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ABSTRACT

Alternative splicing has recently emerged as a major
mechanism of regulation in the human genome,
occurring in perhaps 40–60% of human genes.
Thus, microarray studies of functional regulation
could, in principle, be extended to detect not only
the changes in the overall expression of a gene, but
also changes in its splicing pattern between differ-
ent tissues. However, since changes in the total
expression of a gene and changes in its alternative
splicing can be mixed in complex ways among a set
of samples, separating these effects can be difficult,
and is essential for their accurate assessment. We
present a simple and general approach for distin-
guishing changes in alternative splicing from
changes in expression, based on detecting system-
atic anti-correlation between the log-ratios of two
different samples versus a pool containing both
samples. We have tested this analysis method on
microarray data for five human tissues, generated
using a standard microarray platform and experi-
mental protocols shown previously to be sensitive
to alternative splicing. Our automatic analysis was
able to detect a wide variety of tissue-specific alter-
native splicing events, such as exon skipping,mutu-
ally exclusive exons, alternative 30 and alternative 50

splicing, alternative initiation and alternative ter-
mination, all of which were validated by independent
reverse-transcriptase PCR experiments, with valida-
tion rates of 70–85%. Our analysis method also
enables hierarchical clustering of genes and sam-
ples by the level of similarity to their alternative
splicing patterns, revealing patterns of tissue-
specific regulation that are distinct from those
obtained by hierarchical clustering of gene expres-
sion from the same microarray data. Our data and
analysis source code are available from http://
www.bioinformatics.ucla.edu/ASAP.

INTRODUCTION

Genome-wide studies of gene expression using DNA micro-
arrays have recently become a powerful tool for identifying
new patterns of functional regulation (1). One major challenge
of these studies is the volume and complexity of data they
produce, which have spawned an entire research field of
microarray data analysis. These methods seek to overcome
two basic problems common in analysis of these data: first,
distinguishing signal versus noise; and second, interpreting
their biological meaning, often by translating the quantitative
data into a clustering of the samples by the level of similarity
of their expression profiles.

A very different approach to the study of functional regu-
lation has been suggested recently by the widespread obser-
vation of alternative splicing in the transcripts of human and
other species (2–4). Alternative splicing is not a simple quant-
itative change (e.g. an increase in the amount of mRNA
expressed from a gene), but a qualitative change in the struc-
ture of the gene product itself (5). It can alter the protein’s
domain composition (6,7), shift it from a membrane-bound
receptor to a soluble, secreted protein (8), or even block its
translation (9). Instead of simply changing the amount of a
gene’s transcript, alternative splicing changes the transcript to
a new and different form, which can carry out a different
function. Since these are often substantial changes (e.g. addi-
tion or removal of an entire exon), the prospect of reliably
detecting such qualitative changes on a genome-wide scale,
using DNA microarrays or other technologies, is very attract-
ive. Moreover, several groups have demonstrated that
microarray-based detection of alternative splicing is
possible (10–16).

To make automated discovery of alternative splicing from
microarray data broadly practical, several related problems in
microarray data analysis must be solved. Most fundamentally,
such analysis must distinguish changes in splicing from
changes in overall gene expression, since both can be
mixed in complex ways in a set of samples, and each can
confuse the interpretation of the other. Studies have shown
that using many probes for each gene improves the reliability
of the resulting gene expression measurement. For example,
the well-known Affymetrix GeneChip design typically
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includes 11 or more pairs of perfect-match and single-base
mismatch probes for each gene (17). The dChip analysis soft-
ware of Li and Wong (18) uses these probe sets to identify the
subset of probes that vary in the same way over all the samples,
and to discover individual probes or arrays that are outliers,
behaving inconsistently versus the consensus of the other
probes. From the analysis of all these data, dChip produces
a single number (the expression level) for the gene in a given
sample, based on the most consistent probe pairs, and effect-
ively ignores the probes that are inconsistent with this value.
In contrast, detection of multiple distinct splice forms will

require generating not just one but many different expression
values per gene (one for each distinct transcript form). This is
rendered especially difficult by the fact that we do not
necessarily know what distinct forms we need to detect, or
even how many. It can be difficult to deconvolute differences
in gene expression, alternative splicing and probe sensitivities
(e.g. see Figure 1D). These problems are not addressed by
existing microarray data analysis, which operates under a
simpler set of assumptions. For example, dChip sensibly
throws away the probes that do not behave consistently
over all the samples. But it is precisely these probes that

Figure 1. Distinguishing changes in splicing from changes in total gene expression. Simulated data for multiple probes in a single gene, for two tissues (blue, pink)
versus a pooled sample (yellow) representing their average, in the absence (A–C) or presence (D–F) of alternative splicing. (A) In the absence of alternative splicing,
the probe intensities for different probes in a gene should show a similar profile in different tissues, reflecting the specific probe sensitivities. (B) Taking the log-ratio
of each probe intensity versus its intensity for the pooled sample eliminates the effect of probe sensitivity differences, leaving only the difference in total expression
(Dq) and random probe variation (e). (C) A scatterplot of each probe’s log-ratio (versus pool) for tissue t versus tissue u yields a random scatter, whose position reveals
their difference in total expression. (D) The introduction of alternative splicing can cause the profiles of the two tissues to differ significantly. (E) Because the pool
(yellow in D) is always intermediate between the two tissues, taking the log-ratio versus pool tends to reveal alternative splicing as a ‘mirror image’ pattern. When the
proportion of a splice form increases in tissue t relative to tissue u, for probes that are preferentially sensitive to that form (s> 1), the log-ratio for tissue t will increase,
while the log-ratio for tissue u will decrease, and vice versa. (F) This gives rise to a clear pattern of anti-correlation in the scatterplot of the log-ratios.
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potentially indicate the presence of alternative splice
forms (15,16,19).

In this paper, we describe a method for analyzing micro-
array data that is designed to solve these problems. We present
a basic theory for distinguishing changes in alternative spli-
cing from changes in gene expression, and apply this to the
detection of statistically significant evidence of tissue-specific
alternative splicing from microarray data. We have tested this
method on microarray data for five human tissue samples,
generated using a standard microarray platform shown pre-
viously to be sensitive to alternative splicing. Our analysis
method was able to identify strong evidence for a wide variety
of tissue-specific alternative splicing events, including exon
skip, alternative 50 and alternative 30 splicing, alternative
promoter usage and alternative termination, which we have
tested using independent PCR experiments. Our microarray
data and analysis source code are available from http://www.
bioinformatics.ucla.edu/ASAP. The microarray data discussed
in this paper have been deposited in NCBIs Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are
accessible through GEO series accession number GSE 1989.

