
Efficient computation of optimal oligo–RNA binding
Nathan O. Hodas and Daniel P. Aalberts*

Physics Department, Williams College, Williamstown, MA 01267, USA

Received August 11, 2004; Revised October 2, 2004; Accepted November 30, 2004

ABSTRACT

We present an algorithm that calculates the optimal
binding conformation and free energy of two RNA
molecules, one or both oligomeric. This algorithm
has applications to modeling DNA microarrays, RNA
splice-site recognitions and other antisense pro-
blems. Although other recent algorithms perform
the same calculation in time proportional to the
sum of the lengths cubed, O((N1 + N2)3), our oligomer
binding algorithm, called BINDIGO, scales as the prod-
uct of the sequence lengths, O(N1 �N2). The algorithm
performs well in practice with the aid of a heuristic for
large asymmetric loops.Todemonstrate itsspeed and
utility, we use BINDIGO to investigate the binding
proclivities of U1 snRNA to mRNA donor splice sites.

INTRODUCTION

The alignment of sequences is one of the central problems of
computational biology. As organisms evolve, mutations result
in nucleotide substitutions, insertions and deletions. The
Smith–Waterman algorithm (1) provided an efficient way to
align divergent sequences via dynamic programming (2) with
penalty functions chosen to favor matches over substitutions
and substitutions over insertions/deletions. Another appl-
ication of dynamic programming in computational biology is
predicting the secondary structure of a single RNA molecule
(3–6). The most notable of these programs is MFOLD (3,5),
which restricts its search to non-nested structures [i.e.
neglecting pseudoknots (7), which are relatively rare]. The
RNA–RNA complementary base-pairing rules of Turner
and co-workers (8,9) are implemented to compute optimal
free energy structures. As the Turner rules are local, the
optimal secondary structures of larger sequences can be
found recursively from optimally folded sub-sequences,
making a dynamic programming approach possible. By
limiting the asymmetry of loops (10,11), RNA folding
algorithms run in O(N3) time.

Calculating the optimal pairing of an RNA fragment with
another piece of RNA is important for problems, such as
modeling mRNA splicing (12), microRNAs (13), short inter-
fering RNAs (14–16), retrotransposons (17), Shine–Dalgarno
sequences (16,18), the snoRNA–rRNA associations that guide
methylation and pseudouridylation (19), and DNA micro-
arrays. A number of authors (12,20–22) have recently
described algorithms incorporating MFOLD to compute the
optimum folding/pairing of two distinct molecules, with

sequences s and t. The approach common to all of these
applications is to concatenate s and t into one long sequence,
then employ the traditional intramolecular folding program.
Thus, the performance scales as O(jsj + jtj)3.

We note that an analogy can be made between Smith–
Waterman sequence alignment and intermolecular pairing.
Sequence alignment features perfect matches, mismatches
and insertions/deletions, as shown in Figure 1a. Nucleic
acid pairing involves nearest-neighbor base pairs, internal
loops and bulge loops (Figure 1b). Naturally, the information-
centric rules of Smith–Waterman need to be modified to reflect
the physical–chemical parameters of RNA binding. RNA
binding has expanded sequence dependence, unlike simple
sequence alignment where only one base is aligned at a time.
In Turner’s rules, the free energy of each secondary structure
element (see Figure 1b)—be it a nearest-neighbor base pair,
a bulge loop or an internal loop—is independent of the struc-
tures before or after it, enabling the application of dynamic
programing.

By using experimentally measured free energies for the
coterie of nucleic acid structures (8,9), we take advantage
of the efficient and favorable scaling properties of Smith–
Waterman to create a binding algorithm that scales as
O(jsj � jtj). We call our program BINDIGO, a contraction of
‘binding’ and ‘oligo’. It is specifically designed for oligo–
oligo or oligo–RNA binding. BINDIGO is optimized to find

*To whom correspondence should be addressed. Tel: +1 413 597 3520; Fax: +1 413 597 4116; Email: aalberts@williams.edu

Figure 1. (a) The Smith–Waterman algorithm uses dynamic programming to
align two sequences. The result is an optimal combination of matches,
mismatches and gaps caused by insertions/deletions. (b) BINDIGO breaks
pairings into base pairs, internal loops and bulge loops and scores each
structural unit with measured free energies. In BINDIGO, strings s and t are
indexed left to right, but the program input is done in 50 to 30 order.

