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ABSTRACT

The estrogen receptor a (ERa) regulates gene expres-
sion by either direct binding to estrogen response
elements or indirect tethering to other transcription
factors on promoter targets. To identify these pro-
moter sequences, we conducted a genome-wide
screening with a novel microarray technique called
ChIP-on-chip. A set of 70 candidate ERa loci were
identified and the corresponding promoter sequen-
ces were analyzed by statistical pattern recognition
and comparative genomics approaches. We found
mouse counterparts for 63 of these loci and classified
42 (67%) as direct ERa targets using classification and
regression tree (CART) statistical model, which
involves position weight matrix and human-mouse
sequence similarity scores as model parameters.
The remaining genes were considered to be indirect
targets. To validate this computational prediction, we
conducted an additional ChIP-on-chip assay that
identified acetylated chromatin components in
active ERa promoters. Of the 27 loci upregulated in
an ERa-positive breast cancer cell line, 20 having
mouse counterparts were correctly predicted by
CART. This integrated approach, therefore, sets a
paradigm in which the iterative process of model
refinement and experimental verification will con-
tinue until an accurate prediction of promoter
target sequences is derived.

INTRODUCTION

Recent completion of human and mouse genome sequences
and accumulation of an increasing number of gene annota-
tions have made it possible for bioinformaticians to develop
new approaches that help experimental researchers tackle
biological problems. To fully understand the regulation of

transcription by estrogen receptors (ER) a and b, members
of the nuclear receptor superfamily, computational approaches
capable of integrating vast amounts of complex genomic data
are needed. ERs mediate estrogen signaling, primarily by
17b-estradiol, in various target tissues, including reproductive,
bone, cardiovascular and the central nervous system (1). Estro-
gens and ERs also play important roles in breast cancer genesis
and progression (2), and tumor ER status is a critical deter-
minant in breast cancer patients to elucidate response to
adjuvant treatment with endocrine agents (2). Thus, a better
understanding of ERs may lead to advances in both normal
physiology and disease states, which requires in-depth under-
standing of the spectrum of genes regulated by ERs in different
tissues and cell types.

ERs function as ligand-inducible transcription factors (TFs)
that either up- or down-regulate transcription of various target
genes by binding to specific estrogen response elements
(EREs) or interacting with other TFs, such as SP1, nuclear
factor-kB or AP1 (3–6). Both processes result in recruitment
of co-activators and components of RNA polymerase II that
initiate gene transcription (3). The ERE consensus sequence,
an inverted repeat of the sequence (GGTCA) separated by 3 bp,
rarely occurs in nature (7); however, the imperfect ERE
(GGTCANNNTNNCY) and ERE half-site (AGGTCA) are
widely accepted as alternative binding sites (8–11). Binding
to different ERE sequences alters the conformation of ER,
allowing interaction with co-activators in a cell-type and
DNA context-dependent manner (12–15). Although the inter-
action between ERs and EREs is under intense investigation
(10,11), few studies have utilized the vast amount of genomic
data available in the post-genome era. Thus, the development
of a systematic computational approach not only contributes
significantly to ongoing research in the characteristics of ER
binding, but also allows for a better understanding of its func-
tional connections in a cell.

Computational tools widely used to identify TF binding
sites include MATCH (16) and MSCAN (17). However, due
to lack of experimental verification, these tools are prone
to false predictions. Consequently, there is a need to facil-
itate interactions between computational and experimental
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scientists who conduct integrated research for the identifica-
tion of TF binding sites.

In this study, we combined a systematic computational
approach and microarray-based ChIP-on-chip for the gen-
ome-wide identification of ERa target genes. Our computa-
tional approach entailed the development of a classification
and regression tree (CART) model and the implementation of
OMGProm (18), a comparative genomics database for the
analysis of human/mouse orthologous promoters. A dataset
containing 70 ERa candidate loci was created by the ChIP-
on-chip screening of �9000 putative GC-rich promoter
sequences (19). A CART model was built to predict ERa
promoter sequences and experimentally re-verified by ChIP-
on-chip using a small ERa genomic microarray panel.