MATERIALS AND METHODS

Distinguishing alternative splicing from
gene expression in microarray data

The probe response Ptj for a specific probe j to a specific tissue
sample t can be modeled as the product of the gene expression
level qt in the tissue sample and the probe sensitivity jj for
probe j, with additional factors for the baseline signal nj (which
microarray analysis software usually seeks to subtract out) and
a random error term e (18):

Ptj = qtjj + nj + e:

Taking the ratio of Ptj to the response of the same probe to a
sample pool p that contains an equal mixture of two tissue
samples:

Ptj=Ppj = ðqtjj + nj + eÞ=ðqpjj + nj + eÞ� qt=qp + e:

In the absence of alternative splicing, plotting the log of this
ratio for one tissue t on the x-axis versus that for a second tissue
u on the y-axis, for all probes j for a single gene, should yield a
random scatter (reflecting the distribution of e; see Figure 1C)
whose centroid (x,y) indicates the difference in expression
between the two tissues, i.e.

y � x = log qu=qtð Þ:

To take into account multiple splice forms f for a gene, we
can designate a separate probe sensitivity jfj to each specific
form, and express splice form f ’s quantity (as a fraction of the
total transcripts for the gene in tissue t) as wtf. Then the probe
response becomes:

Ptj = qt

X

f

wtfjfj + nj + e;

which reduces to the original expression when the wtf are
constant over the set of tissues. Consider a form f that increases
in tissue t relative to the other tissue u (i.e. wtf > wuf). Since the

pool p is the average of both tissues, wuf < wpf < wtf. Thus, for
probes j that are specific to a splice form f, log(Ptj/Ppj) > 0
and log(Puj/Ppj) < 0 (assuming that qt = qu). Moreover, as
log(Ptj/Ppj) becomes increasingly positive, log(Puj/Ppj)
becomes increasingly negative. Thus, when tissues t and u
display markedly different splicing, the plot of their log-ratios
relative to the pool should be negatively correlated (Figure 1F).
On the other hand, if a tissue u shares a similar increase in
splice f as observed in tissue t, its probe responses for this gene
should show a positive correlation versus tissue t.

To examine this signal in more detail, consider the simplest
case, where only two splice forms f and g are present. We can
define the relative sensitivity sj for a probe j as the ratio of its
sensitivity for the two forms, sj = jfj/jgj. Since wtf + wtg = 1,
we can rewrite the expression for the probe signal as

Ptj = qtjgj wtf sj � 1
� �

+ 1
� �

+ nj + e:

We can consider the log-ratio of the probe signal (versus
pool) under four different scenarios: when the probe has pref-
erential sensitivity for form f (sj� 1); when the probe does not
distinguish f and g (sj = 1); when the probe has preferential
sensitivity for g (sj � 0); and intermediate values of sj (e.g.
0.2 < sj < 5). In the first case (sj� 1) we obtain

log Ptj=Ppj

� �
� log qt=qp

� �
+ log wtf =wpf

� �
+ e:

Thus, for probes that are specifically sensitive to f, a change
in splicing that produces more form f will result in a positive
shift in the signal relative to the pool. Examples of such probes
include a probe for an exon that is only included in one splice
form, or a junctional probe that matches a splice that is
included in only one particular splice form. In contrast, for
the second case (sj = 1), the sensitivity to alternative splicing
wtf vanishes, and the log-ratio reduces to the original ‘pure
gene expression’ expression of Li and Wong (18). Typically,
such probes match ‘constitutive’ exons that are included in
every splice form of the gene. The third case (sj � 0) is simply
the inverse of the first case (where the probe is sensitive to
splice form g instead of f ), resulting in

log Ptj=Ppj

� �
� log qt=qp

� �
+ log 1 � wtf

� �
= 1 � wpf

� �� �
+ e:

Finally, many probes may have partial specificity; that is,
they prefer one splice form, but not strongly. This corresponds
to intermediate values of sj that are not too far from sj = 1, e.g.
0.2 < sj < 5. Typically, these are probes that match a splice
junction; even if this splice is specific to a single form, the
probe may overlap a neighboring constitutive exon enough to
have significant sensitivity to other forms containing that exon.

Thus, an important criterion for the detection of alternative
splicing is the design of a probe set with wide variation in sj

values, including probes that are highly specific to individual
forms (with very large or very small sj values), probes with
intermediate specificity, and probes to constitutive exons (with
sj = 1, essential for an unbiased measure of total gene expres-
sion). This variation in sj gives rise to systematic shifts in the
individual probe responses that shift them from random scatter
(the pure gene expression case, Figure 1A–C) to the strong
pattern of anti-correlation indicative of alternative splicing
(Figure 1D–F). If these systematic shifts [log(wtf /wpf)] are
significantly larger than the level of random variations (e),
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they will be detectible as negative or positive correlations
between the log-ratios (relative to pool) of different tissues.

Probe design

We designed probes for 316 human genes (see Supplementary
Materials for Table) based on gene structure information from
our ASAP database (20). For each gene, we designed probes
for individual exons and splice junctions reported by ASAP:
exon probes were 40 nt in length; and splice junction probes
were 36 nt. Probes for constitutive exons and splice junctions
were included in each gene as controls with sj = 1 as described
above. To each probe sequence, we added a tail of 20–24 bases
of poly(T) (yielding a total probe length of exactly 60 nt) to
raise the probe sequence off the surface of the array (14). For
each splice junction between two exons, five probe sequences
were generated: (i) the last 36 nt of the first exon; (ii) the last
27 nt of the first exon+the first 9 nt of the second exon; (iii) the
last 18 nt of the first exon+the first 18 nt of the second exon;
(iv) the last 9 nt of the first exon+the first 27 nt of the second
exon; and (v) the first 36 nt of the second exon. This design
ensures the presence of multiple independent probes spanning
the junction and that one of the probes lies entirely within each
exon, yet is highly related to the junction probes via substantial
overlap. For each probe sequence, we checked for matches to
other regions of the human genome sequence using BLAST
(21) with an expectation cutoff of 10�10, and also checked for
stem–loop sequences that might cause hairpin secondary struc-
tures, using the EMBOSS program einverted (22), and a cutoff
of at least 6 bp of complementary sequence. However, in many
cases it was not possible to avoid such potentially problematic
sequences, due to the design constraint of tracking individual
exons and splice junctions. For splices identified in ASAP
as alternative splicing, we automatically generated probe sequ-
ences for both the splice and its neighboring exons. In a subset
of genes, we constructed probes for all exons and splices in the
gene. The average number of probes per gene in our design
was 22. Microarrays based on our probe design were gener-
ously fabricated and contributed by Agilent Technologies Inc.
(Palo Alto, CA) using their standard 8.4k format.

