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Pre-eclampsia, fetal growth restriction and stillbirth are major pregnancy

disorders throughout the world. The underlying pathogenesis of these dis-

eases is defective placentation characterized by inadequate invasion of

extravillous placental trophoblast cells into the uterine arteries. How tropho-

blast invasion is controlled remains an unanswered question but is

influenced by maternal uterine immune cells called decidual natural killer

cells. Here, we describe an in vitro microfluidic invasion assay to study the

migration of primary human trophoblast cells. Each experiment can be per-

formed with a small number of cells making it possible to conduct research

on human samples despite the challenges of isolating primary trophoblast

cells. Cells are exposed to a chemical gradient and tracked in a three-

dimensional microenvironment using real-time high-resolution imaging, so

that dynamic readouts on cell migration such as directionality, motility and

velocity are obtained. The microfluidic system was validated using isolated

trophoblast and a gradient of granulocyte-macrophage colony-stimulating

factor, a cytokine produced by activated decidual natural killer cells. This

microfluidic model provides detailed analysis of the dynamics of trophoblast

migration compared to previous assays and can be modified in future to study

in vitro how human trophoblast behaves during placentation.
1. Introduction
During the first trimester of pregnancy in humans, the process of placentation

involves cells derived from the placenta, fetal extravillous trophoblasts (EVTs),

invading into the uterine wall in a controlled and directed manner. Here they

remodel the spiral arteries and convert them into highly dilated vessels capable

of providing sufficient nutrients and oxygen to the fetus (figure 1) [1]. Insuffi-

cient trophoblast invasion leads to deficient artery remodelling and is the

underlying cause of severe pregnancy disorders such as pre-eclampsia, still-

birth, fetal growth restriction and recurrent miscarriage [2,3]. A complex

network of cell signalling pathways including cytokines, oxygen tension and

cell–cell interactions regulate trophoblast invasion and placentation [4,5]. In

addition, distinctive maternal immune cells are only present in the uterine

mucosal lining, the decidua, during placentation. When these immune cells,

known as decidual natural killer (dNK) cells, are activated, they produce cyto-

kines such as granulocyte–macrophage colony-stimulating factor (GM-CSF)

that increase trophoblast migration. Therefore, to understand normal and dis-

ordered pregnancy requires an understanding of how maternal immune cells
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Figure 1. Trophoblast invasion. The placenta implants into the maternal
decidua during the first trimester of pregnancy. Fetal extravillous trophoblasts
(EVTs) detach from the implanting placenta and invade the maternal decidua
to remodel uterine spiral arteries. Maternal leucocytes present at the
maternal – fetal interface, including decidual natural killer (dNK) cells, may
regulate trophoblast invasion and transformation of the spiral arteries by
secreting cytokines such as GM-CSF. (Online version in colour.)
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and the factors they secrete regulate trophoblast invasion and

thus placentation.

Conventional methods to study trophoblast invasion both

in vivo and in vitro have significant drawbacks. There are

marked differences in the placentation of laboratory animals

when compared to humans, with the deep interstitial inva-

sion characteristic of humans only found in the great apes

[1]. Ex vivo explants of placentas suffer from poor viability

and difficulty in sampling across the whole placenta [6].

Existing in vitro methods include the Transwellw assay (Corn-

ing, Corning, NY, USA) where cells are placed in an insert

and migrate through a cell permeable membrane towards a

chemoattractant [7]. Alternatively, in the scratch assay a

gap is created by ‘scratching’ a monolayer of cells and the

migration rate determined by time lapse microscopy [8].

These in vitro assays are difficult to use with primary cells

because large numbers of purified trophoblast cells from

first trimester placentas are needed. Although cell lines (chor-

iocarcinoma cell lines JEG-3 and JAR) have been used in

migration assays [9–11], the expression profiles of these

malignant cells are quite different from primary EVTs [12].

Moreover, these in vitro assays are not a measure of true

chemotaxis, analysis of cell migration in two dimensions is

too simplified and as such they are considered to have low

physiological relevance [13,14].