MATERIALS AND METHODS

Promoter sequence retrieval

The orthologous promoter sequences, corresponding attributes
and annotation data were stored in a relational database,
OMGProm, recently developed in our laboratory (18)
(http://bioinformatics.med.ohio-state.edu/OMGProm). The
OMGProm data were obtained via an efficient data mining
pipeline, which collected experimentally substantiated
full-length mRNA/50-untraslated regions, first exons and pro-
moters from GenBank, dbEST, RefSeq and Ensembl. A 50

flanking region of 2 kb upstream to 1 kb downstream of the
transcription start site (TSS) was designated as an ERa pro-
moter sequence, since most of the experimentally known
EREs are located within these regions (10).

Computational approaches to identify EREs and
other binding sites

We used human-mouse orthologous promoters in OMGProm
to map the 46 experimentally known EREs within 38 target
genes. An ERE position weight matrix (ERE_PWM) was then
constructed by using the TRANSFAC position weight matrix
[TRANSFAC_PWM (20)] procedure, as shown in Supple-
mentary Table 1. A computational program, ConScan, was
developed in Perl and C languages to scan for conserved
putative EREs in the ClustalW (21) sequence alignments of
human-mouse orthologous promoters in the OMGProm data-
base. Each predicted ERE had scores for five parameters:
(i) human core score, (ii) human PWM score (iii) mouse
core score, (iv) mouse PWM core score and (v) sequence
similarity score of 13 bp ERE in the sequence alignment.
The core score and PWM score, ranging from 0 to 1, reflect
the closeness of predicted sites to the half-site and perfect ERE
consensus sequences.

The other (non-ERE) TF binding sites were analyzed by the
MATCH (16) program, using the PWMs from TRANSFAC
database (20). For a given gene, we scanned both human
and mouse orthologous promoters for all the 290 TF binding
sites corresponding to known human TFs using ‘min-
FN_good71.prf’ profile (profile of cut-off values with min-
imum number of false-negative predictions) of MATCH. If
the sequence similarity of the binding motif is >60% in the
ClustalW (21) sequence alignment, a predicted binding site is
considered as conserved. Those binding sites that fall within

the range (�220 to +220 bp) of a predicted ERE were further
used in the CART analyses.

CART

CART (22) analysis was employed to develop a classification
model for separating ERa targets from non-targets. The
approach is an advanced data-mining tool for tree-structured
non-parametric data analysis, based on binary recursive parti-
tioning methodology (22). It partitions data into discrete
classes using the value of a user-defined classification variable
(e.g. target = 1 and non-target = 0) and computation-intensive
searching and testing techniques to identify useful tree struc-
tures of data. CART selects the predictor variables in the data,
depending on whether they provide a segregation of the data
between different values of the classification variable. The
‘Gini’ method was selected as the splitting method for growing
the tree, and the 10-fold cross validation method was used to
obtain the minimal tree.

In our analysis, the CART procedure was divided into two
phases. In the first phase, a CART model (model 1) was con-
structed to identify cut-off values for five parameters of
ConScan program on two sets of promoters: ERa target pro-
moters in ERTargetDB (see Results) and promoters of house-
keeping genes (non-ERa targets). The determined cut-off
values of parameters were used as predictor variables for
model 1 to classify ERa targets from non-ERa targets.
Only those promoters that had EREs predicted by this
phase (in both targets and non-targets) were considered as a
learning sample for the next phase of CART model (model 2).

In the second phase (model 2), we used ERE sequences
predicted by ConScan and other TF binding sites predicted
by MATCH as predictor variables. Each binding site was
considered as a binary variable, such that it was either 1 or
0, depending on its presence within a �220 bp to +220 bp
region of a predicted ERE (by model 1). All possible over-
represented TF binding sites from the learning samples were
first identified using model 2. Subsequently, these sites were
used to construct a decision tree, with TF binding sites as the
final categorical predictor variables for classifying ERa
targets from non-ERa targets. Our analysis was performed
on the commercially available CART software (Salford
Systems, San Diego, CA).