Tissue samples and RNA extraction

Bone marrow total RNA was ordered from Clontech (Palo Alto,
CA). Testes and liver tissue samples were obtained from the
UCLA Tissue Bank. Brain and muscle tissue samples were
obtained from the University of Maryland Brain and Tissue
Bank. Total RNA was extracted from 200–400 mg of frozen
tissue using Trizol (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instructions. Total RNA was additionally
purified with the RNAeasy kit (Qiagen). All total RNA
samples were run on the Agilent 2100 Bioanalyzer (Agilent
Technologies Inc.) to check their quality and integrity.

Array experiments

Labeled cDNA for array hybridizations was generated by lin-
ear amplification of total RNA, followed by direct labeling of
the amplification products. Briefly, RNA samples from five
normal tissues were individually amplified using the BD
SMARTTM mRNA amplification kit (BD Biosciences, Palo
Alto, CA). An aliquot of 1.5 mg of total RNA from each normal
tissue was used as a substrate for amplification according to the

manufacturer’s specifications. Each amplified sample was run
on the Agilent 2100 Bioanalyzer to check the quality and
integrity of the mRNA. Typically, the amplification products
migrated as a broad peak, with the majority of transcripts
ranging from 500 to 4000 bp. The amplified mRNAs were
prepared for hybridization as follows: a pool of all the samples
to be hybridized to the splicing arrays was assembled by
mixing equal amounts of mRNA from each of the five tissue
samples and four glioblastoma (GBM) samples (data not dis-
cussed in this study). This comparator pool was used for all
hybridizations. For each hybridization, 250 ng of the amplified
normal tissue mRNA or GBM mRNA and 250 ng of the pool
were labeled with Cyanine 5-dCTP and Cyanine 3-dCTP,
respectively (Perkin Elmer, Boston, MA) using the Agilent
Fluorescent Direct Label kit (Agilent Technologies Inc.). Dye-
swapped labeling reactions were performed in parallel and
hybridized to the second array on the slide. Labeling reactions
were carried out in accordance with the manufacturer’s
instructions, with the following modification: instead of the
DNA primer provided with the kit, 2 mg of random hexamers
(MWG Biotech, High Point, NC) were used to prime the
reaction. The entire Cyanine 5 and Cyanine 3 labeling reac-
tions were combined according to the Fluorescent Direct Label
kit protocol and were prepared for hybridization to the array
using the In situ Hybridization kit Plus (Agilent Technologies
Inc.) according to the manufacturer’s instructions, with the
exception that hybridizations were performed for 36–48 h.
Slides were washed and dried according to the manufacturer’s
specifications and scanned on an Agilent Microarray Scanner
(Model G2565BA; Agilent Technologies Inc.).

Scanned images were analyzed using the Agilent Feature
Extraction Software (Version A.7.1.1; Agilent Technologies
Inc.). Approximately 200 individual probes were excluded
owing to saturation or labeling artifacts (e.g. poor correlation
of the dye-swap log-ratios). To account for slight variations in
sample labeling/loading, processed signals for each individual
tissue were rescaled to make the mean fluorescent intensity of
each of the four replicate arrays for that tissue equal.

Significance testing

For a given gene, we calculated the correlation coefficient r for
each pair of arrays using the log-ratios (tissue versus pool) of
probes for that gene. This produced six correlation coefficients
for the possible pairings of the four replicate arrays for each
tissue, and 16 correlation coefficients for the possible pairings
of replicate arrays between a specific pair of tissues. As a
threshold of significant evidence of alternative splicing, we
used a mean correlation value of r < �0.5 between a pair of
tissues, and a confidence value of P < 0.001. We calculated the
P-value using the two-sample Wilcoxon test (in the R software
package, http://www.r-project.org) to assess the significance
of the difference in r values between the six replicate array
pairs for one tissue, versus the r values calculated for the
sixteen possible replicate pairs comparing that tissue to a
second tissue. As a variation, we also calculated the jackknife
for each r value, by removing each probe to find the one whose
removal caused the greatest decrease in absolute value of the
correlation coefficient.

To check for subtle differences between individual pairs of
tissues, we calculated the geometric mean intensity for each
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probe from the replicate arrays of the two tissues. We used this
geometric mean as a ‘computed pool’ value for the two tissues,
and calculated log-ratios for a given probe on a given array
over its geometric mean value in the computed pool. Using
these log-ratios, we calculated correlation r values for a given
gene as usual, both for comparing pairs of replicate arrays for a
single tissue, and for comparing one array from the first tissue
versus one array from the second tissue. We identified evid-
ence for alternative splicing using a threshold of a mean cor-
relation value r < �0.5 for comparisons of the two tissues,
and mean correlation values r > 0.5 for comparisons between
replicate arrays of each tissue, and P < 0.001 as above.
This analysis yielded similar results to the analysis based
on the experimental pool composed of the five tissues plus
four glioblastomas.

Hierarchical clustering

For each gene, we calculated the average r-coefficient for each
array versus a consensus set initially consisting of all arrays
(but excluding arrays from the same tissue), using the geo-
metric mean of all five tissues as a pool. We applied an iter-
ative computation for each gene. If the mean r value for a
given tissue was below �0.3 (indicating significant negative
correlation versus the consensus set), it was removed from the
consensus set, and the r values recalculated, until no further
changes in the consensus set occurred (typically only one or
two cycles). Hierarchical clustering on the final r values was
performed using dChip (18). This approach highlights simple
splicing changes where the samples divide into just two dis-
tinct patterns of splicing (distinguished in this view by neg-
ative versus positive r values), but tends to obscure more
complex cases where more than two distinct splicing patterns
are present (such case are weakly visible as negative r values
across several tissues).

We also clustered the same microarray data by gene expres-
sion values. We removed probes with coefficient of variance
>0.15, calculated the average log-ratio (sample versus pool)
for each gene in each sample, and performed hierarchical
clustering using dChip (18), on both samples and genes,
applying dChip’s standardization to both columns and rows.