In contrast to these existing migration assays, microfluidic

devices allow the precise control of chemical gradients

in a three-dimensional (3D) environment [15]. Cells are

embedded in a physiologically relevant hydrogel matrix,

and single cell chemotaxis is observed in real time under

constant fluid flow [16]. Individual cell migration tracks can

be quantified, and additional migration characteristics such

as cell speed and directionality can be obtained [17]. Impor-

tantly, because only a few thousand cells are required, this

assay can be performed using primary trophoblast cells.

Here, we describe a microfluidic device to study the

directed migration of primary human trophoblast cells
in vitro. The device was adapted from an assay to study

fibrosarcoma cancer cell migration [18], since trophoblast

and malignant cells share the characteristics of invasion

[19,20]. The device is composed of three channels, the central

one containing primary EVTs embedded in a hydrogel

matrix, with two flow through channels for delivery of

medium to either side of the gel. This method is validated

here using the response of EVTs to GM-CSF, to demonstrate

directed migration of primary trophoblast cells in a

three-dimensional environment.
2. Material and methods
2.1. Fabrication of microfluidic device
Microfluidic devices were fabricated using soft lithography as

previously described [16]. The dimensions of each device are

4.5 � 2.3 cm with the length, width and height of each channel

of 20 300 mm, 1300 mm and 150 mm respectively. Ports are used

to access each channel and are made using a biopsy punch.

Fluid is withdrawn via channels A and B from two separate

reservoirs using a syringe pump (figure 2a).

Microfluidic devices were filled with EVTs in ice cold (08C)

Matrigelw (Corning, Corning, NY, USA). This hydrogel, a base-

ment membrane matrix was chosen as it contains collagen IV,

a protein shown to be present in the decidua and known to influ-

ence the invasive behaviour of trophoblast cells [21]. The gel was

allowed to polymerize at 378C for 45 min and then left overnight

at 378C before the start of an experiment. Experiments were

carried out at a constant flow rate of 50 ml h21 for 12 h.
2.2. Imaging and gradient validation
For live-cell imaging and gradient checks, the LSM700 confocal

laser scanning microscope (Zeiss Oberkochen, Germany) includ-

ing the Zen software was used. The device and tubing were

maintained at 378C during imaging. For cell tracking, a scanning

range of 120 mm was chosen, ensuring that cells attached to the

bottom coverslip of the device were excluded. Z-stacks at five

positions in the central hydrogel area were acquired at 555 nm

every 20 min for a total of 12 h (figure 3a). For chemical gradient

validation identical positions and z-stacks were acquired at

488 nm. Fluorescein-conjugated dextran (40 kDa) at a flow rate

of 50 ml h21 was added to one of the two medium channels

and images taken over 12 h to visualize gradient generation.
2.3. Analysis
To automatically track cells, the image processing software Fiji

(ImageJ, v. 2.0.0-rc-14/1.49 g) and the built-in plug-in TrackMate

(version 2.5.0) were used. To further analyse and interpret the

data a Matlab (Mathworks, Natick, MA, USA) script was devel-

oped that could quantify cell velocity, directionality and motility.

Directionality is given as the ratio of the net distance a cell moved

to the total distance migrated (figure 3b) [22]. Quantifying the

fraction of cells migrating downstream and subtracting these

from the fraction of cells migrating upstream determined motility

(figure 3c).
2.4. Computational model
A finite-element model (FEM) was developed in Comsol Multi-

physics (COMSOL, Stockholm, Sweden) by importing the

device geometry from Auto-CAD (Autodesk, San Rafael, CA,

USA). The model was implemented to determine the molecular
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Figure 2. Microfluidics as a model for trophoblast invasion. EVTs are isolated from first trimester placentas, stained with a cell tracker and embedded in growth
factor-reduced Matrigel in the central hydrogel channel. (a) A constant flow of medium is applied in the two side channels, one with (channel A) and without
hrGM-CSF (channel B) to create a gradient of the cytokine across the hydrogel channel. Individual cell tracks are generated from time lapse microscopy. (b) To
confirm the purity of cells embedded in the microfluidic device, EVT were immune-stained for HLA-G (green) and the nucleus of each cell stained with DAPI
dye. (Online version in colour.)
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gradient by solving the time-dependent diffusion equation:

@C
@t
¼ Dr2C�r � ðvCÞ,

where C is the concentration, t is time, D is the diffusivity of

the solute, and v is the fluid velocity. The model solved the

diffusion equation for the full three-dimensional geometry of

the microfluidic device. The diffusivity was defined as 2 �
10211 m2 s21 [23] and assumed to be constant throughout

the hydrogel region. The inlet concentration of the source

channel and the inlet flow rate were defined by the experimen-

tal values of 0.2 mol m23 and 1.4 � 1024 m s21, respectively,

and no-flux and no-slip boundary conditions were applied

at the PDMS walls.