ChIP-on-chip

The ERa-positive breast cancer cell line, MCF-7, was main-
tained in culture under conditions, as we have described pre-
viously (23). The cells (1 · 107 cells/well) were treated with
17b-estradiol (10 nM) for 24 h. The cells were then cross-
linked with 1% formaldehyde, and cell nuclei were isolated as
described previously (24). Isolated protein-DNA complexes
were sonicated to generate smaller chromatin fragments
(�500 bp). These chromatin fragments were then immunopre-
cipitated by an ERa antibody (Upstate) and treated with pro-
teinase K (38 mg/ml) to reverse the cross-linked complexes.
The purified genomic DNA fragments were labeled with the
fluorescence dye Cy5 and then hybridized with microarray
slides containing �9000 GC-rich genomic sequences. These
sequences had previously been shown to be preferentially
located at the 50 ends of genes (25). Standard hybridization and
post-hybridization washing procedures, originally developed
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by DeRisi, were followed (http://www.microarrays.org).
Microarray slides were scanned with the GenePix 4000A
scanner (Axon), and the acquired images were analyzed
with the software GenePix Pro 4.0. The average ratio of
signal intensities of known repeat sequences was used as a
normalization factor. Normalized ratios (>2) above pre-
immune sera counterparts were considered to be ERa-positive
loci. Individual sequences were determined by a standard
sequencing method using flanking primers corresponding to
vector sequences.

ERa target promoter microarray

A small panel of 70 ERa promoter sequences was spotted in
triplicate on microarray slides. Repeat sequences were also
arrayed as negative controls. A ChIP-on-chip assay was
developed to determine the histone acetylation status of
these 70 loci. The presence of acetylated histone 3 (AcH3)
components in the promoter region is typically associated with
actively transcribed genes (26). The AcH3 antibody (Upstate
Catalog no.06-942) was used to immunoprecipitate chromatin
from the ER+ (MCF-7) and ER� (MDA-MB-231) cells. The
processed chromatin DNA was labeled with Cy5 dye and
hybridized together with the total input (labeled with Cy3)
onto a microarray slide. Normalized AcH3 Cy5/Cy3 ratios
of these loci were calculated using GenePix Pro 4.0. A paired
t-test was used to compare these ratios for MCF-7 and
MDA-MB-231 cells.

RESULTS

Database of mammalian ERa promoters

In order to model the ERE and associated TF binding sites, we
first constructed a database for mammalian ERa target pro-
moters (ERTargetDB; http://bioinformatics.med.ohio-state.
edu/ERTargetDB). ERTargetDB consists of 38 ERa targets
for human, mouse and rat, with annotation of 46 EREs
experimentally confirmed by individual laboratories. Other
related TF binding sites and their TSSs are included. Of
these 46 sequences, only 4 (9%) have perfect palindromic
EREs and 37 (80%) have at least one perfect half-site, while
the remaining sequences contain imperfect EREs (defined as
mismatches to the consensus sequence). After we identified
orthologous counterparts for all 38 genes (human for mouse/
rat; mouse for human), we found that 41 (89%) of 46 EREs
were conserved in human and mouse/rat (sequence similarity
score >0.6 in ClustalW sequence alignments).

CART model for target classification

The 46 experimentally verified EREs and a set of 340 house-
keeping gene promoters (i.e. non-targets) (27) were used to
generate CART model 1. The cut-off values derived by model
1 for the five parameters of ConScan program were human
core score >0.8, human PWM score >0.8, mouse core score
>0.7, mouse PWM score >0.7 and sequence similarity score of
the predicted ERE >0.6. After applying these cut-off values,
42 of 48 EREs, and 97 of 340 housekeeping genes, were
predicted to have at least a putative ERE by the ConScan
program. Of the 42 EREs, only 27 were unique, i.e. occurring
in only one species. These were combined with the 97