Real-time PCR validation

The same amplified RNA samples used for fluorescent label-
ing and microarray hybridization were used as a substrate for
reverse transcription reactions and real-time PCR. An aliquot
of 20 ng of amplified RNA was used in each reverse transcrip-
tion reaction. Reactions were primed with random hexamers
using the Taqman Reverse Transcription Reagent kit (Applied
Biosystems, Foster City, CA) according to the manufacturer’s
specifications. About 1/20th of each reverse transcription
reaction (corresponding to 1 ng of input mRNA) was used in
each PCR reaction to assay tissue-specific alternative splicing.
PCR reactions were carried out using the SYBR Green PCR
Core Reagent kit (Applied Biosystems) according to the man-
ufacturer’s specifications with the exception that the reaction
volume was reduced to 25 ml. Reactions were incubated in the
DNA Engine Opticon2 Continuous Fluorescence Detection
System (MJ Research, Waltham, MA). Reactions containing
a wide range of titrations of the input reverse transcription
products (1, 0.2, 0.02, 0.01 and 0.0033 ng input mRNA) were

performed in parallel using primers annealing to the glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) gene seq-
uence. These reactions were used as a standard curve for
quantification of the amplification products by the
OpticonMonitor2 AnalysisSoftware(version2.0;MJResearch).
Cycling parameters were as follows: 2 min at 50�C, 10 min at
95�C, followed by 35 cycles of 45 s at 95�C, 1 min at 55�C,
fluorescence reading and 1 min at 72�C. A final extension of
10 min at 72�C was performed, followed by a melting curve
(from 60 to 95�C with a fluorescence reading every 0.2�C) to
determine the size distribution of the amplification products.
The entire PCR reaction was resolved on a 1.5% agarose gel
stained with SYBR Green I (Molecular Probes, Eugene, OR).
PCR primers (MWG Biotech) were designed using the freely
available Primer3 Software (Whitehead Institute, MIT) (for
primer sequences see Supplementary Material).

The cycle number at which the fluorescence signal exceeds
the detection threshold (Ct) was used as a basis for comparison
with the microarray results. Ct values are inversely propor-
tional to the log of the quantity of starting material being
amplified. To derive a consensus measure of Log Total
from Ct values for a given sample measured on different
days, we calculated a baseline Ct value for each day (by taking
the average Ct of a consistent set of samples), and took the
average of the differences between the baseline for a given day
and the Ct value measured on that day. Each Ct measurement
was repeated in at least two experiments. Since the baseline
value has no inherent significance, shifts in our Log Total
measure have meaning, but its absolute value does not. More-
over, different sets of primers do not amplify with identical
kinetics, so comparisons between data from different primer
pairs are not meaningful.

cDNA synthesis, PCR and sequencing

The cDNA was synthesized using either oligo(dT)12–18 or
random hexamers and Stratascript reverse transcriptase
using the StrataScript First-Strand Synthesis System
(Stratagene, La Jolla, CA). cDNAs from both reactions
were pooled before performing PCR. This was done to
increase coverage of the entire transcript.

Gene-specific primers were designed using MIT Primer3
software and synthesized by MWG Biotech. All primers
flanked at least one exon–intron junction (to rule out artifacts
from genomic DNA contamination), and all had Tm between
55 and 60�C. Primer sequences are available online. GAPDH
levels were monitored as a housekeeping control. Touchdown
PCR was performed on the MJR PTC-0200 thermal cycler (MJ
Research, South San Francisco, CA) using Taq polymerase
(Qiagen). Touchdown PCR conditions were as follows: 95�C
for 2 min; 10· (95�C for 1 min; 65�C for 1 min with a decrease
of 1�C per cycle; and 72�C for 1 min), 30· (95�C for 1 min;
55�C for 1 min; 72�C for 1 min); 72�C for 10 min; hold at 4�C.
Reaction products were run on a 2–2.5% agarose gel and
visualized by staining with ethidium bromide (Sigma–
Aldrich, St Louis, MO). As an internal control for successful
PCR, we required that at least one band, corresponding to the
known splice form in GenBank, was observed. PCR products
were gel purified using a Qiaquick gel purification kit
(Qiagen). Sequencing of gel-purified products in both direc-
tions was performed by Laragen Inc. (Los Angeles, CA), using
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gene-specific primers and Amersham MegaBACE 1000
sequencers (Amersham Pharmacia Biotech, Piscataway,
NJ). The results confirmed the expected DNA sequences in
all cases.

RESULTS

Detection of alternative splicing as a qualitative
change in microarray data

When the probes for a given gene show substantial variation in
their intensity profiles over the set of samples, is this noise, or
signal? Answering this question is essential for reliable detec-
tion of alternative splicing. To address this question in a simple
way, we used a pooling strategy in which each sample was
compared with a pool composed of an equal mixture of all
samples, using two-color labeling (Cy3 versus Cy5) on each
array. Each sample was measured on four separate arrays, two
using Cy3 for the sample (versus Cy5 for the pool), and two
with the dyes reversed. Each probe’s fluorescence intensity for
the sample was divided by that for the pool, and expressed as a
log-ratio value, to remove the effect of systematic differences
in probe sensitivity. Comparison of log-ratio values between
replicate arrays showed good reproducibility, even between
dye-swaps (Figure 2). Overall, 90% of the probes had a coeffi-
cient of variation of <0.15. It should be emphasized that our
analysis method automatically takes into account the higher
level of noise typically present in comparisons of arrays with
reversed labeling (i.e. dye-swaps), because it assesses the stat-
istical significance of a comparison between two tissues (e.g.
Figure 3B) versus the level of variation seen among dye-
swapped replicates of an individual tissue (Figure 3D–F).

Normalization using the sample/pool ratio enables a simple
way for distinguishing alternative splicing (Figure 1). In the
default case where the variation among probes reflects random
noise instead of a consistent alternative splicing signal, a scat-
ter plot of the normalized values for the probes in a single gene
from one tissue versus a second tissue will display random

variation (Figure 1C). In contrast, if the gene has two altern-
ative splice forms, one that is found in the first tissue and the
other in the remaining tissues, this will give rise to systematic
variations in the normalized probe signals (Figure 1D). Since
the pool represents an average of all the samples, this produces
an unusual and characteristic pattern of variation. Probes for
exons and splices that are found only in the first splice form
should show a positive log-ratio in the first tissue (versus pool),
while probes for exons and splices that are found only in the
second splice form should show a negative log-ratio in the first
tissue (versus pool). In contrast, in the other tissues, probes
that are found only in the first splice form should show a
negative log-ratio, while probes that are found only in the
second splice form should show a positive log-ratio. In
other words, because the pool represents a midpoint between
the two splice forms, the normalized signals from the two
tissues should be a mirror-image of each other—where one
goes up, the other should go down, and vice versa (Figure 1E).
This is revealed as a negative correlation between the log-
ratios for the two tissues (Figure 1F). In contrast, in the pres-
ence of alternative splicing, two samples with the same splice
form composition should show the same systematic variations
(versus pool), revealed by a strongly positive correlation
between the log-ratios for the two tissues. The statistical sig-
nificance of a given negative correlation pattern between two
tissues can be calculated versus the distribution of correlation
values between replicate arrays of each tissue versus itself
(which should be positive). For example, this analysis detected
strong evidence of muscle-specific alternative splicing in
tropomyosin 1 (TPM1) (Figure 3). It should be emphasized
that a change in overall expression of the gene will not produce
such a pattern of correlation (see detailed explanation in
Materials and Methods).