Nucleic Acids Research, Vol. 32 No. 22 ª Oxford University Press 2004; all rights reserved

6636–6642 Nucleic Acids Research, 2004, Vol. 32, No. 22
doi:10.1093/nar/gkh1008

 Published online December 17, 2004



helices, bulge loops and internal loops and to ignore structures
that rarely form in oligo binding, such as multiloops and
hairpin loops. Hairpins and mutliloops are, however, common
structures in native RNA folds. BINDIGO exactly reproduces the
predictions of oligo binding computations based on MFOLD up
to the structural restrictions we enforce, namely that only
inter-strand base pairs can be made. BINDIGO is asymptotically
faster than traditional folding-turned-binding algorithms,
making BINDIGO ideal for binding vast libraries of sequences,
completing the task in a fraction of the time taken by
MFOLD�type approaches.

Before describing the BINDIGO algorithm in detail (see
Algorithm) and applying it to study the particular biological
example of binding of U1 snRNA to donor splice sites
(see Results), we first review the Smith–Waterman dynamic
programming approach to sequence alignment.

Smith–Waterman only requires a single matrix, Mi
j (1).

An entry Mi
j is the score of the best way to align the prefixes

s[1..i] and t[1..j]. When proceeding with the alignment, one fills
the matrix according to

Mi
j = max Mi�1

j + g, Mi�1
j�1 + p i, jð Þ, Mi

j�1 + g
n o

: 1

Insertion/deletions receive a gap penalty of g. One scoring
scheme is to take g = �2 and

p i, jð Þ =
1 si = tj

�1 si „ tj:

�

Filling the entire M matrix explores every possible initial and
final alignment condition, ensuring the global optimum is
found.

This basic approach can be expanded to penalize the intro-
duction of gaps more than the expansion of an existing gap by
using an affine gap penalty, where an insertion/deletion of
n bases gets a score of

g nð Þ = g0 + an: 2

This can be implemented most efficiently by adding two
more matrices, B and b (23):

Mi
j = p i, jð Þ + max Mi�1

j�1, Bi�1
j�1, bi�1

j�1

n o
, 3a

Bi
j = max � g0 + að Þ + Mi

j�1,�a + Bi
j�1

n o
3b

and

bi
j = max � g0 + að Þ + Mi�1

j ,�a + bi�1
j

n o
: 3c

In this way, alignments with gaps in s use the B matrix and
gaps in t use the b matrix. [Throughout this text, we have
separate matrices for gaps/loops in s and t. If one imagines
aligning s and t such that s is on top, as in Figure 1, then one
can easily remember the differences between B and b with
‘uppercase B is for the upper sequence (s), and lowercase b is
for the lower sequence (t)’.] Equation 3a fills the M matrix with
the optimal alignment of s[1..i] and t[1..j], created either by
adding yet another match or mismatch or by closing a gapped
region grown in B or b with a match or mismatch. Equations 3b
and 3c select the optimal way to align s[1..i] and t[1..j], either
starting a new gapped region or extending an existing gap.

The alternative to adding extra matrices is explicitly
searching over all n in Equation 2. This increases the compu-
tational complexity to O(jsj � jtj2 + jsj2 � jtj). Introducing the B
and b matrices creates a finite state automaton, where each
matrix corresponds to a state variable (24). In this case, the
states are ending with a pair, with a gap in s or with a gap in t.
Storing each state allows for efficient evaluation of competing
structures, keeping the complexity O(jsj � jtj). This technique
of using additional matrices avoids increasing the computa-
tional complexity and will play a key role in our BINDIGO

algorithm.
The Turner rules we implement in BINDIGO are far more

detailed than those above, with special conditions, exceptions
and non-linear functions designed to reflect the physical reality
of RNA binding. Although the basic structures can be broken
down into base pairs, bulge loops, and internal loops the rules
differ within each of these classes, requiring special attention
to each case.

ALGORITHM

In this section we describe the BINDIGO algorithm, accessible
at http://rna.williams.edu/. For maximum clarity, we give
complementary presentations: the text description below the
flowchart of Figure 2. The mathematical recursion relations
are compiled in the online Supplementary Material. We begin
here by detailing the structures and how they relate to the
matrices used in BINDIGO, cross-referencing with Figure 2.