housekeeping genes and used as the learning sample for
CART model 2. The main purpose of model 2 was to discrim-
inate ER target promoters from non-targets, although both
promoters seemed to have contained at lease one ERE. A
sequence length of 453 bp was trained by CART model 2
(�220 to +220 bp region surrounding the predicted ERE in
both targets and housekeeping genes in the learning sample).
TF binding sites, including EREs, were used as predictor vari-
ables in this model. The results showed that 32 TF binding
sites were over-represented in the ERa target promoters, com-
pared with those of the housekeeping gene promoters, with at
least 20% of presence in the targets. A decision tree was
constructed based on the 32 TF binding sites, and the
‘Gini’ method was used to obtain a minimal tree. Figure 1
illustrates a decision tree representation of CART model 2 for
the minimal tree. The most discriminative feature distinguish-
ing ERa targets from non-ERa targets for the learning
sample of 124 genes was the presence of a MYOGENIN
(AGCAGGTG) binding site within the 453 bp sequence
around ERE. In the absence of MYOGENIN, the presence
of DBP (TTTTGCT), AP1 (GCTGCGTCAGC) or GATA3
(TCCTATCGC) binding sites, but not USF2 (CAGGTG),
indicated that the corresponding gene was an ERa target.
Misclassification errors of the CART model by class can be
found in Table 1. The classification accuracy of the minimal
tree was 96%, as estimated by minimal cost of the tree.
Furthermore, the model correctly predicted 96% of ERa
targets and 45% of non-ERa targets.

Figure 1. A CART model that discriminates ER target promoters from non-
targets, using a learning sample of 27 ERa targets and 97 non-ERa targets.
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The combinatorial theory of gene activation by transcription
factors states that many transcription factors act together to
mediate target gene activation. The close spacing of binding
sites in a promoter sequence suggests that either similar pro-
teins promote cooperative binding or dissimilar proteins pro-
voke competition for binding sites (28). Accordingly, the
identification of the putative conserved binding sites in the
different ERa targets may help discover other proteins that are
involved in the ERa signaling pathway. Therefore, we clas-
sified ERa targets into four modules of combinatorial control
(Supplementary Figure 1), based on the discovery of over-
represented TF binding sites identified by CART, Module
1: ERE+MYOGENIN (the presence of both ERE and
MYOGENIN); Module 2: ERE+DBP�USF2 (the presence
of ERE and DBP but the absence of USF2); Module 3:
ERE+AP1�USF2 (the presence of ERE and AP1 but the
absence of USF2); and Module 4: ERE+GATA3�USF2
(the presence of ERE and GATA3 but the absence of USF2).
The list of target promoters that are predicted to have these
different modules are presented in Supplementary Table 2.

ERa targets identified by ChIP-on-chip

A set of 70 putative ERa target candidate loci, identified by
ChIP-on-chip, were mapped to the human genome by
BLAT (29). Of the 70 loci, 63 corresponded to known genes
with GenBank accession ID numbers (30) and seven were
pseudo genes, as predicted by Genescan (31) and FirstEF (32).
All 63 known genes have mouse counterparts, and their pro-
moter sequences can be retrieved from the OMGProm data-
base (Table 2). When the previously built CART model was
applied to the 63 genes, 42 candidates fit the model and were
thus considered to be ERa target genes (shown in row 2, Table
3). Among these 42 ERa target genes identified by CART, 12
(28.5%) were classified into Module 1, 17 (40.5%) were clas-
sified into Module 2, 6 (14.3%) were classified into Module
3 and 7 (16.7%) were classified into Module 4.

Comparison of CART model with other programs

The quality of our CART model was further assessed by test-
ing it on three different datasets. Dataset 1 consisted of 46
experimentally verified EREs in 38 ERa target genes. Dataset
2 contained a set of 63 ERa candidate target genes, identified
by ChIP-on-chip. Dataset 3 included 8124 promoters from the
entire OMGProm database. In addition, these datasets were
tested using other approaches, such as a perfect palindrome
(GGTCAnnnTGACC) search, a perfect half-site (GGTCA)
search, ERE_PWM and TRANSFAC_PWM. Results of
these comparisons can be found in Table 3. In all three data-
sets, the TRANSFAC_PWM predicted the highest rate of
putative EREs. The lowest prediction rate was for a perfect

Table 1. Misclassification estimates by class

Class Learning sample Percentage Cost Prediction success
Class
size

Number
misclassified

misclassified Total
case

Percent
correct

1 (ERa
target)

27 1 3.7 0.04 27 96

0 (Non-ERa
target)