2.5. Isolation of primary cells and cell seeding
Trophoblast and decidual leucocytes (DLs) were isolated from

placental and decidual samples from normal pregnancies

between 7 and 12 weeks of gestation using published protocols

[12,24]. Ethical approval was obtained from Cambridge

Local Research Ethics Committee (reference no. 04/Q0108/23;

Cambridge; United Kingdom).

Primary isolates of trophoblast cells were cultured in Fluoro-

brite DMEM medium (Thermo Fisher Scientific, Waltham, MA,

USA), supplemented with 20% fetal calf serum (FCS, Biosera,

Nuaille, France), 1 mM sodium pyruvate (Thermo Fisher Scientific,

Waltham, MA, USA), 1� MEM non-essential amino acids,

2 mM l21 glutamine, 10 units ml21 penicillin, 100 mg ml21 strepto-

mycin and 2 mg ml21 gentamycin (Thermo Fisher Scientific,

Waltham, MA, USA). Following overnight culture on fibronectin-

coated wells, the cultures typically yield approximately 70–90%

EVTs identified by flow cytometry using an antibody specific for

HLA-G [24]. HLA-G is a HLA class I molecule uniquely expressed
by invasive EVTs and is used to check purity of the isolated first

trimester cells. Trophoblast cells were labelled by incubation

with 40 mM cell tracker orange CMTMR (Thermo Fisher Scientific,

Waltham, MA, USA) for 15 min at 378C. EVTs at a concentration of

8 � 106 cells ml21 in cell medium were then embedded in a 1 : 1

mixture of Matrigel:cell solution. The volume of gel in the central

channel is approximately 2 ml with approximately 2000 cells

seeded. To generate a gradient of human recombinant (hr) GM-

CSF, 10 ng ml21 was added to the medium in channel A. Cells

were tracked in three dimensions by taking images every 20 min

for 12 h.

The dNK cells stochastically express polymorphic receptors

(Killer-cell Immunoglobulin-like receptors, KIR) that can impart

either an activating or inhibitory signal to the cell. The dNK

cells from different donors were genotyped to determine if

they possessed one of these KIR, the activating KIR2DS1 gene.

Briefly, genomic DNA was isolated from decidual samples

using the QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany).

The presence or absence of KIR2DS1 in each decidual sample

was determined by genotyping KIR from genomic DNA by

PCR as described previously [25,26]. dNK cells were isolated

from first trimester decidual samples of KIR2DS1þ and

KIR2DS12 donors. The isolates were cultured overnight in

RPMI1640 (Thermo Fisher Scientific, Waltham, MA, USA), anti-

biotics, 10% FCS and 2.5 ng ml21 Interleukin 15 (IL-15)

(Peprotech, Rocky Hill, NJ, USA). Enrichment for dNK cells

was performed using the EasySepTM Human NK Cell Enrich-

ment Kit (STEMCELL Technologies, Vancouver, Canada),

which uses magnetic beads to select for CD56þ cells. The

purity of dNK cells was established by staining for CD56-PE

(clone HCD56, Biolegend, San Diego, CA, USA) using flow cyto-

metry as described previously [27]. After enrichment of DL, the

purity of dNK cells increased from 48% to 85%.
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(Nt). (Online version in colour.)
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2.6. Immunofluorescence staining and quantification
of HLA-Gþ trophoblast cells