Figure 2. This flowchart illustrates the BINDIGO algorithm, described in the text
and in the recursion relations of online Supplementary Material, in terms of the
matrices representing the different structures. An arrow into a matrix represents
the free energy of the structure from the origin matrix feeding into the recursion
relation of the destination. The numbers next to the arrow indicate the initial size
of the loop considered by the matrix. Each alignment beginning with an initial
stack (a) and concludes with a terminal stack (c), looping through base pairs
(b) or bulge loops of various degrees of asymmetry (d–g) in between.

Nucleic Acids Research, 2004, Vol. 32, No. 22 6637

http://rna.williams.edu/


Base pairs

Base-pairing with stacking determines a nucleic acid’s
secondary structure. According to the nearest neighbor
model, adjacent stacked base pairs have a well defined free
energy (8). Nearest neighbor base pairs are analogous to
Smith–Waterman matches, and the M matrix forms the hub
of the algorithm. Matrix element Mi

j represents the best way to
fold the prefixes s[1..i] and t[1..j] given that i and j are paired. Let

the free energy of the nearest neighbors
si�1si

tj�1tj
be given by the

function NN(i, j), which, in the Turner rules, takes the form of a
look-up table (8).

The very first or last base pair is called a terminal base pair
and has a different free energy because the adjacent non-paired
bases contribute to the net free energy (25). The special case of
the first base pair accounts for the possibility that it may be
optimal to incur the initiation penalty to ‘start afresh’, as
illustrated in Figure 2a. [In the Turner rules there is fixed
penalty to initially bring together two strands of RNA (8).]
The final base pair is stored in the F matrix. Fi

j contains the free
energy of the best way to align s[1..i] with t[1..j] given that
no other bases are paired beyond i and j. As shown in Figure 2c,
no other matrices depend on the F matrix, not even F itself. The
minimum entry in the F matrix is the predicted optimal fold.

There is one more type of base-pairing, where the base pair
is adjacent to an internal loop (9). Because these are always
associated with an internal loop, we will discuss those when
we address internal loops below.

Bulge loops

The Turner rules distinguish between two types of bulge loops:
those with only one bulging base and those with multiple
bulging bases. In the case of a single bulge, the free energy
of the structure comes from the stacking of the base pairs on
either end plus a fixed penalty (9). This is a special case within
M matrix’s recursion (Figure 2b).

Bulge loops longer than one base require an approach
reminiscent of affine gaps, described in Equation 3, because

their free energy depends entirely on their size (9). Figure 3
shows the function giving the penalty for bulge loops of a
given size (26). Notice that the free energy penalty can be
divided into two regimes, 2 < n < 6 and 6 < n. The free energy
in each regime is quite linear, so that the bulge loop score is
like an affine penalty in Smith–Waterman (27). We create two
sets of matrices, illustrated in Figure 2d and e: B and b for
bulge loops less than seven bases; and B2 and b2 for longer
bulge loops. As shown in Figure 3, the scoring of B and b is
optimal for 2 < n < 6, while B2 and b2 are optimal for n > 6.

More specifically, these matrices represent the best way to
align the prefixes s[1..i] and t[1..j] given that the alignment
ends with a multiple-bulge loop but not a base pair. The
closing pair is accounted for when the bulge rejoins M.

Internal loops

We distinguish among three classes of internal loops. First,
there are the small loops whose energies have been tabulated
for each possible sequence. These are the 1 · 1, 1 · 2, 2 · 1 and
2 · 2 loops. This notation indicates the numbers of unpaired
bases (in s) · (in t) between the closing pairs. [The Turner
group has investigated the free energies of individual 2 · 3 and
3 · 3 loops (28); however, these are not implemented in MFOLD

3.1 parameters (9).] We must check explicitly whether the
optimal fold of s[1..i] and t[1..j] will end in one of these
loops. Fortunately, there are only four of these, making this
a computationally painless process. As Figure 2a shows, these
are additional cases in the M matrix recursion.

The second class contains the n · 1 and 1 · n internal loops
for n > 2. This requires two matrices: K for n · 1 loops and k for
1 · n loops. The free energy of these loops depends only on
their size (see Figure 4). Unlike the bulge loops, an affine gap
approach is infeasible. Instead, we look up the free energy
difference between n and n + 1 in each case (see recursion
relations in online Supplementary Material). Each Ki

j and ki
j

contains two components: free energy (Ki
j � dG) and the size

of the loop (Ki
j � n). This performs well because the non-linearity

is slight.