Hierarchical clustering of alternative splicing patterns

To test our method on a large dataset, we analyzed data from a
set of 19 microarrays representing five human tissues (brain,
muscle, liver, bone marrow and testes). Each tissue was

Figure 2. Reproducibility of microarray replicate and dye-swap experiments. Comparisons of raw microarray data for muscle versus pool (log-ratio) in (A) replicate
arrays both loaded with muscle (labeled as Cy5) versus pool (Cy3); and (B) dye-swapped replicates. The x-axis: muscle (Cy5) versus pool (Cy3); y-axis: muscle (Cy3)
versus pool (Cy5).
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represented by four replicate arrays, two labeled with the tis-
sue-Cy3, pool-Cy5, and two labeled with tissue-Cy5, pool-
Cy3 (see Materials and Methods). Out of the twenty arrays,
one was excluded due to poor quality hybridization. Out of 316
human genes in the array, our analysis identified evidence
(P < 0.001) of tissue-specific alternative splicing in 106 genes
(listed in Supplementary Materials).

Our analysis provides a simple way to cluster genes and
samples according to their alternative splicing patterns (in-
stead of gene expression, as is normally done for microarray
data). Hierarchical clustering of the r-values for 316 genes and
the 19 microarrays revealed clear clusters, both among genes
and among microarray samples (Figure 4A). Clustering of the
microarray samples perfectly matched their division into the
five tissues. Clustering of the genes showed conspicuous
groupings such as muscle-specific alternative splicing
(e.g. TPM1, tropomyosin 3 and myosin regulatory light-
chain), liver-specific alternative splicing [e.g. fibrinogen g ,
apolipoprotein C-II (APOC2) and dolichyl-phosphate

mannosyltransferase polypeptide 2], bone marrow-specific
alternative splicing [e.g. vascular endothelial growth factor
and angiotensin 1 converting enzyme 1 (ACE1)], brain-
specific alternative splicing (e.g. tryptophanyl t-RNA synthase
and proteolipid protein 1) and testes-specific alternative spli-
cing [e.g. myeloid leukemia factor 1 (MLF1) and DDXL nuc-
lear RNA helicase]. In addition, several clusters showed a
shared alternative splicing pattern in two tissues, for example
liver and bone marrow (e.g. heat shock 90 kDa protein 1b), or
brain and testes (e.g. trafficking protein particle complex 3).

Hierarchical clustering of alternative splicing yields a gene
clustering that is distinct from that produced by gene expres-
sion clustering of the same microarray data (Figure 4B; full
cluster data in Supplementary Material). First, many genes that
show up-regulated expression in a tissue actually appear to
have a large increase in only one splice form, yielding a strong
tissue-specific alternative splicing signal in that tissue. For
example, among the approximately 10 genes whose expres-
sion is strongly up-regulated in a liver-specific manner,

Figure 3. Alternative splicing signals in the probe data for TPM1. (A) Log-ratio for bone marrow/pool (77A01) versus log-ratio for brain/pool (64A01) for probes in
the gene TPM1. The random scatter indicates no differences in splicing between these two tissues. (B) Log-ratio for muscle/pool (77A01) versus log-ratio for brain/
pool (64A01). The evident anti-correlation indicates a strong difference in splicing between these tissues. (C) Log-ratio for testes/(brain + muscle pool) (63A01)
versus log-ratio for brain/(brain+muscle pool) (64A01). The positive correlation between these two tissues indicates that they share a splicing pattern that is different
from the other tissue in the pool (muscle). (D–F) Scatter plots for the four replicate arrays of brain (64A01, 64A02, 75A01 and 75A02) against each other. Arrays
64A01, 64A02 and 75A02 are each shown compared versus array 75A01. These data show that the level of random variation between different measurements of the
same sample (in this case, brain, measured as a log-ratio versus brain + muscle pool) is well below the level of systematic changes observed in a comparison versus a
tissue with altered splicing (compare with B).
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Figure 4. Hierarchical clustering of alternative splicing for five human tissues. (A) For each array, we computed its mean correlation coefficient r versus arrays from
other tissues (see Materials and Methods), and displayed the results using dChip (r =�1, red, representing a divergent splicing pattern; r = +1, blue, representing a
consensus splicing pattern) with hierarchical clustering on both the array samples and genes. The simplest tissue-specific alternative splicing examples partition into
just two distinct splicing patterns (red versus blue), but more complex alternative splicing patterns are revealed mainly by regions of anti-correlation (red), due to the
limitations of this color mapping representation (see Materials and Methods). (B) Gene expression clustering of the same microarray data, using dChip’s hierarchical
clustering of expression values for each gene, clustering both the samples and genes (see Materials and Methods) (see Supplementary Material for high
resolution image).

e180 Nucleic Acids Research, 2004, Vol. 32, No. 22 PAGE 8 OF 15



four [ITIH4, fibrinogen gamma (FGG), APOC2 and IRF3]
were identified by the alternative splicing analysis as showing
strong up-regulation of just one splice form, while other splice
forms remained constant (Figure 5; see detailed analysis of
APOC2, below). A similar pattern was seen in other tissues
(for a detailed example in testes, see analysis of MLF1 below).
Second, some genes that show no clear tissue specificity by
gene expression, have strongly tissue-specific alternative spli-
cing. For example, DPM2 was clustered by alternative splicing
into the liver-specific group, but its gene expression profile
displays no such tissue specificity (Figure 5B). Third, altern-
ative splicing reveals some gene clusters that are not present in
the gene expression profile. For example, clustering by altern-
ative splicing identified a cluster of genes (FEZ1, PRO0659
and HSPCB; see Figure 4A) with similar alternative splicing in
liver and bone marrow. This cluster was not observed in the
expression clustering, which scattered these genes to very
different clusters in the expression tree (Figure 4B).

Validation of alternative splicing signals versus
multiple probes of gene structure

Our preceding analysis is a purely statistical procedure that
makes no use of actual information about gene structure. Thus,
its results can be validated independently by comparing the
sets of individual probes that produce correlation or anti-
correlation signals with the known gene structure and possible
splice patterns. Specifically, we have designed our probe set
for each gene to include multiple probes for each possible
alternative splice event. Thus, the subset of probes that give
a statistically significant alternative splicing signal in our pre-
vious analysis (i.e. log-ratio anti-correlation), should match a
specific group of probes designed to detect a particular altern-
ative splice event. For example, to detect insertion of an altern-
atively spliced exon, we designed a probe to that individual
exon; a set of five splice probes stepping across the exon–exon
junction entering this exon; a similar set of five splice probes

stepping across the exon–exon junction exiting this exon; and
similar sets of exon and splice probes for the exons flanking
this exon (for details see Materials and Methods). Inclusion of
this alternatively spliced exon should cause the whole group of
splice1 + exon + splice2 probes to be identified by our stat-
istical analysis (which knows nothing about what the indi-
vidual probes are) as causing anti-correlation, with the
surrounding exons and splices identified as constant.