97 54 55.67 0.33 97 44

Table 2. ERa target genes used on the Promoter Microarraya

Gene symbol Unigene ID ERE
half-siteb

ERE
palindromec

ER Binding
sited

Human Mouse

BCAN Hs.158244 + � + +
LOC91661* Hs.190394 + � + +
PEPP3 Hs.343666 + � + +
KIAA0182* Hs.222171 + � + +
EFNA5 Hs.37142 + � + +
ZNF600* Hs.166312 + � + +
TRIP10 Hs.445226 + � + +
NOPE Hs.20924 + � + +
CCNH* Hs.514 + � + +
LTA4H Hs.81118 + � + +
ADRBK2 Hs.445563 + � + +
MOV10 Hs.512586 + � + +
PGRMC1 Hs.90061 + � + +
SDC3 Hs.158287 + � + +
ENSA* Hs.511916 + � + +
FLJ14768 Hs.129888 + � + +
BAIAP1 Hs.169441 + � + +
CGN Hs.18376 + � + +
LOC84661* Hs.402525 + � + +
TP53 Hs.408312 + � + +
DKFZP434A

1022
Hs.324335 + � + +

PMPCA Hs.75353 + � + +
EIF3S8 Hs.192425 + � � �
C6orf79 Hs.214043 + � � �
BRF1* Hs.424484 + � + +
ZNF525* Hs.352638 + � + +
CNTNAP1 Hs.408730 + � + +
MCM3 Hs.179565 + � + +
RPS16 Hs.397609 + � + +
ZNF566 Hs.528697 + � + +
ZNF217* Hs.155040 + � + +
SFRS1* Hs.68714 + � + +
HSF2BP Hs.406157 + � + +
FL J39739 Hs.523568 � � + +
FAM11A Hs.37106 + � + +
C19orf7 Hs.119667 + � + +
LOC169834 Hs.511892 + � � �
OIP2 Hs.274170 + � + +
ASB16 Hs.458471 + � + +
ZNF611* Hs.446500 + � + +
PITX2* Hs.92282 + � + +
DGKI Hs.242947 + � + +
NMNAT2 Hs.158244 + � + +
LOC152485 Hs.133916 + � � �
HOXC13* Hs.118608 + � + +
HIST1H2BG* Hs.68714 + � + +
SIRT3 Hs.511950 + � + +
MGA Hs.435961 + � + +
SCARB1 Hs.130981 + � + +
NUP155 Hs.232255 + � � �
MLR2* Hs.176120 + � + +
LOC400615* Hs.405627 + � + +
BRIP1 Hs.87507 + � + +
DCC Hs.172562 + � + +
CMAS* Hs.311346 + � + +
IMAGE

3455200*
Hs.324844 + � + +

KIAA0356 Hs.420584 + � � �
COL1A2 Hs.232115 + � + +
CASP8AP2* Hs.122843 + � + +
RCP9 Hs.300684 + � � �
TNPO2 Hs.278378 + � + +
D1S155E* Hs.69855 + � + +
LOC400713 Hs.528705 + � + +
Predicted gene* NT_011109.956 + � + N
Predicted gene NT_004321.27 + � + N
Predicted gene* NT_022517.1153 + � + N
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palindrome search, with only 0.1% conserved in orthologous
pairs of 8124 promoters in OMGProm. Not surprisingly, at
least one ERE half-site was found in the 50 flanking region of
almost all promoters �3 kb uspstream of the TSSs. Although
TRANSFAC_PWM accurately predicted ERa targets in Data-
set 1 (100%) and Dataset 2 (97%), for Dataset 3, the model
falsely predicted that 96% of the genes were ERa targets.
Thus, TRANSFAC_PWM appears to suffer from an unaccep-
tably high false-positive rate. Although our CART model
correctly classified only 38 of 46 (83%) EREs in Dataset 1,
corresponding to 35 of the experimentally confirmed ERa
targets, the false-positive rate for the entire dataset was sub-
stantially reduced, with a predicative rate of 17%. We also
used CART to classify the Dataset 3 into four modules and
found that of 1696 promoters, 618 (36.4%) are in Module 1,
612 (36.1%) belong to Module 2, 161 (9.5%) are classified into
Module 3 and 305 (18.0%) are in Module 4 (see Supplement-
ary Table 2 for a list of classified genes).

