Skip to main content
. 2017 May 18;8:15360. doi: 10.1038/ncomms15360

Figure 3. Valence-band spectra showing formation of Ce3+ and oxygen nonstoichiometry upon reduction.

Figure 3

(a) Schematic of electronic structure changes with oxygen nonstoichiometry in CeO2-δ. Upon reduction, the density of O 2p states decreases, and that of occupied Ce 4f states increase proportionally. (b) Valence-band spectra (250 eV photons, inelastic mean free path (IMFP)=0.6 nm) at 450 °C and relatively oxidizing pO2=1.3 × 10−4 atm (black curve) and reducing pO2=1 × 10−28 atm (blue curve) showing the absence and presence of Ce 4f states, respectively. The spectra have been normalized by the integrated intensity of the corresponding Ce 4d core-level spectra. (c) Valence band spectra collected using 690 eV photons to probe the near-surface region (IMFP=1.2 nm) reveal the same qualitative behaviour. (d) A semiquantitative measure of the oxygen content, obtained from an appropriate normalization of the valence-band spectra (see Supplementary Note 2) shows an inverse correlation with Ce3+ concentration suggesting that oxygen vacancies form alongside Ce3+ at the surface and near-surface regions. Triangles and circles denote films grown on YSZ and STO, respectively. The error in Inline graphic, that is, the fitted slope, is estimated by combining the fitting error (95% confidence interval) as well as the uncertainties associated with converting Ce 4f intensity to Ce oxidation state.