For example, our microarray analysis detected muscle-
specific alternative splicing of TPM1 (Figure 6). These data
showed strong shifts in the proportions of different splice
forms in muscle, relative to other tissues. At the 50 end of
the gene, the data showed mutually exclusive exon usage of
exons 2a and b. Both isoforms were observed at approximately
equal levels in brain, bone marrow and other tissues, but in
muscle the exon 2b isoform was up-regulated. A similar
mutually exclusive exon pair was observed at exon 6a and
b; the latter was up-regulated in muscle. At the 30 end, again
two splice forms were observed: one including exons 9 and 10
and another replacing these with exon 11 as a 30 terminal exon.
These two forms were observed at the same level in brain,
bone marrow and other tissues, but in muscle, the latter form
was strongly up-regulated (Figure 6C). Independent real-time
PCR experiments showed qualitatively the same result
(Figure 6D). Specifically, exon 6a and 11 showed the same
level in muscle versus liver, whereas exon 6b and 9 were
present at much higher levels in muscle than in liver. Our
results are consistent with TPM1 isoforms reported previously
in muscle (23), although our data additionally indicate mutu-
ally exclusive usage of exons 6a and b as described above.

Detection of exon skipping, alternative 50 and 30 splicing,
alternative promoter and alternative termination

We also observed single exon skip events. For example, cor-
relation analysis of MLF1 detected a testes-specific exon skip
(Figure 7). The MLF1 probe data for testes diverged from all of

Figure 5. Comparison of alternative splicing clusters versus gene expression clusters. (A) A detailed view of the alternative splicing clusters, showing a cluster of
genes with liver-specific alternative splicing. (B) A detailed view of the gene expression clustering, showing the cluster of genes that are up-regulated specifically in
liver (above), and the separate cluster containing DPM2 (below).
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the other eight tissues (r = �0.88, P < 10�4). Alternative
splicing of exon 3 was observed. In all tissues, the splice
form containing exon 3 appeared to be expressed at a similar
level. In contrast, the splice form skipping exon 3 was
up-regulated specifically in testes. The hybridization signal
for exon 3 remained unchanged, while the signals for exons
2 and 4 increased in testes. Similarly, the splice probes for the
junctions between exons 2–3 and 3–4 remained constant,
while the splice probe for the junction between exons 2 and
4 (skipping exon 3) increased. These data provide clear evid-
ence of testes-specific regulation of exon skipping in MLF1.
Real-time PCR experiments showed a similar overall profile,
with strong up-regulation of the exon skip form in testes
(Figure 7D), but also showed a weaker increase in the exon 3
including form. No reports of MLF1 alternative splicing were
found in PubMed.

We were also able to detect more subtle changes such as
alternative 30 and alternative 50 splicing, in which only a single
splice is altered, by choosing a different splice site in the same

exon. For example, in APOC2, correlation analysis detected an
alternative splicing shift in liver (r = �0.80, P = 10�4), which
corresponded to alternative usage of two 30 splice acceptor
sites in exon 3 (Figure 8). APOC2 was expressed at higher
levels in liver than the other tissues we tested, but this shift was
not equal for the two splice forms using these distinct splice
acceptor sites. The splice form using the first splice acceptor
site in exon 3 was up-regulated much more than the second
splice form using the second splice acceptor site in exon 3
(Figure 8C). Independent real-time PCR experiments con-
firmed this result (Figure 8D). Detection of this alternative
splicing shift depended entirely on the splice junction probes:
while the probes for exons 2 and 3 and the first of their two
splice junctions showed constant intensity, the probes for their
second splice junction showed a highly position-specific
reduction in intensity in liver. The three central probes (closely
centered on this junction, and thus less likely to cross-
hybridize to either exon 2 alone or exon 3 alone) showed
the strongest drop in signal, while the two probes immediately

Figure 6. Detection of mutually exclusive exons and alternative termination in TPM1. (A) Raw microarray probe intensities for exons and splice junctions contained
in a non-muscle splice form of TPM1, for four replicate arrays for muscle (brown) and three replicate arrays for liver (cyan). Each probe is shown immediately beneath
the exon or splice junction it matches; the gene structure for a non-muscle transcript inferred from ESTs is shown. Three alternative splicing events are indicated:
mutually exclusive exons 2a versus 2b; mutually exclusive exons 6a versus 6b; and alternative termination (exon 11 versus exons 9 and 10). Probe intensity is shown
on a log scale; the tick marks represent 2-fold steps. The fact the plots closely overlap indicates that this isoform is expressed at the same level in both tissues. Only the
constitutive exons (3, 7 and 8) included in the muscle-specific isoform shown in (B) show up-regulation. (B) Raw microarray probe intensities for exons and splice
junctions contained in a muscle-specific splice form of TPM1, displayed as in (A). All the probes for this isoform had stronger fluorescent intensity in muscle,
although there are variations in probe sensitivity. (C) Mean log-ratio values for exon probes in exons 6a, 6b, 10 and 11, measured from the muscle or liver microarray
experiments. (D) Mean log amount values measured in independent real-time PCR experiments amplifying exons 6a, 6b, 9 and 11, derived from the Ct value (see
Materials and Methods).
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adjacent to the splice (on either side) closely matched the
signals for the respective exons. Alternative splicing of the
mouse APOC2 gene in liver has been reported previously,
specifically exon skipping of mouse exons 1B and C (24).
We also detected alternative 50 splicing in a wide variety of
genes. For example, in ACE1, correlation analysis detected
bone marrow-specific alternative splicing of exon 1 (r =�0.65,
P < 10�4). While probes in exons 1 and 2 showed no signi-
ficant shift, probes to the two possible splice junctions showed
strikingly different responses in bone marrow compared with
other tissues. While the five probes spanning the junction from
the first splice donor site in exon 1 to exon 2 were constant in
signal in all tissues, including bone marrow, the five probes
spanning the junction from the second splice donor site in
exon 1 showed a significant increase specifically in bone
marrow (see Supplementary Material).

Correlation analysis detected other types of isoforms,
including alternative initiation and alternative termination.
For example, in FGG, we observed a strong anti-correlation
between probe values in liver versus other tissues (r = �0.88,
P = 10�4), due to a large increase in usage of exon 1B in liver,
while the isoform containing exon 1A remained constant (see
Supplementary Material).