At the end of each experiment, trophoblast cells were identified

within the device by staining for HLA-G to determine purity

(figure 2b). The devices were washed with 1� PBS and incubated

with 4% paraformaldehyde (Sigma, St. Louis, MI, USA) for

30 min. The devices were blocked with 1% PBS and 2% normal

goat serum (Sigma, St. Louis, MI, USA) for 2 h followed by the

incubation with anti-HLA-G (clone G233-216, Quantum Biosys-

tems, Osaka, Japan) in 1� PBS at 48C overnight. The device

was washed twice with 1� PBS. FITC labelled Anti-HLA-G

(MEMG9-FITC, Bio-RAD, Kidlington, UK) and the nuclear

counterstain DAPI (Sigma, St Louis, MI, USA) were then

applied for 2 h. Four representative images across the hydrogel

channel after each experiment were acquired using a Zeiss LSM

700 (Zeiss, Oberkochen, Germany) confocal microscope. The

percentage of HLA-Gþ trophoblast cells was determined by

counting the total number of nuclei and the number of HLA-

Gþ cells. The average purity of isolated EVTs was 80% over

five experiments, in accordance with previous findings using

flow cytometry [28].
2.7. Activation of decidual natural killer cells
To activate dNK cells, KIR receptors were cross-linked using

plate-bound antibodies. dNK cells from KIR2DS1þ donors

were isolated and used after overnight culture to remove adher-

ent cells. Eight-well strips (Sigma, St Louis, MI, USA) were

coated with 200 ml per well of 2.5 mg ml21 monoclonal antibody

(mAb), EB6 (CD158a, with specificity for KIR2DS1/KIR2DL1,

Beckman Coulter, High Wycombe, UK) or control human IgG

(Biolegend, San Diego, CA, USA) in 10 mM HEPES (PAA) over-

night at 48C. The dNK cells were plated at 2 � 105 cells per well
in RPMI1640, antibiotics, 10% FCS and 2.5 ng ml21 IL-15 and

cultured at 378C for 24 h. The supernatant was then collected

and GM-CSF was quantified using DuoSet ELISA (R&D Sys-

tems, Minneapolis, MN, USA) according to the manufacturer’s

instructions. The dNK supernatants obtained following acti-

vation of KIR2DS1þ dNK cells were diluted and used at a

GM-CSF concentration of 15 pg ml21.

2.8. Statistical analysis
Cell migration characteristics were analysed using Prism Soft-

ware (Graphpad, La Jolla, CA, USA). The unpaired t-test and

one-way analysis of variance (ANOVA) were used for the

hrGM-CSF and dNK supernatant experiments, respectively.

Significance is set as p , 0.05.
3. Results
3.1. Establishing gradient in the microfluidic device
The chemical gradient between the two medium delivery

channels and the central channel containing cells was charac-

terized to determine whether a stable gradient was generated

and how long this gradient remained. The gradient gradually

built up until stabilizing after approximately 1 h and was

steady for at least 12 h (figure 4a). The FEM implemented

in COMSOL was used to characterize transport phenomena

in the device that corresponds to the 40 kDa dextran diffusing

inside the matrix (figure 4b). The computational model con-

firms the gradient profile is similar to the one observed

experimentally at 12 h with a linear gradient gradually build-

ing up after 1 h as shown by a plot of fluorescein intensity

measurements across the device at different time points
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human GM-CSF was added to the medium in channel A, constant fluid flow of 50 ml h21 per channel was applied, and the gradient was investigated for 12 h. The
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(figure 4c). To evaluate whether experimental and computa-

tionally predicted gradients are similar, the mean intensity

profiles of four independent devices were compared to the

gradient predicted by the FEM (figure 4d ). The overlay

demonstrates that linear gradients during microfluidic exper-

iments (black) are similar to the computationally predicted

gradient (red). C/C0 is concentration of tracer normalized

by the concentration in the media channel.
3.2. Trophoblast cells in granulocyte-macrophage
colony-stimulating factor gradients

Recombinant GM-CSF, a product of activated dNK cells, has

previously been shown to enhance trophoblast invasion

using the Transwell assayw [29] and was used here to

validate migration of primary trophoblast cells in the micro-

fluidic device. Figure 5a shows plots of single cell migration

tracks (top) and the net direction of cells in polar histograms

(bottom) for control (no gradient) and hrGM-CSF gradients,

respectively. Data are shown for one representative device

of five repeats. There is undirected migration when hrGM-

CSF is absent. In contrast, hrGM-CSF induced a clear increase

in migration towards the channel with hrGM-CSF present.

The average migration velocity of EVTs with no gradient

over five samples is 6.52+0.91 mm h21. When the hrGM-

CSF gradient is present, the average migration velocity

significantly decreases to 6.26+ 0.74 mm h21 (electronic sup-

plementary material, figure S1) and trophoblast cells move

with significantly increased directionality, from 0.37 to 0.44

(figure 5c).