Using ERa promoter microarrays to validate
computational predictions

To validate the prediction results from CART, we performed
another ChIP-on-chip experiment, this time using a small
microarray panel of the aforementioned 70 ERa putative tar-
gets. The AcH3 antibody was used to assess binding of AcH3
components to these promoters and thus identify actively tran-
scribed genes in ERa-positive MCF-7 and ERa-negative
MDA-MB-231 cells. After treatment with E2, the number
of ‘active’ promoters was greater (P < 0.0001) in MCF-7
(27/70 loci) compared with MDA-MB-231 cells (0/70 loci)
Figure 2C and Table 2; an asterisk indicates active promoters).
Our CART model correctly assigned 20 of these 27 loci to
known genes, 2 loci to the same gene (MGC40455 and
KIAA0182), and 6 loci to 7 pseudo genes. The 27 loci
most likely represent genes up-regulated by ERa in MCF-7
cells, and the 43 ‘inactive’ promoters presumably correspond
to genes either down-regulated after E2 treatment or indirect
target loci.

Identification of over-represented motifs prevalent in
promoter regions of ERa targets

In order to identify novel motifs in ERa targets, we used
the program MEME to search the promoter regions of

�220 to +220 bp surrounding the ERE on the both strands
for a dataset which consists of 35 experimentally confirmed
ERa targets and 42 ERa target candidates from ChIP-on-chip.
MEME uses position-dependent letter-probability matrices to
represent motifs and describe the probability of each possible
letter at each position in the pattern. After the 10 most signi-
ficant motifs were found by this method, we then examined
them by the TRANSFAC database and assigned the possible
motifs corresponding to the binding site motifs in the database.
A list of 10 consensus motifs, frequency of each motif occur-
ring in the dataset, possible corresponding TFs are presented in
Table 4. Of these motifs, Motif 6 was assigned to ERE half-
site, Motif 2 was a Sp1 binding motif and Motif 5 was con-
sidered as a GC-rich box. We were also able to identify 2 novel
motifs, Motifs 7 and 10, which did not match any known motif
in the TRANSFAC database. It was not surprising to identify
the ERE half-site and SP1 motifs, since most promoter
sequences are GC-rich and include a consensus ERE half-site.

DISCUSSION

In this study, an integrated computational genomics approach
was developed to identify ERa target promoters from ChIP-
on-chip data. CART, a robust statistical method to select
learning samples from two individual sets of loci, was used
to differentiate ERa targets from non-ERa, housekeeping
genes. The key phases of this approach were (i) the CART
model construction phase, including a PWM built from a set of
experimentally confirmed EREs; (ii) the model test phase,
using a set of potential ERa targets from a genomic array;
and (iii) the validation phase, using a small microarray panel of
ERa targets to confirm the results in two different breast
cancer cell lines, one positive for ERa signaling and the
other negative. Although several studies have recently focused
on either motif identification by ChIP-on-chip (33) or a com-
putational approach to search consensus EREs (10), to our
knowledge, this is the first study that combines a robust stat-
istical model with a genomic microarray approach to system-
atically identify ERa target promoters.

The methodology of comparative genomics has recently
been adopted by computational biologists to study transcrip-
tional regulation of genes. However, the lack of publicly avail-
able, comprehensive databases for orthologous promoter
sequences has hindered the application of comparative geno-
mics to the transcriptional regulation field. Here, we have
taken advantage of a unique orthologous database, OMGProm
(18), and further tested it using CART. As indicated earlier, we
defined a set of parameters for our ERE_PWM and then deter-
mined their cut-off values for CART model 1. Compared with
the TRANSFAC_PWM, without using counterpart species,
our ERE_PWM dramatically reduced the false-positive rate
in the entire OMGProm database (from 96 to 29% in 8124 pro-
moters). In addition, compared with ERE_PWM, our CART
model further reduced false-positive rates from 96 to 21% for
an entire OMGProm database. The results of the compari-
son between TRANSFAC_PWM and ERE_PWM further sug-
gest that the source of the data used to build the PWM may
play an important role in predictive rates. For example, bind-
ing sequences from more than four species (including
chicken, human, mouse and rat) were used to construct