PCR validation of exon skipping, alternative 50 and
30 splicing, alternative promoter and alternative
termination

To validate our results further, we performed RT–PCR on a
sample of 20 of these genes, including representatives of all
the different types of alternative splicing described above (see
Supplementary Material). Of these cases, seven were exon
skip events, which are easiest to test, since a single pair of
primers directed to the exons flanking the exon skip will detect
both the exon skip form and the exon inclusion form as pro-
ducts of different lengths. This gives an internal control for
each primer pair, specifically, checking that it amplifies the
known splice form. Of the seven exon skip cases, five were
validated by PCR and sequencing, a 70% validation rate. The
remaining test cases involved alternative 30 splicing, alternat-
ive 50 splicing, alternative initiation and alternative termina-
tion, which require a distinct pair of primers for each of the
two splice forms. Of the 26 primer pairs for this group, 7 failed
to amplify. In the six cases where both primer pairs worked, all
six validated the alternative splicing pattern by PCR and
sequencing of the products. In every case, DNA sequencing
of the PCR products exactly matched the sequences of the

Figure 7. Detection of exon skipping in MLF1. (A) Raw microarray probe intensities for probes testing inclusion of exon 3 in MLF1, for four replicate arrays for testes
(green) and four replicate arrays for brain (blue). Each probe is shown immediately beneath the exon or splice junction it matches. Probe intensity is shown on a log-
scale; the tick marks represent 2-fold steps. (B) Raw microarray probe intensities for probes testing skipping of exon 3. (C) Mean log-ratio values for exon probes in
exons 2 and 3, measured from the testes, liver or brain microarray experiments. (D) Mean log amount values measured in independent real-time PCR experiments
amplifying exons 2 and 3, derived from the Ct value (see Materials and Methods).
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expected alternative splice forms. In total, �85% (5/7 of the
exon skips, plus 6/6 of the other types) of the alternative
splicing events identified by the microarray analysis were
validated by independent RT–PCR experiments. The total
PCR primer failure rate was 21% (7/33), perhaps due to the
narrow constraints of primer design (each primer was con-
strained to an individual exon, rather than being selected
from anywhere in the gene).

DISCUSSION

We have developed a simple method for distinguishing altern-
ative splicing from changes in gene expression, which could
be applied to many types of microarray data. This method also
provides a way for clustering genes and samples according to
their alternative splicing patterns, producing a regulatory pic-
ture that is distinct from hierarchical clustering of the same
microarray data according to gene expression. To test these
methods, we have applied them to a small experimental dataset

generated using a microarray platform and amplification meth-
ods shown previously to be sensitive to tissue-specific changes
in alternative splicing (14,16). However, we have not analyzed
any aspects of the biological questions or interest of this
experimental dataset, which, for reasons of space, will be
presented elsewhere.

Alternative splicing represents a qualitative change in a
gene’s expression—production of a different form of the
gene product, bearing a different combination of functional
elements in its sequence. Thus, it is useful to develop high-
throughput methods for detecting such qualitative changes on
a genome-wide basis. Fundamentally, alternative splicing
provides a very different source of information for tracking
regulatory events, monitoring cellular differentiation and clas-
sifying different tissues, than has been considered by tradi-
tional gene expression analysis. For example, a gene product
may be switched from one splice form to another splice form
with very different functional properties, while leaving the
total amount of gene product unchanged. Although current
microarray analysis would be unlikely to detect such a

Figure 8. Detection of alternative 30 splicing in APOC2. (A) Raw microarray probe intensities for the first splice junction (S2a) between exons 2 and 3, for three
replicate arrays for liver (cyan) and four replicate arrays for bone marrow (black). Each probe is shown immediately beneath the exon or splice junction it matches; the
gene structure for a muscle-specific transcript inferred from ESTs is shown. Probe intensity is shown on a log-scale; the tick marks represent 2-fold steps. (B) Raw
microarray probe intensities for the second splice junction (S2b) between exons 2 and 3. (C) Mean log-ratio values for splice probes for S2a and S2b, measured from
the liver, bone marrow or brain microarray experiments. (D) Mean log amount values measured in independent real-time PCR experiments amplifying splice forms
S2a and S2b, derived from the Ct value (see Materials and Methods).
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regulatory event, our qualitative analysis could make such
changes clear, on a genome-wide scale.

It is also possible that alternative splicing can cause con-
fusion or misinterpretation in existing gene expression ana-
lyses. For example, if a gene has two major splice forms that
are regulated quite differently, the gene’s expression can only
be represented accurately by two distinct numbers (one value
for the expression level of each form). Seeking to extract a
single number as the ‘expression level’ of the gene, may
actually be inappropriate in this case. At a minimum, this
measurement is likely to be confounded by apparently incon-
sistent behaviors of different probes for the gene. Indeed, gene
expression analyses such as the dChip software (18) are likely
to systematically exclude as unreliable, any microarray probes
that reveal strong patterns of alternative splicing, since these
will diverge from the consistent expression profile across sam-
ples observed in the majority of probes for the gene. Thus, one
benefit of our qualitative analysis approach is recognition that
some probes are not simply unreliable, but contain additional
information about the gene’s regulation that was not captured
by its total expression level.

To avoid such problems, it is essential to distinguish altern-
ative splicing from gene expression within microarray data
analysis. Our method provides a simple and general way to
do this, but with a number of caveats. First of all, our approach
should be considered a discovery method for detecting pos-
sible alternative splicing, rather than a validation method,
which ensures that a given result is definitely due to alternative
splicing. A number of other effects might give rise to system-
atic variation within the probes for a single gene. For example,
if a subset of the probes cross-hybridize to transcripts from a
paralogous gene, changes in expression of that paralogous
gene would produce the kind of systematic variation (anti-
correlation of tissue log-ratios) that our method detects. The
nature of alternative splicing probe design makes it difficult to
exclude such cross-hybridization entirely. Since alternative
splice detection requires probes that match specific exons
and splice junctions, probe selection is tightly constrained,
and it is often not possible to completely avoid sequences
that have a match somewhere else in the human genomic
sequence. To weigh the evidence for true alternative splicing
versus cross-hybridization to other genes, detailed considera-
tion of the specific gene structure and likely splice forms for
the gene in question, its paralogs, and other factors are
required, which our method does not take into account.
Second, we consider our method to be a qualitative analysis
(identification of the presence or absence of changes in spli-
cing), which we consider to be useful in its own right, rather
than a quantitative method. Many additional kinds of statist-
ical analysis would be required for such a method. Moreover,
alternative splicing arrays have required different amplifica-
tion protocols than those ordinarily used for expression arrays,
because of the necessity of coverage across the full length of
the gene (including the 50 end) (14). There are many questions
about the quantitative accuracy and reproducibility of the
amplification protocol, which need to be addressed more
fully as a prerequisite to reliable quantitative analysis. For
example, the amplification method used in this study [and also
in previous work (16)] yields substantial quantitative differ-
ences versus measurements made from total RNA (25) (http://
www.bdbiosciences.com/clontech/archive/OCT03UPD/

Smart-mRNA.shtml), although it does provide greatly
improved coverage over the full length of transcripts (14).