0 5 10 15 20
Bulge Loop Length

2

3

4

5

6

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

Loop Length < 7 

Loop Length > 6 

Turner Loop Energies

Figure 3. To a very good approximation, the free energy penalties of bulge loops
can be described by the minimum of two linear relations. Notice that when a bulge
loop is greater than 15 in size, the linearization scheme begins to differ slightly
from Turner’s rules (9). When less than 15, our linearization agrees exactly with
experiment to within the 0.1 kcal/mol discretization of the Turner rules.

0 5 10 15 20 25
Total Length (n+m)

0

1

2

3

4

In
te

rn
al

 L
oo

p 
 (

kc
al

/m
ol

)

Figure 4. The free energy penalty for n · m internal loops (where n and m are
non-zero) depends on the total length of the loop, (n + m). These data are not
well suited for the linearization strategy used for the bulge loops, as shown in
Figure 3.

6638 Nucleic Acids Research, 2004, Vol. 32, No. 22



These matrices feed into M with the free energy is
calculated as in this example with Ki

j . We can start a new
3 · 1 loop or extend the existing loop from n · 1 to (n + 1) · 1.
These possibilities are illustrated in Figure 2f. If the optimal
energy choice results from starting a new 3 · 1 loop, we set
Ki

j � n = 3; otherwise, the loop grows by one, and
Ki

j � n = Ki�1
j � n + 1.

The third and final type of asymmetric internal loop contains
all internal loops larger than 2 · 2. The non-linear character of
the general asymmetric internal loop free energy (9) again
prevents us from using an affine gap technique. One approach
to finding arbitrary internal loops is to explicitly cycle over
every possible loop. To find the optimum in this way costs an
undesirable O(jsj2 � jtj2) operations. Placing a cap ‘ on internal
loop size (11,29), would give O(‘2jsj � jtj) scaling. This, too,
is undesirable because other researchers have determined that
a reasonably sized ‘ is around 30 (29). Without imposing any
cutoffs, we devised a useful heuristic that scales as O(jsj � jtj)
with a prefactor equivalent to ‘ � 4, much smaller than
any reasonably sized ‘2.

We use two matrices, A and a, to ‘grow’ general n · m
internal loops. As shown in Figure 2g, the A matrix is desig-
nated for growing the s side of the loop (n ! n + 1), and the a
matrix is for growing the t side (m ! m + 1). Each entry in the
A and a matrices has three numbers associated with it: the free
energy of the loop (Ai

j � dG), the size of the loop in sequence
s (Ai

j � n), and the size of the loop in sequence t (Ai
j �m). Any

bonuses due to bases at the end of the loop, such as AU,GU helix
closing penalties (8) are accounted for in M with the internal
loop closing base pair free energy function, ilstack(i, j).

The policy for evaluating the components of each entry of
A and a requires a more careful description due to its bipartite
nature. The loops start at 3 · 2 or 2 · 3, because all smaller
loops are handled by the mechanisms described earlier. The
free energy aspect is treated similarly to 1 · n loops. Namely,
as the loop grows, the energy due to the smaller loop is sub-
tracted away and the energy of the new n · m loop is added
(see recursion relations in online Supplementary Material).

Without this heuristic, we would have to explicitly calculate
each possible internal loop up to ‘ · ‘. Instead, we store
asymmetric loop information in Ai

j and ai
j. Only the locally

optimal free energy is stored in these matrices, and multiple
free energies compete for that value (see the recursion relations
in the online Supplementary Material). Because of the non-
linearity of the internal loop rules (9), it is possible, though
very rare, for a local minimum to displace the global minimum.
However, because the optimal path takes many routes through
the matrices, the likelihood of this worst case scenario is so
remote that we are yet to observe it (see below).

RESULTS

Validation of heuristic

In order to establish the accuracy of our fast asymmetric loop
heuristic, we compared the fast heuristic with a modified
version using an explicit search, where we calculate

Mi
j = min

2<k<l
3<k0<l

Mi�k�1
j�k0�1 + DGiloop i, j, k, k0ð Þ,

with ‘ = 30. We ran 30 000 random pairs of sequences of
length 15, 25, 50 and 80, for a total of 120 000 trials. Each

pair of sequences was run twice—once starting at s0, t0 and
once with s and t interchanged so that the alignment is done
from the other end of the sequences. If BINDIGO differed from
the explicit version in both of these cases, that means the
heuristic failed. Although sometimes the fast heuristic differed
with the explicit search when binding in one direction, we
never observed the case where it differed in both directions.
(When run in a single direction only, the explicit and fast
heuristic differed in 0.6% of the 15mers and 5% of the
80mers.) Hence, we are yet to observe a case where every
way to fold a sequence disagrees with the lowest free energy
fold given by the explicit version.

