a theory for an individ-

ual can be reduced (or should be expanded?) into

‘understanding complex systems ensemble and their stochas-

tic dynamics’, as statistical laws. We hasten to add that

one very successful mathematical approach to even purely

deterministic complex dynamics has been their statistical

characterizations [78,79].

There are possible correspondences between the key

notions in complex systems biology and NSDS: isologous

diversification $ symmetry breaking and bifurcation;

dynamic consolidation$ attractor and multi-stability; itiner-

ancy $ emergent inter-basin Markov jumps; and minority

control $ stochasticity is dictated by low copy numbers.
6.2. The theory of replicator dynamics
The number of emergent, discrete phenotypes of a biochemi-

cal network, with sufficient robustness, should not be an

overwhelmingly large number. The reader is referred to an

earlier work in this vein in protein science [80]. Indeed,

even though combinations of nucleotide mutations in DNA

have an astronomically large number of possibilities, if

taking functional protein three-dimensional folds and bio-

chemical network dynamics into consideration, the relevant

possible outcomes of mutations should also be limited, e.g.

the genotype to phenotype map has a great deal of degener-

acy. If we assume that the set of all possible discrete

phenotypes S, e.g. attractors, is finite, then at a coarse-

grained level the dynamics of subpopulations within an

organism can be represented as

dxi

dt
¼ (AiQi � ~Di)xi þ

X
j[S,j=i

[A jQ jix j þ ~w jix j � ~wijxi], ð6:1Þ

in which Ai and ~Di are the per capita birth and death rates of

the ith subpopulation, 0 � Qi� 1 represents the proportion

that has an exact reproduction, and 0 � Qij� 1 represents
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‘erroneous’ reproduction giving birth to a jth individual:

Qi þ
X

j[S,j=i

Qij ¼ 1:

~w ji characterizes the rates for phenotype switching from j to i.
This dynamical model, originally proposed to account for

mutational dynamics, can be equally applicable to epigenetic

switchings among attractors.

Equation (6.1) can be re-written as the standard from of

replicator dynamics [40],

dxi

dt
¼ (AiQi �Di)xi þ

X
j[S,j=i

w jix j, ð6:2aÞ

with

Di ¼ ~Di þ
X

j[S,j=i

~wij, w ji ¼ A jQ ji þ ~w ji: ð6:2bÞ

In (6.2), the per capita death rate Di now contains the pheno-

type transitions from the ith subpopulation to all the other

subpopulations j = i. Similarly, the ‘mutation rate’ wji

includes all the asymmetric divisions with ‘erroneous’ repli-

cation as well as phenotypic transitions. Differentiating

these different effects from dynamics requires high-precision

single-cell measurements.

Equation (6.1) can also be re-written in a third form:

dxi

dt
¼ (Ai � ~Di)xi þ

X
j[S,j=i

(w jix j � wijxi), ð6:3Þ

in which Ai and ~Di are the per capita birth and death rate irrespec-

tive of reproduction errors, and wij contains both the effects of all

the asymmetric divisions and phenotypic transitions. This

equation was the starting point of our earlier studies [81,82].

On the population level, one cannot distinguish between asym-

metric division, e.g. equation (6.1), and symmetric division

followed by a phenotypic transition, as in equation (6.3).

When stochasticity is introduced into a replicator

dynamics, it becomes an NSDS [83,84]. Within the framework

of replicator dynamics, Eigen and Schuster and their co-

workers have developed the concept of quasi-species

[40,71,85], a selection of one distribution, among the sub-

populations, against all other distributions. In this context,

they also discussed the notions of robustness and punctuated

equilibrium [86,87].
6.3. Landscape and statistical certainty
Giving a sustained stationary environment and believing that

‘dynamics’ is the ultimate underlying description [10] of any

phenomenon, sequence of events, and functions if any, a land-

scape can be obtained in two thought experiments with two

extreme scenarios. (i) A single, individual system can be fol-

lowed in an infinitely long time. By infinitely long, we mean

it is longer than all the broken symmetries, and reaches an ulti-

mate ergodicity. For a single protein, such as T4 lysozyme at

128C, this time scale could be already more than 108 s (≃3

years) [88]. For a single cell, this time scale could easily be

already longer than the age of the universe [28]. (ii) Alterna-

tively, one has a large population of identical, independent

individuals. Macroscopic protein chemistry simply took

advantage of large Avogadro number: a micromolar concen-

tration in a 2.5 ml cuvette has 1015 molecules. This reduces

108 s to 1027 s, if one had single-molecule detection sensitivity,

e.g. observing the transition of one out of the 1015. The rates are
expected to be Arrhenius like, with inverse temperature

replaced by the size of the population.

One does not need to have a full landscape; most of the time

only a relatively small portion of it is relevant. This can be

explored in a much shorter time scale. Current cellular studies

based on cytometry with single-cell sensitivity [89] that

measure millions of cells in a population at a single time

point may approximate ergodicity for a given extracellular con-

dition [90], and repeating such snapshot measurements under

slowly changing conditions captures the hillside dynamics.

An emergent landscape is not the ‘cause’ of a biological

dynamics. It is a summary of all its ‘potential transient behav-

iour’ in statistical terms. Here, we emphasize two insights

from the mathematical theory of probability. First, statistical

certainty concerning a population of individuals gives very

little predictive power on anyone in the population; there

is an uncomfortable dualism between ‘statistical truth’ and indi-

vidual reality. Biochemical kinetics in a test tube has a

deterministic description but single enzyme molecules fluctuate

with ‘individualism’. Second, a stochastic dynamics with small

fluctuations can undergo movements that have large deviations

away from its average behaviour. Interestingly, while such

movements are rare, when its occurrence is observed, the

sequential events leading to the rare outcome are nearly deter-

ministic, since any other possible sequence of events is much

less probable, relatively speaking. In other words, retrospective

reconstruction of the history of a rare event that occurred can be

made with almost 100% confidence in the context of NSDS.

6.4. On living matters
What is living matter? In the classical physics of inanimate

matters, different macroscopic states are best understood

and characterized through phase transition. There is no

doubt that bistability and saddle–node bifurcation with cata-

strophe are signatures of a macroscopic, first-order phase

transition in a biochemical reaction network system. The

theoretical result in figure 4 and the recent experimental

studies on fission yeast [57] have clearly shown that living

matter can be understood as an attractor state emerging

through bifurcation with increasing external driving force

lng, moving further and further away from the equilibrium

state where g ¼ 1. As pointed out recently in [91], ‘[a]nother

way to reconceptualize the problem [of the origin of life] is

to consider life’s emergence as a phase transition that mani-

fests as a sudden change in how chemistry can process and

use information and free energy’. In fact, Cronin and

Walker [91] said succinctly that ‘[u]nderstanding this phase

transition requires new approaches to non-equilibrium phy-

sics that hold promise for explaining the origin of structure

at multiple hierarchical scales’. The non-equilibrium, global

emergent landscape, as both a metaphor and an analytical

device, is one development in answering that call.
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Endnotes
1NESS transport is characterized by a complementary emergent
quantity: the stationary flux [8,9].
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2The notion of a potential function in a non-equilibrium system
has long been associated with the logarithm of its statio-
nary probability distribution [15–17]. A reformulation of the
standard Ito process based on a potential function has also been
suggested as the dynamic foundation for Darwin’s theory [18]. The
NSDS theory, while sharing with the others many of the
same ideas and mathematics, is rooted in a discrete description of
population kinetics. The theory proves that the landscape is
an emergent property of a mesoscopic dynamics, e.g. equation (1.1)
[19–21].
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