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ABSTRACT We present simulations of a model of a closed
membrane that shares important features with erythrocytes:
resistance to bending and shear, membrane asymmetry, and an
osmotic pressure difference between the interior and exterior.
By varying a few parameters we obtain several realistic (e.g.,
biconcave and cup-like) shapes whose fluctuations, analogous
to flickering of erythrocytes, and mutual transformations are
studied in thermal equilibrium. Our simulations form a basis
for quantitative analysis of recent experiments done on eryth-
rocytes and artificial bilayer vesicles. They also predict effects
that could be observed in experiments such as an ‘‘unbinding”’
phenomenon, i.e., a separation of adhering cells induced by
thermal fluctuations.

Mammalian erythrocytes are among the simplest systems for
the study of shape changes of eukaryotic cells (1); they do not
include transcellular cytoskeletons and their shape is mainly
determined by elastic properties of the plasma membrane.
Simple mechanical models that explained biconcave or cup-
like erythrocyte shapes have been formulated (2) and studied
intensively (1, 3-6). However, it is only now that one can
hope to test these models quantitatively thanks to recent
progress in three fields. (/) The molecular structure of the
erythrocyte membrane and the associated protein skeleton
has been elucidated (1, 7), making possible a microscopic
interpretation of phenomenological parameters of the mod-
els. (i) Progress has been made in experimental techniques
for studying erythrocytes and bilayer vesicles (8-12). (iii)
Through recent developments in statistical mechanics, one
better understands the thermodynamic behavior of fluctuat-
ing surfaces (13).

From a statistical mechanical point of view, membranes
are unique since their behavior is often governed not by
surface tension but by curvature energy. For closed fluid
membranes, the curvature energy (E.) can be written as (2,
13, 14):

K
E[S]= f dA - (H - Ho)?, m

where the integration is over the area A, H is the geometrical
mean curvature, and § is the shape. Two phenomenological
elastic constants enter this formula: the bending stiffness «,
typically of order of 10 kgT, and the ‘‘spontaneous’’ curva-
ture Hy, characterizing the membrane asymmetry in eryth-
rocytes due to the presence of the associated skeleton and the
differences in composition of the membrane layers (1, 7). In
Eq. 1 we have neglected the compressibility term as well as
the contribution f dA K, where K is the Gaussian curvature.
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FiG. 1. (A) Thermally equilibrated discocyte. The surface is de-
fined by the positions of the center of hard spheres that form 980
elementary triangles. The images are rendered using Gouraud shading.
The simulation is done in the constant volume ensemble with k
5.2kpT; V/Va = 0.74;and HoRa =~ —1.16, where R = (A/4m)V/2, Va
= (47/3)RA. H, has a sign opposite to that of a sphere. (B) Top view
of the same membrane. Notice that this almost circular shape still
keeps a memory of the connectivity of the triangulated lattice (a
regular icosahedron). (C) Although real skeleton nets have many more
elementary spectrin triangles (22), similar effects (due to the finite
density of connectivity defects) are in fact observed in erythrocytes as
shown by this interferometric picture [reproduced with permission
from ref. 20 (copyright E. Sackmann)].

Indeed, if the topology of the membrane does not change
(e.g., a closed vesicle), this last term remains constant (13).

The problem of finding the stable shape S reduces to
minimization of E_[S] with the constraints of constant A and
enclosed volume V. Although this difficult problem has been
solved only under simplifying conditions, shapes very similar
to real discocytes and stomatocytes have been found (2, 4-6).
Experiment provides an even bigger challenge: One has to
take into account thermal fluctuations (15) and thus solve a
thermodynamical problem rather than a mechanical one (16,
17). Recent progress in statistical mechanics of fluctuating
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F16.2. Simulation of two interacting discocytes. Here we have used a pressure ensemble with pV 4 = 49« and values of x and Hj as in Fig.
1. By decreasing the strength of the potential 4, one first changes the shape of the cells [h/x = 0.28 (A) or h/«x = 0.056 (B): The cells are adhering
to each other; their separation is smaller than {]. Then thermal fluctuations provoke unbinding [#/«x = 0.052 (C)] and separation h/x = 0.028
(D)]. Note also that for the values of 4 near the critical one, k., where the unbinding occurs (C), the shape fluctuations of the cells are large.
An unbinding transition has recently been observed for a stack of fluid lipid membranes (25). [Note that in our simulations the membranes are
of finite size; thus the probability of unbinding for & > A, is strictly speaking nonzero, although it is exponentially small in the number of

elementary triangles and A.]

surfaces has shown that the thermodynamics of fluid mem-
branes is very different from that of membranes with a
resistance to shear (13). Erythrocyte envelopes with a skel-
eton containing actins and spectrins are obviously of the
latter class (1). To describe these effects within a continuous
elastic model, one has to add to the curvature energy E.[S]
a two-dimensional elastic term (13):

E[S] = E.[S] + Ee[S]. (21

Theoretical studies in which one includes a shear modulus
and compressibility have produced surprising resuits; a free
elastic membrane is no longer described by classical laws of
elasticity (18, 19). Although the case of closed membranes
(with a nonzero osmotic pressure difference, p) has not been
studied quantitatively yet, it is possible that one has to
reconsider the (classical) interpretation of measurements of
elastic properties of erythrocytes, made, e.g., by video

microscopy (9), micropipette techniques (8), and light inter-
ferometry (20). This is particularly difficult since the usual
approximations of a planar membrane (15) or a quasispherical
vesicle (10-12) are inadequate.