For each experiment, migration towards and away from

the concentration source was quantified. When hrGM-CSF

is added, a significantly larger fraction of EVTs migrates

towards this stimulus compared to the control, from 0.04 to
0.73 (figure 5b). Thus, the hrGM-CSF gradient substantially

enhances the migratory behaviour of trophoblast cells.

3.3. Activation of decidual natural killer cells induces
trophoblast migration

We next asked whether cytokines and chemokines produced

following activation of dNK cells have the same positive

effect on trophoblast migration. The activating NK receptor,

KIR2DS1, is present in approximately 45% of donors.

Donors were typed for the presence/absence of the gene

and dNK cells expressing KIR2DS1 were activated using a

specific mAb (figure 6a) (§2.7). Similar to previous results

[29], GM-CSF production increased in the supernatants from

KIR2DS1þ but not KIR2DS12 donors compared to the control

(n ¼ 8) (figure 6b).

The dNK supernatants from KIR2DS1þ donors were

added to channel A to generate a gradient (figure 7a super-

natant I). In parallel, a GM-CSF neutralizing antibody was

added with the KIR2DS1þ supernatant to test whether

GM-CSF is the cytokine produced by activated dNK cells

that is causing trophoblast cells to migrate (figure 7a super-

natant II). In addition, supernatant from KIR2DS1þ donors

cross-linked with IgG control antibody was added to channel

A (figure 7a supernatant III). Trophoblast cells preferentially

migrated with increased directionality (figure 7b) and moti-

lity (figure 7c) towards the supernatants obtained from

activating dNK cells compared to random migration in the

supernatants with negative control containing IgG antibody

(n ¼ 5). Increase in directionality was diminished with the

addition of the GM-CSF neutralizing antibody, whereas

the motility decreased but not to the same level of the

negative control. Thus, activation of maternal dNK cells

does result in increased trophoblast migration and this is

partially due to GM-CSF.
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Figure 5. Recombinant hrGM-CSF stimulates the migration of human extravillous trophoblasts (EVTs). (a) Cell tracks and polar histograms show the random
migration of EVTs in the control compared to directed migration when 10 ng ml21 GM-CSF is added to channel A. A representative experiment is shown out
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4. Discussion
In this study, microfluidic devices have been used to quantify

the migratory characteristics of primary trophoblast cells to

model EVT migration, which is a critical period in human preg-

nancy. In previous work [29] GM-CSF was shown to be a

chemoattractant for EVTs; this new approach allows for accu-

rate quantification of migration of individual cells in response

to the chemoattractant. In addition, activation of dNK cells

through an NK receptor, KIR2DS1, results in GM-CSF secretion

that enhances the directional migration of trophoblast cells.

This illustrates how maternal uterine immune cells can affect

placentation, and how this microfluidics assay approach can

be used for biological studies of trophoblast migration.

Although invasion of the uterus by trophoblast cells plays

a critical role in reproductive outcome, limited understanding

of the mechanisms controlling trophoblast invasion remains

a major obstacle to progress in pregnancy research [20,30].

Learning more about what factors influence trophoblast inva-

sion and the cellular and molecular basis of the invasion

pathway is essential. Reliable and reproducible methods to

study how trophoblast behaviour is controlled, and that can

be used in different laboratories with primary cells is lacking.
Strategies to improve methods to study cell migration have

come from the cancer field, since cancer cells spread through

tissues [31–33]. Microfluidics has been used to study various

aspects of tumour biology such as intravasation [18], extrava-

sation [34], angiogenesis [35], tumour–stroma interactions

[36], tumour cell migration in response to chemotaxis [37],

matrix stiffness [38] and interstitial flow [39]. In addition, can-

didate molecules and drugs to target cancer metastasis can be

tested using microfluidic devices because of the low cost of

reagents and manufacturing the devices, together with the

high throughput nature of testing [40,41].

The microfluidic device used here has been adapted to

observe and quantify trophoblast. Both single cell and collec-

tive migration, together with quantification of migration

speed and directionality, provide key advantages over con-

ventional assays used to study EVTs. Each assay can be

performed with a small number of cells, which makes it poss-

ible to conduct research on human samples given the

challenges of isolating sufficient number of pure primary

HLAGþ EVTs from first trimester placentas.