BINDIGO calculates inter-RNA binding using the same Turner
free energy rules as MFOLD, so their predictions will not differ.
Extensive comparison of BINDIGO with previously published
MFOLD algorithms, in particular the PairFold server (20), pro-
vides us with our proof of correctness. Indeed, unless MFOLD

predicts a hairpin loop, which we explicitly ignore for
oligomeric binding, BINDIGO does not differ in its predictions.

Speed comparison: BINDIGO versus MFOLD

BINDIGO’s decisive advantage over other RNA-binding algo-
rithms is its speed. To compare the performance of BINDIGO and
a modified MFOLD in analyzing oligomeric binding, we com-
puted the binding affinity of the relevant portion of the splice-
some’s U1 sequence, t = AUACUUACCUGGC (12), to the
Human Deoxyribonuclease-I precursor gene (NCBI accession
number D83195). This RNA–RNA recognition event is, in
general, required in precursor-mRNA splicing reactions
(12,18). The time trials consisted of binding the relevant
13 bases of U1, t, to varying length subsequences of the
gene (using one processor of an Apple PowerMac G5 with
a 2.0 GHz PowerPC 970 and 2 GB of RAM). The results show
the tremendous speed and scaling advantage of BINDIGO over
MFOLD (Table 1).

Analyzing splice sites with BINDIGO

The primary event in the pre-mRNA splicing process is when
the U1 binds to the 50 end of the intron (30). However, the
U1 could bind to other parts of the pre-mRNA that are not
splice sites. After all, a GU is the only conserved sequence at
the 50 splice site. BINDIGO’s speed allows us to rapidly test
hypotheses regarding the way the U1 binds to real sites versus
decoy sites.

Table 1. The time taken (ms) to bind the 13 nucleotide U1 to a subsequence

of the human deoxyribonucleoase-I precursor gene of the given length

Length BINDIGO MFOLD Speedup

10 0.1 ms 22 ms 220
15 0.2 ms 25 ms 125
30 0.5 ms 30 ms 60
50 1.1 ms 53 ms 48

100 2.1 ms 153 ms 73
200 5.3 ms 580 ms 109
400 10.0 ms 2411 ms 241

MFOLD was run with the multiple molecule option, taking 25 copies of the same
input. The timing was done using the user time of ‘time nafold’, then dividing by
25 in order to remove overhead due to loading datasets.

Nucleic Acids Research, 2004, Vol. 32, No. 22 6639



The probability of the U1 occupying a given location in the
pre-mRNA is related to the free energy DG and chemical
potential m (12,31):

pocc =
1

1 + e DG�mð Þ=RT
: 4

With BINDIGO, we can do more than simply look at splice
sites and check their pocc. For example, we can look at pocc

of positions surrounding the GU signal. Using a list of anno-
tated splice sites (www.fruitfly.org/seq_tools/datasets/Human/
GENIE_96), we composed substrings centered on every GU
occurrence. One list contains the 1754 annotated real splice
sites; the other, the first 90 000 decoy sites. We ran BINDIGO on
all of the real and decoy sites, producing a pocc for each
position of a 102 nt window about each GU (50 nt before
and 50 nt after).

The DG’s we used came directly from the F matrix,
according to

pocc ið Þ = maxj
1

1 + e Fi
j � mð Þ=RT

� �
, 5

where t is the U1 and s is the windowed region surrounding the
splice site. Thus DGi = minjfFi

jg is the free energy of the best
way to bind the U1 to the pre-mRNA given that si is the last
paired base.

In order to compare the binding patterns of the U1 to real
and decoy sites, we average pocc at each j relative to the con-
sensus GU for different values of m/RT, as shown in Figure 5.
There is a stark difference between real sites (Figure 5a) and
decoy sites (Figure 5b). Most notably, decoy sites display
a strong dependence on decreasing the U1 concentration,
corresponding to decreasing m/RT; the peak in h pocci for
decoys disappears while the peak in h pocci for reals remains.
Thus, a low-cellular U1 concentration enhances the U1’s
relative affinity to real splice sites over decoy sites. Note
also that the peak in the decoy sites is also displaced upstream
of the peak associated with real sites, indicating a slight
difference in the average secondary structure. This agrees
with the observation that the secondary structure about the
GU plays a key role in the specificity of the U1 (12).

