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Abstract

Detection of nuclei is an important step in phenotypic profiling of histology sections that are 

usually imaged in bright field. However, nuclei can have multiple phenotypes, which are difficult 

to model. It is shown that convolutional neural networks (CNN)s can learn different phenotypic 

signatures for nuclear detection, and that the performance is improved with the feature-based 

representation of the original image. The feature-based representation utilizes Laplacian of 

Gaussian (LoG) filter, which accentuates blob-shape objects. Several combinations of input data 

representations are evaluated to show that by LoG representation, detection of nuclei is advanced. 

In addition, the efficacy of CNN for vesicular and hyperchromatic nuclei is evaluated. In 

particular, the frequency of detection of nuclei with the vesicular and apoptotic phenotypes is 

increased. The overall system has been evaluated against manually annotated nuclei and the F-

Scores for alternative representations have been reported.

I. Introduction

Cellular organization is an important index for profiling diseased regions of microanatomy 

and histopathology. For example, the normal cellular organization is often lost as a result of 

rapid proliferation in malignant tissue. More specifically, the degree of cellularity is one of 

the indices for (i) diagnosis of Glioblastoma Multiforme (GBM) as a result of increased 

proliferation of glial cells, (ii) evaluating the efficacy of a neoadjuvant chemotherapy of 

breast carcinoma [1], (iii) grading prostate cancer-based Gleason score [2]. Furthermore, 

cellularity is often heterogeneous, which is potentially the results of cellular plasticity for 

recruiting lymphocytes, promoting angiogenesis, and potential hypoxia. The goal of this 

paper is to develop validated computational tools for quantifying cellularity from a large 

cohort of H&E stained histology sections so that clinical relevance can be investigated, 

where quantification of cellularity depends on nuclear detection. However, a large cohort of 

H&E stained histology sections often suffers from technical and biological variations, where 

a number of methods have been proposed in the context of nuclear segmentation [3], [4]. In 

this context, technical variations refer to variations in fixation and staining, and biological 

heterogeneity refers to the fact that no two patients are alike and local and global patterns of 

diseased tissues vary widely.

There are many variations of the nuclear phenotypes, which provide insights into the cellular 

states. Often, detection of nuclei is limited to those with hyperchromatic signature, which 
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have an appearance of the dark signal against the background. However, one of the main 

challenges is the detection of vesicular and necrotic phenotypes, which are difficult to model 

using procedural methods. Therefore, one of our goals has been to evaluate whether 

automatic feature learning can improve detection of these phenotypes. Our approach toward 

automatic feature learning is convolutional neural networks (CNN) and is evaluated with 

alternative representations of the raw data. Another novelty of our study is that human 

engineered features improve nuclear detection using CNN. The human engineered feature is 

based on Laplacian of Gaussian (LoG) filter, where blob-like objects are accentuated. In 

short, LoG filter responses provide an improved representation of the spatial landscape for 

training a CNN.

Organization of this paper is as follow: Section II reviews previous research. Section III 

describes the details of the proposed method. Section IV presents our preliminary 

experimental results and performance of alternative architectures. Lastly, Section V 

concludes the paper.

II. Background

The topic of nuclear detection and segmentation have been explored widely [5], [6], [7], [8]. 

Traditionally, nuclear detection has relied on procedural models of the field of computer 

vision [9]. However, more recently and because of the popularity of deep learning, CNN has 

been evaluated for the purpose of nuclear detection.

Various CNN configurations have been suggested for detection of nuclei in histology 

images. Xie et al. [10] suggested a deep voting method, which is a CNN based approach that 

used nucleus centroids localization by assigning each input a voting confidence. 

Sirinukuwattana et al. [11] also proposed a spatially constrained CNN to do nuclei detection. 

They forced spatial constraint at the prediction of the likelihood of a pixel by assigning 

higher probability values to the pixels located in the vicinity of the nuclei centers.

Although CNNs have been applied to nuclear detection in histology sections using raw 

representation, CNNs have not been applied to nuclei with vesicular or necrotic phenotypes 

and the impact of engineered features has not been evaluated extensively. This paper 

examines various permutations of input representations (e.g., RGB, gray, engineered 

features) coupled with network architecture.

III. Proposed Method

Detection of nuclei can be accomplished by using a CNN as a classifier and applying sliding 

window through the whole image. The result will be a probability map which indicates the 

probability of each pixel to be the centroid of a nucleus. A CNN classifier consists of two 

parts: (i) the feature extraction part that includes a few convolution layers followed by 

pooling layers and an activation function such as a sigmoid, tanh, and ReLU; and (ii) the 

classification part which is a few fully connected layers complemented by a loss function.

There are many permutations of the CNN architecture (e.g., in terms of convolution size, the 

size of the filter bank, activation, contrast enhancement); thus, several variations of CNN 
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architecture were designed and evaluated. We have learned that CNN with two convolutional 

layers, with 2 × 2 max-pooling, and ReLU as activation function provided the better 

performance. This network is shown in Figure 1. The last stage has a LogSoftmax function 

that computes the probability of each pixel as being the centroid of the nuclei. Table I 

indicates the best architecture of CNN following our analysis.

Gray or RGB normalized images have been used widely as inputs to deep networks; 

however, nuclei detection can benefit from engineered features that accentuate their blob-

shape property. One of the most encouraging filters for blob shape detection is the LoG, 

which is being evaluated as an alternative to the raw grayscale image. Nevertheless, there are 

several permutations of the input representations. For example, one can apply the LoG filter 

to the gray level representation of the original image or to the nuclear channel following 

color decomposition.