To validate migration of EVTs in the microfluidic device,

a gradient of hrGM-CSF (previously shown by us to enhance

trophoblast migration in a Transwellw assay [29]) was
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generated in the microfluidic device. Using real-time, high-

resolution imaging, the velocity of trophoblast migration is

similar to that of invasive cancer cells [42,43]. In the absence

of a chemical gradient, the movement of EVTs is undirected

but with a chemical gradient of hrGM-CSF, trophoblast

moves with increased directionality and motility but reduced
velocity towards the GM-CSF positive control. Immunohisto-

chemistry for HLA-G was performed after each experiment to

assess the purity of EVTs in the population. In future it

should be possible to retrieve cells from the central hydrogel

channel for other techniques such as gene expression and

flow cytometric analysis.
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Having established the microfluidics platform as viable

for the study of trophoblast migration, more complex

biological questions can be asked. Maternal KIR genes are

highly polymorphic and it is unclear how the presence or

absence of particular KIR in different women translates into

a functional effect on trophoblast cells early in gestation

[25,26]. Previous genetic studies show that an activating NK

receptor, KIR2DS1, protects women from pre-eclampsia and

KIR2DS1þ dNK cells promote trophoblast cell migration

in vitro compared to women who only express the inhibitory,

KIR2DL1 [25,26]. The results in this study are consistent with

this model. The activation of KIR2DS1þ dNK cells resulted in

significantly higher secretion of GM-CSF than KIRDS12

dNK cells when compared to the negative IgG controls

[29]. A larger fraction of trophoblast cells migrated towards

supernatants secreted from KIR2DS1þ dNK cells with

increased directionality and motility compared to random

migration in the control. To determine if GM-CSF in the

supernatant was responsible for this effect, the addition of

anti-GM-CSF antibody resulted in a reduction in the direc-

tionality and motility of cells migrating towards the

concentration source. Therefore, GM-CSF is a key cytokine

in the regulation of trophoblast invasion by dNK cells but

other factors not yet definitively identified are clearly

involved as the migration was not completely blocked by

the anti-GM-CSF antibody. This microfluidic migration

assay provides a three-dimensional model for trophoblast

invasion through the extracellular matrix (ECM) involving

highly regulated and reciprocal interactions between ECM

and cells. Because the migration response is governed

by the ability of a cell to degrade the ECM, it is important

to ask whether the ECM used in this study is truly

representative of decidual matrix components. During the

transformation of endometrium to decidua to prepare the

uterine lining for implantation and pregnancy, there is a pro-

found change in the ECM with a large increase in collagen IV

and laminin surrounding endometrial stromal cells, which

are the main protein components of Matrigel, the basement

membrane used in this study [44,45]. In addition, the decidua

contains collagen type I, III and VI, which are diffusively dis-

tributed in the endometrium throughout the cycle [46,47].

Moreover, the basement membrane at the end of the first tri-

mester surrounding each decidual stromal cell contains

fibronectin and heparin sulphate proteoglycan meaning that

ECM components present in the decidua are more varied

than in Matrigel. A second important question is whether

the mechanical stiffness of the hydrogel surrounding the

cells is representative of decidual tissue. The mechanical
environment is known to influence cellular responses includ-

ing adhesion and migration, as cells are able to convert

mechanical input into complex intracellular signalling cas-

cades and downstream protein expression [48]. However,

the mechanical stiffness of decidua remains uncharacterized

and there are variations in the reported stiffness of Matrigel

[49,50]. Therefore, more work in future is needed to better

understand both the mechanical and molecular properties

of the decidua and to design a gel that better represents the

tissue trophoblast cells migrate through in vitro.
5. Conclusion
This study has described a new approach to study human

trophoblast invasion. By using a bioengineering approach,

we have retained the physiological relevance of trophoblast

cells invading in three dimensions. This was done while

adding analysis of the dynamics of cell migration, which is

not possible in conventional assays and animal models.

This study goes further than previous work to add greater

quantification on GM-CSF as a chemoattractant for EVT

migration. With the use of microfluidic devices there is

potential to further investigate the complex physiochemical

influences on trophoblast behaviour during placentation.
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