As mentioned above, pocc(i) corresponds to the last base
paired in the pre-mRNA. By interchanging s and t, pocc(i) gives
information on the first base paired. Our plot of both the 30 and
50 versions of pocc is given in Figure 6. The U1 almost always
straddles the GU signal in real splice sites with well-defined
beginning and ending locations. The 50 end of the U1 tends to
site 3 or 4 bases upstream of the GU signal, while the 30 end is
6 to 8 bases downstream. This has also been observed in
statistical models for splice site detection (32).

DISCUSSION

With the framework we have presented here, we can take
advantage of BINDIGO’s speed to solve a myriad of problems.
We have just demonstrated with our analysis of the U1 binding
to GU signals that BINDIGO is ideally suited for dealing with
vast libraries of oligomeric sequences. By using BINDIGO to
study thousands of potential donor splice sites, we observed
key differences between the U1 binding to reals and decoys.
By maintaining a low concentration of U1, the cell can

optimize the U1’s specificity for real splice sites. In addition
the U1 shows much stronger binding downstream of a real GU
signal compared to upstream binding, while no such difference
exists for false GU’s. These differences could be used in a
selection algorithm similar to Garland and Aalbert’s (12)
‘Finding with Binding’ splice site detection.

-20 -10 0 10 20

-20 -10 0 10 20

0

0.2

0.4

0.6

0.8

1(a)

(b)

R
ea

l p
oc

c 
D

ec
oy

 p
oc

c 

µ/RT = −5
µ/RT = −10
µ/RT = −15
µ/RT = −20

Position i

0

0.2

0.4

0.6

0.8

1

µ/RT = −5
µ/RT = −10
µ/RT = −15
µ/RT = −20

Figure 5. The predicted average occupation probabilities (Equation 5) of the
U1 snRNA at (a) 1754 real splice sites or (b) 90 000 decoy sites is plotted for
different values of the chemical potential m. As the U1 concentration decreases,
corresponding to a smaller m/RT, binding affinity drops dramatically. Position i
is the last paired base of the U1 on a scale where positions 1 and 2 are the
conserved GU. The U1 clearly binds more strongly to and to more bases of reals
than decoys.

-20 -15 -10 -5 0 5 10 15 20
Position i

0

0.05

0.1

0.15

0.2

R
ea

l p
oc

c 

3’
5’

Figure 6. The average occupation probability pocc indicates the last base paired
i. The 30 curve reveals that U1 binding terminates typically at positions 6 or 8,
where positions 1 and 2 are the conserved GU. Computing binding right to left
(50 curve), by interchanging s and t, shows that U1 typically involves 4 bases of
the intron.

6640 Nucleic Acids Research, 2004, Vol. 32, No. 22



Although here we have provided extensive details of
RNA–RNA binding, we have also created a version of BINDIGO

that handles DNA–DNA binding. The only changes required
were to use the available DNA–DNA datasets (33–38). There
is no 1 · n loop rule for DNA, so that separate structure was
omitted. BINDIGO will be a useful tool for studying many RNA
and DNA problems in computational biology including RNA
interference, DNA microarray thermodynamics, splice site
detection and transposons.

It appears feasible to use BINDIGO in conjunction with MFOLD

to produce a powerful, more sophisticated, binding algorithm
that addresses the following fundamental limitation: an oligo
binding to an internal loop or hairpin loop is analogous to a
pseudoknot (Figure 7). Given a very large RNA, s, and an
oligo, t, we may avoid this limitation by first folding s alone
with MFOLD in the usual way. MFOLD produces a matrix Wii0 ,
which is the free energy of the optimal fold of all bases between
si and si0, inclusive. Importantly, when i0 > i, Wi0i is the free
energy of binding all of the bases except for those between si and
si0, exclusive.

Our proposed procedure is to use BINDIGO to obtain all valid
combinations of s and t, in Fi

j. This binding free energy is added
to the free energy of the rest of s plus a correction term for the
geometry of the fold,

DG = mini; j Fi
j + Wi0�1;iþ1 + DGgeometry

n o
: 6

After the addition of a one-time cost of O(jsj3) to MFOLD s, this
new approach scales as O(jsj3 + jsj � jtj). A few technical
challenges to this approach are remedying the MFOLD assump-
tion that Wi0i is a multiloop, storing the first paired base i0 and
other information about the loop length in the recursion
matrices. This combined method avoids the inherent limitations
of ordinary binding algorithms, with minimal computational
penalty.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR online.