Despite these technical challenges, there is now broadly
reproducible evidence that alternative splicing can be detected
using microarrays. Hu et al. (10) used standard Affymetrix
array designs to search for evidence of alternative splicing in
1600 rat genes, by performing hybridizations with 10 normal
tissue samples. A total of 268 genes (17%) showed signs of
alternative splicing, and RT–PCR validation indicated that
about half of these represented genuine alternative splice
events. Other studies have focused on individual genes with
known alternative splicing patterns, to demonstrate that micro-
array technology can detect these events. Clark et al. (11) used
a cDNA spotted array to demonstrate successful detection of
experimentally induced intron-retention in a number of
Saccharomyces cerevisiae genes containing introns. Yeakley
et al. (13) described detection of alternative splicing in six
human genes using a fiber-optic microarray platform. Wang
et al. (15) reported analysis of quantification of distinct splice
forms of two human genes (CD44 and TPM2), using the well-
known Affymetrix microarray platform. Castle et al. (14)
reported studies of two genes (RB1 and ANXA7), examining
in great detail the experimental factors determining probe
response as a function of distance from an exon junction,
position with the gene and so on. For example, they have
analyzed in detail the effect of probe length on accurate de-
tection of both exons and splice junctions. Kampa et al. (19)
used Affymetrix microarrays to look for novel transcripts, and
provided evidence that most human genes show evidence of
more than one distinct isoform (26). By far, the largest micro-
array study was performed recently by Johnson et al. (16)
using exon–exon junction probes to detect exon skipping.
This study included probes for over 10 000 human genes
and examined 52 distinct tissue samples. For genes in which
alternative splice forms had not been previously reported by
expressed sequence tag (EST) studies, about half were
reported to show microarray evidence of exon-skipping. Vali-
dation by RT–PCR suggested that 45% of these positive can-
didates were genuinely alternatively spliced, indicating new
discovery of alternative splicing in a large number of genes
(estimated 798 in this study alone). Our work has used a
similar microarray platform (Agilent microarrays), but has
examined a variety of different types of alternative splicing
including exon skipping, alternative 30 and alternative 50 splice
site usage, alternative initiation and alternative termination.

In comparison with these extensive experimental studies,
relatively little has been published on bioinformatics meth-
odology for general detection and analysis of alternative spli-
cing from microarray data. Wang et al. (15) describe a detailed
method for quantitating distinct splice forms of a gene, and
tested it both on a mixture of two isoforms, and a mixture of
three isoforms. This method was designed for quantification of
well-known isoforms, as the authors emphasized: ‘This algo-
rithm is intended for splice variant typing, not discovery’.
Johnson et al. (16) apparently analyzed their microarray
data by fitting the probe intensities to a model of probe sens-
itivity, based on a single value representing total expression of
the gene, and then identifying probes with strong ‘residuals’,
indicating a poor fit to this model (16). Both the Wang et al.
and Johnson et al. methods are based on constructing a
sophisticated model of probe sensitivity and comparing this
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model to the actual probe behaviors. Our approach is some-
what different. It compares the behavior of probes for a gene in
one tissue versus their behavior in other tissues (instead of to a
model), and adopts a simpler method of detection designed for
discovery of novel alternative splicing. The use of normaliza-
tion versus tissue-averaged ‘pool’ intensities largely removes
probe sensitivity and total gene expression from consideration,
enabling our analysis to focus on distinguishing three qualita-
tively different cases: uncorrelated, random scatter (no evid-
ence of alternative splicing); anti-correlation (the two samples
differ in splicing); and correlation (the two sample have the
same splicing, compared with other tissues that have different
splicing). Computation of this correlation factor for all pos-
sible pairs of replicate arrays allows direct assessment of its
statistical significance. This simple approach works for
ab initio discovery of a wide variety of types of alternative
splicing (not just exon skipping), and could be applied to many
kinds of microarray designs and data.

One important foundation for the detection of complex phe-
nomena such as alternative splicing is high-quality hybridiza-
tion data displaying good specificity, reproducibility and
signal-to-noise. Our data validate previous reports of the
advantages of the Agilent array platform, which makes longer
probe sequences possible (36–40 nt in this study). We wish to
emphasize that all the data presented in this paper are raw
microarray hybridization intensities directly reflecting the
quality of the experimental data. Each data point shown in
our figures is the signal from a single spot (on a single micro-
array), in contrast with common practices such as averaging up
to four replicate arrays to suppress noise, or using data from up
to 40 hybridization spots per array to obtain a single expression
signal. The reproducibility of our data across four replicate
arrays (with dye-swaps) indicates a good level of signal-to-
noise, taking into account both variation between arrays and
variation between different experiments and labeling. The
reproducibility of our data for each gene across many different
tissues shows that this level of signal-to-noise is also well
above the level of variation between different experiments
and samples. The use of longer probe sequences [60 nt
total, including a specific probe sequence of 36–40 nt on
top of a base of 20–24 bases of poly(T) to raise the probe
sequence off the surface of the array] appears to work well for
clear, reproducible detection of alternative splicing. The
Agilent array platform’s reproducibility (comparing a single
spot between replicate arrays) and consistency (comparing the
absolute intensities of many probes for an individual gene)
provide a good foundation for detecting alternative splicing.
The development of amplification and labeling methods that
give robust coverage over the full length of each gene
(as opposed to just the 30 end) has also been crucial to reliable
detection of tissue-specific alternative splicing (14,16).

Our approach has many deficiencies that need to be filled.
For example, in this paper, we have de-emphasized quanti-
fication in favor of qualitative analysis, as a way of stressing
the distinct character of alternative splicing when compared
with increases or decreases in total gene expression. However,
the next stage of analysis requires accurate estimation of the
amounts of each distinct splice form. This is clearly more
challenging than accurate estimation of the total amount of
mRNA for a gene. Based on identification of the individual
sets of probes that distinguish different splice forms, it is

possible to measure the amounts of each splice form. For
example, Wang et al. (15) have described a matrix-based
method for estimating the amounts of distinct transcript
forms given a set of individual probes that distinguish them.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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