Skip to main content
. 2017 May 18;8:15450. doi: 10.1038/ncomms15450

Figure 4. Sequence dependence and the effect of e-melting on reaction kinetics.

Figure 4

(a) Overlay of raw real-time data (black) and idealized fits (red) for a bias series ranging from Vg=0 V to Vg=500 mV of a 100 nM complementary target. At 0 V, no melting events are observed and the hybridized state is dominant at 40 °C. When Vg is increased, the melting rate increases, demonstrating longer and more frequent melting events. (b) kmelts of a complementary target DNA at a temperature of 40 °C increases exponentially with increasing Vg. Behaviour of a target containing a single-base mismatch (SNP) has a noticeably smaller activation energy and higher melting rate constant at each bias point. (c) khyb is less sensitive to bias. At higher bias values, khyb decreases, indicating that base-pairing is affected under repulsive electrostatic force, while the SNP, which cannot pair its terminal base, does not show this effect. Error bars are calculated from five different 60-s intervals at each temperature.