In order to separate the nuclear channel of a color histology image, color decomposition is 

required. Usually, color decomposition requires estimation of the stain matrix, which 

indicates the ratio proportions of red, green, and blue in each stain channel. Another method 

to estimate the stain matrix is based on the singular value decomposition proposed by 

Macenko et al. [12], which is publicly available and has been evaluated in our study.

With respect to training of CNN, there are two dominant strategies for patch selection, 

which includes either random selection, from the image, or selection from nuclei centered 

patches. In the former, data augmentation is less important because random selection can 

intrinsically increase the sample size. In the latter case, data augmentation is highly desirable 

and necessary. Strategies for data augmentation include affine transform, perturbations by 

manipulating the basis functions, and elastic deformation. Our analysis revealed that the 

policy of random selection provided a more diverse signature and is more effective than 

nuclei centered patches.

IV. Experiments

In order to evaluate the proposed concept, several configurations are implemented and 

performance is quantified. The validation dataset consists of 29 histology sections of size 1k 
× 1k, which includes 21 brain and 8 breast images. These images have been hand segmented 

totaling 13,766 nuclei. Images were equally divided between training and testing samples 

(e.g., 50–50). Implementation of the color decomposition method has been borrowed from 

stain normalization toolbox [13]. The batch gradient descent with the batch size of 256 is 

used for back propagation optimization. The learning rate is set at 10−5 and the learning rate 

decay is set at 10−7. L1 and L2 regularizations were performed with weights of 0.001 and 

0.01, respectively. Since proper initialization is critical for deep networks, the weights and 

biases are initialized using the proposed method in [14]. Accordingly, the biases are 

initialized to be zero and the weights, in each layer, are initialized with a uniform 

distribution as follow:
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(1)

Where, Wij is the layers weights, U indicates uniform distribution, and n is the size of the 

previous layer. The input samples have been scaled to have zero mean and be in the range of 

[−1, 1]. Nuclei detection accuracy of the various approaches are calculated based on 

precision, recall, and F-Score as follow. Since some of the nuclei may be detected more than 

one time, the percentage of over-detected nuclei are also reported.

(2)

(3)

(4)

Table II shows the recall, precision, F-score and percent of over-detected nuclei for different 

representations discussed in this study for detection of nuclei in histology sections. The 

results indicated that LoG representation of nuclear channel has superior performance. In 

addition, the use of the nuclear channel, following color decomposition, improves 

performance over the RGB representation. Detection of nuclei for two samples having 

hyperchromatic and vesicular nuclear phenotypes are shown in Figures 2 and 3, respectively. 

Figure 2 shows a sample with hyperchromatic nuclear phenotype and the detection results 

with CNN based on different input representations that include RGB, nuclear channel 

following color decomposition, and the LoG of the nuclear channel. Figure 3 shows a 

sample with vesicular nuclear phenotype with detection results shown using CNN. These 

results indicate qualitatively that LoG response of the nuclear channel, following color 

decomposition, performs well for detection of hyperchromatic and vesicular phenotypes. 

Figure 4 shows a subset of learned filters of the first layer of CNN. These filters encode 

different shapes, size, and phenotypes that appear in the dataset. Finally, we performed 

bootstrapping technique, which is retraining the network by misclassified samples, where 

the F-Score improved by another 4%.

V. Conclusion

Experiments in this paper indicate that nuclei detection can be improved with training a 

CNN with the LoG representation following color decomposition. The LoG filter has a 

tendency for accentuating the underlying spatial distribution of the nuclei regions and to 
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perform a rudimentary initial detection. Furthermore, one of the major challenges for 

nuclear detection has been the vesicular phenotypes, which can be biological or caused by 

poor sample preparation. However, the proposed model has significantly improved detection 

of this class of phenotypes. These observations suggest that applications of engineered 

features and color decomposition are important for the improved performance of nuclear 

detection using CNN.
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Fig. 1. 
A CNN is composed of two basic parts of feature extraction and classification. Feature 

extraction includes several convolution layers followed by max-pooling and an activation 

function. The classifier usually consists of fully connected layers.
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Fig. 2. 
Detected nuclei are highlighted by yellow for different input representation. (a) Original 

image, (b) RGB+CNN, (c) Nuclear channel+CNN, (d) LoG of nuclear channel+CNN.
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Fig. 3. 
The result of the proposed method is shown in an image with vesicular phenotype. (a) 

Original image, (b) RGB+CNN, (c) Nuclear channel+CNN, (d) LoG of nuclear channel

+CNN.
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Fig. 4. 
Some learned kernels from the first layer of the CNN.
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TABLE I

Proposed CNN architecture

Layer Type Input/Output Dimensions Filter Dimensions

0 Input 51 × 51 × 1

1 Conv 28 × 28 × 256 24 × 24 × 1 × 256

2 Max-Pooling 14 × 14 × 256 2 × 2

3 Conv 10 × 10 × 128 5 × 5 × 256 × 128

4 Max-Pooling 5 × 5 × 128 2 × 2

5 Full 1 × 2 -

6 LogSoftmax - -
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TABLE II

Nuclei detection results of histology sections using CNN

Method Recall Precision F-Score Over-detected

LoG of nuclear channel+CNN 0.6978 0.7433 0.7222 0.0805

Nuclear channel+CNN 0.6301 0.7151 0.6699 0.1158

RGB+CNN 0.3836 0.8894 0.5361 0.1586
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