Table 2. Continued

Gene symbol Unigene ID ERE
half-siteb

ERE
palindromec

ER Binding
sited

Human Mouse

Predicted gene* NT_008076.50 + � + N
Predicted gene* NT_016354.964 + � + N
Predicted gene* NT_010194.90 + � + N
Predicted gene* NT_010194.30 + � + N

aAll promoter sequences are retrieved from 2 kb upstream to 1 kb downstream of
the transcriptional start position. ‘+’ indicates the existence of such element, ‘�’
indicates no such element in this category, ‘N’ means no mouse counterparts for
the human genes.
bThe consensus of the half-site of ERE sequence (GGTCA).
cThe consensus of the ERE palindrome (GGTCAnnnTGACC).
dThe transcriptional factor of ER for both human and mouse was identified by
our approach. Mouse orthologous counterpart was shown if available.
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TRANSFAC_PWM, whereas ERE_PWM was based on
human, mouse and rat sequences only.

An advantage of CART is its ability to classify data with
highly nonlinear structures, such as our ERa data. Although

CART accurately predicted 96% of the experimentally con-
firmed ERa target genes, it performed poorly on the house-
keeping gene data set. Housekeeping genes are constitutively
expressed and play a role in most basic cellular functions.

A

B

C

Figure 2. (A) AcH3 antibody (Upstate Cat. 06–942) was used to immunoprecipitate transcriptionally active chromatin components from the MDA-MB-231 (ER�)
cell line. Each gene was printed three times on the array. (B) The same AcH3 antibody was used to immunoprecipitate the chromatin components from the MCF-7
(ER+) cell line. The loci that contain the active chromatin components in MCF-7, but not in the MDA-MB-231, cell are highlighted. (C) A plot of the Cy5/Cy3 ratios
versus loci in both MCF7 and MDA-MB-231 cells. The ratios of MCF-7 (Cy5/Cy3)/MDA-MB-231(Cy5/Cy3) >15 suggest that the loci have active chromatin and are
targets of ERa. The loci that contain the active chromatin components in MCF-7 but not MDA-MB-231 are highlighted.

Table 3. Statistical summaries for three different datasets of ERa targets predicted from different approaches

Source of data The number of EREs identified via
Perfect palindromea (%) Perfect half-siteb (%) TRANSFAC_PWMc (%) ERE_PWMd (%) CARTe (%)

Literature search (46) 4 (9) 37 (80) 46 (100) 41 (89) 38 (83)
Conservedf 4 (9) 37 (80)

ChIP-on-chip (63) 0 (0) 62 (98) 61 (97) 56 (89) 42 (67)
Conservedf 0 (0) 58 (92)

OMGProm (8124) 19 (0.2) 8012 (99) 7777 (96) 2372 (29) 1696 (21)
Conservedf 8 (0.1) 7603 (94)

aThe consensus of the ERE half-site sequence (GGTCA).
bERE palindrome consensus (GGTCAnnnTGACC).
cThe putative ERE predicted using the PWM built from TRANSFAC database. The core score and PWM score cut-off values are default at >0.8 and 0.8, respectively.
dThe putative ERE predicted using the PWM built from the experimentally verified ERE motifs. The cut-off values of human core score, human PWM score, mouse
core score, mouse PWM score and sequence similarity score are >0.8, 0.8, 0.7, 0.7 and 0.6, respectively.
eThe CART model developed in this study.
fThe conservation of percent identity between orthologous pairs of human and mouse or human and rat is >60%.
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We and others routinely use housekeeping genes as internal
controls in experimental assays. However, not all housekeep-
ing genes have been confirmed experimentally as being non-
ERa target genes, and any binding of ERa to these gene
promoters could contribute to background noise and the mis-
classification rate observed in our model. To resolve this issue
will require additional experimental investigation.