ACKNOWLEDGEMENTS

We thank Michael Zuker for providing us with MFOLD version
3.1 source code which we modified to assess inter-oligo
binding, Jeff Garland for obtaining and formatting the list of
real and decoy splice sites, and Richard Blake, Jon Blake and
Bill Lenhart for helpful discussions. Special thanks to David
Mathews for providing updated free energy tables and helping
us to understand the free energy rules. This work was supported
by National Institute of Health Grant GM068485.

REFERENCES

1. Smith,T.F. and Waterman,M.S. (1981) The identification of common
molecular subsequences. J. Mol. Biol., 147, 195–197.

2. Sniedovich,M. (1992) Dynamic Programming. Marcel Dekker, NY.
3. Zuker,M. and Stiegler,P. (1981) Optimal computer folding of large RNA

sequences using thermodynamics and auxiliary information. Nucleic
Acids Res., 9, 133–148.

4. Hofacker,I.L., Fontana,W., Standler,P.F., Bonhoeffer,L.S., Tacker,M.
and Schuster,P. (1994) Fast folding and comparison of RNA secondary
structures. Monatsh. Chem., 125, 167–188.

5. Zuker,M. (2000) Calculating nucleic acid secondary structure.
Curr. Opin. Struct. Biol., 10, 303–310.

6. McCaskill,J.S. (1990) The equilibrium partition function and base pair
binding probabilities for RNA secondary structure. Biopolymers, 29,
1105–1119.

7. Rivas,E. and Eddy,S.R. (1999) A dynamic programming algorithm for
RNA structure prediction including pseudoknots. J. Mol. Biol., 285,
2053–2068.

8. Xia,T., SantaLucia,J.,Jr, Burkard,M.E., Kierzek,R., Schroeder,S.J.,
Jiao,X., Cox,C. and Turner,D.H. (1998) Thermodynamic parameters for
an expanded nearest-neighbor model for formation of RNA duplexes with
Watson–Crick base pairs. Biochemistry, 37, 14719–14735.

9. Mathews,D.H., Sabina,J., Zuker,M. and Turner,D.H. (1999) Expanded
sequence dependence of thermodynamic parameters improves prediction
of RNA secondary structure. J. Mol. Biol., 288, 911–940.

10. Lyngsø,R.N. and Pedersen,C.N.S. (2000) Pseudoknots in RNA
secondary structures. In Proceedings of the Fourth International
Conference on Computational Molecular Biology (RECOMB’00),
8–11 April, Tokyo, Japan, pp. 201–209.

11. Lyngsø,R.B., Zuker,M. and Pedersen,C.N.S. (1999) Fast evaluation of
internal loops in RNA secondary structure prediction. Bioinformatics,
15, 440–445.

12. Garland,J.A. and Aalberts,D.P. (2004) Thermodynamic modeling
of donor splice site recognition in pre-mRNA. Phys. Rev. E, 69,
041903.

13. Lewis,B.P., Shih,I.-h., Jones-Rhoades,M.W., Bartel,D.P. and Burge,C.B.
(2003) Prediction of mammalian microRNA targets. Cell, 115,
787–798.

14. Couzin,J. (2002) Small RNAs makebig splash. Science, 298, 2296–2297.
15. Ketting,R.F., Fischer,S.E.J., Bernstein,E., Sijen,T., Hannon,G.J. and

Plasterk,R.H.A. (2001) Dicer functions in RNA interference and in
synthesis of small RNA involved in developmental timing in C. elegans.
Genes Dev., 15, 2654–2659.

16. Brown,T.A. (2002) Genomes, 2nd edn. Wiley, NY.
17. Ichiyanagi,K., Beauregard,A., Lawrence,S., Smith,D., Cousineau,B. and

Belfort,M. (2002) Retrotransposition of the Ll. LtrB group II intron
proceeds predominantly via reverse splicing into DNA targets. Mol.
Microbiol., 46, 1259–1272.

18. Lodish,H., Berk,A., Matsudaira,P., Kaiser,C.A., Krieger,M., Scott,M.P.,
Zipursky,S.L. and Darnell,J. (2004) Molecular Cell Biology, 5th edn.
W.H. Freeman and Company, NY.