This motivated our study of a discretized version of the
model 2 with the aid of computer simulation. The membrane
is formed by a net of hard spheres of radius a and tethers (21)
whose size is b. The actual values a = 1 and b = 1.6 are
chosen so as to enforce self-avoidance of the membrane (21).
Since the connectivity of real spectrin networks (22) remains
an open question (1) (it can adjust on large time scales), we
have chosen a triangulated icosahedron, leaving for future
studies the role of different connectivities. Note that for a
closed membrane with the topology of a sphere a coordina-
tion number of every particle cannot be equal to six and one
has to introduce at least 12 defects with a coordination
number of five. The spheres connected by tethers cannot
move freely within the surface: the local neighborhood is
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fixed as well as the maximum distance between neighbors,
the elastic terms E,; are thus generated through entropic
effects. Our discretized membrane is, therefore, a model for
the bilayer—cytoskeleton envelope that presents a finite com-
pressibility and shear modulus. To study the membrane in
thermal equilibrium, the Metropolis algorithm (23) was used
with a discretized version of the energy from Eq. 1. We chose
a simple discretization: E; = 2, k;c080;; + k,sind;;, where 6;;
is the angle between two adjacent triangles i and j. The elastic
constants k and H, appearing in Eq. 1 are connected through
simple geometric arguments to the constants x; and k;.
Simulations were performed in a constant volume ensemble
or with the addition of a compressing term pV, a constant
pressure ensemble, respectively, for impermeable and per-
meable cells.

Fig. 1 shows a snapshot of an equilibrated membrane with
«k and H, within a range of values for which the shape
resembles a biconcave discocyte. This particular shape was
obtained starting from the initial icosahedron and is thermo-
dynamically stable. During the simulation, we monitor the
time dependence of the pressure p, the radius of gyration Rg,
and the energy E.. This allows us to estimate equilibration
times: a typical number of Monte Carlo steps needed to
equilibrate and measure the properties of the membrane is 5
x 107, corresponding to 1.5 hr of central processing unit time
on a Cray-XMP computer. To avoid metastable shapes,
initial configurations were also varied: e.g., in a constant
pressure ensemble, a discocyte shape can be often metastable
and ‘‘decay’’ into a stomatocyte form. We have also ob-
served other forms, some of them unusual; for large positive
values of Hy, the cells are wrinkled, and increasing p reduces
the number of wrinkles. Such shapes could be induced by
modifications of the skeleton or changes in the composition
of the bilayer. It would be interesting to systematically
compare the shapes obtained in such simulations of an elastic
membrane with the predictions made for fluid membranes
[which neglect, however, thermal fluctuations and assume a
rotational symmetry (2—-6)]. Although for the elastic param-
eters used in the simulation described in Fig. 1 a fluid
membrane should also form a discocyte (4), this does not
need to be always true. Indeed, for large values of Hy, fluid
membranes are expected to be formed of several connected
spheres (6), whereas in our simulations we observe the
mentioned wrinkled shapes. This is a direct consequence of
the fixed connectivity of the network.

Another phenomenon exhibited in our simulations is the
‘‘unbinding”” of adhering cells, similar to the unbinding
transition predicted (24) and then observed (25) in a stack of
fluid bilayer membranes. Fig. 2 shows the interaction of two
identical ‘‘discocytes’’ through a short-ranged attractive po-
tential, 4. In our simulation we have used a simple square-
well attraction of range /! = 1.4 and the depth h. For
intermediate values of h (Fig. 2B), the cells are bound
together and their form is very close to the free shape [as,
e.g., in a “‘rouleau” formation of erythrocytes (26)]. By
increasing h one can induce shape transformation; the cells in
Fig. 2A are cup-like since the interaction energy is higher.
When h is lowered below some critical value, entropic
repulsion overcomes the attractive potential and the cells
“‘unbind”’ (Fig. 2D). One can also induce unbinding by
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increasing the temperature or decreasing the bending rigidity
13, 24).

A detailed scaling analysis of the phenomena described
above, analogous to those done for simulations of hypothet-
ical two-dimensional vesicles (16) or planar membranes (27),
lies beyond the scope of this paper. Such studies make
possible quantitative analysis of experiments on erythrocytes
and vesicles, especially if one extends the present work to
fluid membranes and realistic skeleton-membrane struc-
tures. Experimentally, it should be possible to verify our
predictions on unbinding and adhesion by using electrostatic
forces or adhesive molecules. In addition, our study shows
that computer simulations could help in the near future in
understanding some of the simplest collective physical phe-
nomena taking place in cellular systems.

We thank M. Bessis and E. Sackmann for discussions. A.C.M. is
at a laboratoire associé au Centre National de la Recherche Scien-
tifique.
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