ChIP-on-chip provides strong in vivo evidence of direct
binding of a specific protein complex to DNA (34). This tech-
nique differs markedly from the gene expression microarray,
which has been used to investigate non-ERa mediated,
E2-induced gene expression. For example, ER-independent
regulation of fork genes by E2, through E2F, has been reported
(35). After previously the analysis of ChIP-on-chip data in
yeast, Kato et al. (36) proposed three types of interactions
between a TF and its binding site on DNA: (i) direct binding
(TF binds to specific binding motif); (ii) piggy-back binding
(TF binds to another TF which is already bound to a specific
motif); or (iii) cross-binding (TF binds its specific binding site
on DNA but can interact with another TF bound to its specific
motif). These three types of interactions have also been
shown to apply to ERs, such as pS2 [directing binding (37),
Interleukin-6 [piggy-back binding (38)] and Thymidylaste
synthase [cross-binding (39)].

In the present study, we discovered four modules that can be
used not only to classify ERa targets from non-ERa targets,
but also to explore the possible combinatorial control of dif-
ferent TFs in different tissues. Based on many studies, there is
slight doubt that module 3 (ERE+AP1) is one of the three most
common indirect tethering models [(40) and references
therein]; however, at this time, we lack the experimental
results necessary to prove the other three modules proposed
in this study. However, regarding the other modules, Orimo
et al. (41) reported that vascular smooth muscle cells possess
ERa and respond to estrogen, supporting the idea that estrogen
may directly influence vascular cells through ERa. Speir et al.
(42) also demonstrated the interaction and reciprocal inter-
ference of ER with p65, the NF-kappaB component, in
ER-positive smooth muscle cells. Based on the discovery of
those modules, we speculate that TFs may act together to build
fully operational complexes on promoters, perhaps in a tissue
specific manner. Unfortunately, due to the fact that the fre-
quency of SP1 in both the training dataset and the control

housekeeping gene dataset are very close (77.8 and 78.4%,
respectively), our CART model failed to identify the combina-
tion of ERE and SP1. In contrast, the MEME was able to
identify two novel motifs, ERE half-site and SP1 binding
site. A comparison of the motifs identified by our model
with the ab initio motifs discovery program, MEME, suggests
that either method has its own advantages and disadvantages.
MEME can detect novel motifs and our model is able to
classify the targets by the motifs we identified. Combination
of two methods will enable us to provide a powerful and
functionally known set of motifs for the experimentally con-
firmed data and our ChIP-on-chip assay data.

Recently, Bourdeau et al. (10) identified 660 conserved
EREs corresponding to 1% of total EREs in the flanking
regions (�10 to +5 kb) of both the human and mouse genomes,
by using a search criterion of ERE consensus palindrome
sequence that allowed for a maximum of two mismatches.
It was argued that a PWM-based approach would produce
too many false predictions. Indeed, a search of the OMGProm
database for conserved EREs based on TRANSFAC_PWM
approach found 96% promoters as ER targets (Table 3), most
of which probably are false predictions. In order to reduce the
false-positive predictions and predict as many true ER targets
as possible, we utilized the combinatorial association of ERE
with other TF binding sites in the ER target promoters by
CART analysis. Our CART model predicted 21% of
OMGProm promoters as ERa target genes. The ERE_PWM
we constructed is quite consistent with the matrices used in the
study by Hansen and co-workers (11), who suggested that ER
can cooperate with other TFs to bind to a half-site ERE or the
consensus ERE can actually be more divergent and thus
facilitate ER binding.

The important contributions of the present study to the study
of transcriptional regulation networks are as follows: (i) we
have developed a strategy or blueprint for the analysis of the
regulation of transcription, not just a simple computational
tool; (ii) the approach we have established and tested on
the ChIP-on-chip microarray data, combined with the meth-
odology of comparative genomics, provides deeper insight
into the ChIP-on-chip data and contributes toward a better
understanding of how the data from this new microarray tech-
nology can affect the accuracy of results; (iii) although our
approach has been designed to analyze ERa target genes, it
can easily be extended to the systematic study of other TFs.
For instance, we have successfully used our CART model to
analyze C/EBP, another important TF in breast cancer (data
not shown). In conclusion, we believe that the modules dis-
covered in this study and the ERTargetDB are novel integrated
information resources for characterizing ER binding and
studying transcriptional regulation of ER target genes.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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ChIP-on-chip.
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