19. Lowe,T.M. and Eddy,S.R. (1999) A computational screen for
methylation guide snoRNAs in yeast. Science, 283, 1168–1173.

20. Andronescu,M., Aguirre-Hern�aandez,R., Condon,A. and Hoos,H.H.
(2003) RNAsoft: a suite of RNA secondary structure prediction and
design software tools. Nucleic Acids Res., 31, 3416–3422.

21. Mathews,D.H., Burkard,M.E., Freier,S.M., Wyatt,J.R. and Turner,D.H.
(1999) Predicting oligonucleotide affinity to nucleic acid targets. RNA,
5, 1458–1469.

Figure 7. In an MFOLD-type binding algorithm, sequences s and t are joined by an
imaginary linker, as shown, and folded as a single chain. If the optimal free
energy binding were for s to form a hairpin and t to bind to the loop; then the
minimum free energy structure would be a pseudoknot, a structure which cannot
be found with most existing folding algorithms.

Nucleic Acids Research, 2004, Vol. 32, No. 22 6641



22. Zuker,M. (2003) Mfold web server for nucleic acid folding and
hybridization prediction. Nucleic Acids Res., 31, 3406–3415.

23. Gotoh,O. (1982) An improved algorithm for matching biological
sequences. J. Mol. Biol., 162, 705–708.

24. Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological
Sequence Analysis, Chapter 2. Cambridge University Press, Cambridge.

25. Serra,M.J. and Turner,D.H. (1995) Predicting thermodynamic properties
of RNA. Methods Enzymol., 259, 242–261.

26. Jacobson,H. and Stockmayer,W.H. (1950) Intramolecular reaction in
polycondensations. I. The theory of linear systems. J. Chem. Phys., 18,
1600–1606.

27. Meudanis,J. and Setubal,J.C. (1997) Introduction to Computational
Molecular Biology, Chapter 3. PWS Publishing Co., Boston, MA.

28. Schroeder,S.J. and Turner,D.H. (2000) Factors affecting the
thermodynamic stability of small asymmetric internal loops in RNA.
Biochemistry, 39, 9257–9274.

29. Lyngsø,R.B., Zuker,M. and Pedersen,C.N.S. (1999) Internal loops in
RNA secondary structure prediction. In Proceedings of the Third
International Conference in Computational Molecular Biology
(RECOMB’99), pp. 260–267.

30. Nagai,K., Muto,Y., Pomeranz Krummel,D.A., Kambach,C.,
Ignjatovic,T., Walke,S. and Kuglstatter,A. (2001)Structure and assembly
of the spliceosomal snRNPs. Biochem. Soc. Trans., 29, 15–26.

31. Schroeder,D.V. (2000) An Introduction to Thermal Physics. Addison
Wesley Longman, San Francisco, CA.

32. Burge,C.B., Tuschl,T. and Sharp,P.A. (1999) Splicing of precursors to
mRNAs by the splicesomes. In Gesteland,R.F., Cech,T.R. and Atkins,J.F.
(eds) The RNA World, 2nd Edn. Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, NY.

33. SantaLucia,J., Allawi,H.T. and Senevirante,A. (1996) Improved
nearest-neighbor parameters for predicting DNA duplex stability.
Biochemistry, 35, 3555–3562.

34. Allawi,H.T. and SantaLucia,J.,Jr (1997) Thermodynamics and NMR of
internal GT mismatches in DNA. Biochemistry, 34, 10581–10594.

35. Allawi,H.T. and SantaLucia,J.,Jr (1997) Nearest neighbor
thermodynamic parameters for internal G �A mismatches in DNA.
Biochemistry, 37, 2170–2179.

36. Allawi,H.T. and SantaLucia,J.,Jr (1998) Thermodynamics of internal
C �T mismatches in DNA. Nucleic Acids Res., 11, 2694–2701.

37. Allawi,H.T. and SantaLucia,J.,Jr (1998) Nearest-neighbor
thermodynamics of internal A �C mismatches in DNA: sequence
dependence and pH effects. Biochemistry, 26, 9435–9444.

38. Peyret,N., Seneviratne,P.A., Allawi,H.T. and SantaLucia,J. (1999)
Nearest-neighbor thermodynamics and NMR of DNA sequences
with internal A�A, C�C, G�G, and T�T mismatches. Biochemistry,
38, 3468–3477.

6642 Nucleic Acids Research, 2004, Vol. 32, No. 22


