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*Department of Physics, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802; and ‡Center for Complex Systems Research,
Department of Physics, University of Illinois at Urbana–Champaign, 1110 West Green Street, Urbana, IL 61801

Edited by Harry L. Swinney, University of Texas, Austin, TX, and approved November 30, 2004 (received for review August 16, 2004)

We present findings in an experiment where we obtain stationary
ramified transportation networks in a macroscopic nonbiological
system. Our purpose here is to introduce the phenomenology of
the experiment. We describe the dynamical formation of the
network which consists of three growth stages: (I) strand forma-
tion, (II) boundary formation, and (III) geometric expansion. We
find that the system forms statistically robust network features,
like the number of termini and the number of branch points. We
also find that the networks are usually trees, meaning that they
lack closed loops; indeed, we find that loops are unstable in the
network. Finally, we find that the final topology of the network is
sensitive to the initial conditions of the particles, in particular to its
geometry.

pattern formation � self-organization

Pattern formation, loosely speaking, is the study of order in
open dissipative systems (1); this includes dynamic self-

organization, characteristic of f luid and chemical systems (2),
and inhomogeneous growth, characteristic in some physical
(3–6) and biological (7–9) systems. Of more recent interest, not
generally categorized under pattern formation, is the evolution
of complex networks (10). Although this latter study has so far
focused on abstract topological issues, it may soon bear impor-
tant connections with the former studies, especially as it pertains
to branched (what we shall refer to as ramified) patterns used for
transportation throughout nature. Indeed, several researchers
have attempted to include either spatial (11, §) or flow (12)
constraints to the study of complex networks. Meanwhile, effi-
cient transportation of resources through real fractal networks
was already an important insight into understanding the allo-
metric scaling of all organisms (13, 14).

Another example of a transportation network, this time
nonbiological, was studied in experiments on an electrome-
chanical system (15–17), where conducting particles self-
organize into dendritic patterns under the inf luence of an
electric field for the purpose of collecting and transporting
charge. The authors were concerned with formulating a vari-
ational principle concerning the stability of patterns in open
dissipative systems. In those studies, the authors concluded
that in order for the patterns to be stable, they must be (locally)
minimal in dissipation. The experiment has also been studied
in simulation with the idea that fractals are generated by a
dynamical rule: Particles always move to regions of higher
gradient in potential until they stick next to a boundary point
(18). All studies simplified the system by dealing only with the
two-dimensional Poisson equation, and by assuming the source
of charge was independent of both space and time: �2� �
S(r�, t)��oil � S0��oil, where � is the electric potential, S is the
source term, and �oil is the conductivity of the oil medium. The
limitations of these approximations are unknown. Moreover,
the proof showing that the dissipation is minimal relies on
showing that the potential energy is also minimal; calculating
the resistance is no less complicated than calculating the

potential energy, offering few advantages in predicting the
behavior of open dissipative systems. As for fractal measures
of the system, the experiments include less than two orders of
magnitude between the smallest and largest scale; thus, the
notion of a fractal is contentious. Also, all previous studies
focused on the steady-state structure of the system, largely
neglecting the dynamics of formation. Finally, all studied the
formation of the patterns only under random initial conditions.

Here, we study the experimental system with the view that the
patterns formed, fractal or not, are better described as ramified
in architecture; thus, the key aspect of the system is the topology
rather than the dimension. We broaden the scope over past
studies by including (i) the dynamics of the system and (ii)
studying different initial conditions. We find that for compact
initial distributions, the formation of the pattern has three
regimes: (I) strand growth, (II) boundary formation, and (III)
geometric expansion. Each of the three stages is described below.

The experiment presented in this letter consists of a high-
voltage power supply connected to a set of electrodes, the
boundary electrode (BE) and the source electrode (SE). The
BE lines a glass or acrylic dish (diameter, d, �120 mm) that
contains dielectric liquid (castor oil) and conducting particles
(400–1,200 stainless-steel ball bearings; d � 1.6 mm); diffusion
is not prominent in the experiment; the BE for this experiment
is circular but can be of arbitrary shape. The SE is needle-
shaped and is placed above the center of the dish (h � 50 mm),
beyond the point of breakdown at the voltages used for the
experiment; for visualization, one can think of the SE as
spraying electrons quasi-homogeneously over the surface of
the oil, and the particles act as collectors that transport charge
through the boundary.

Before running an experiment, the particles are prepared in an
initial state; Fig. 1a shows a tightly compact circular distribution
(the shape, compactness, and symmetry can be chosen arbi-
trarily). At time t � 0 sec, a voltage difference of 20 kV is applied
between the two electrodes. The experiment runs until the
particles form a stationary network.

There are three stages to the growth of the pattern: (I) strand
formation, (II) boundary formation, and (III) geometric expan-
sion. We will describe the phenomenology of the three stages
below. These stages can be viewed in Movies 1–3, which are
published as supporting information on the PNAS web site.

In stage I, the particles move toward connecting to the
boundary. This can best be seen in the single-particle-width
strands that grow toward the outer electrode, depicted in Fig. 1
b and c. The growth of individual strands vs. time for a typical
experiment is shown in Fig. 2. The graph plots the distance that
the lead particle of a strand moves from its starting position as
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a function of time. The Insets show that the distance of the lead
particle matches well with the number of particles in a strand,
defined as the number of particles that have moved more than
one particle radius from their starting positions to join the
strand. This means that the lead particle recruits particles behind
it as it moves toward the boundary. The first noticeable feature
from Fig. 2 is that each strand grows in spurts, with periods of
movement and rest. The second, more remarkable feature is that
there is some correlation between the spurts; strands tend to
move and rest together.

Stage I ends when one of the strands reaches the BE. The lead
particle of the winning strand becomes electrically connected to
the boundary and shares the same electrical potential. The
second particle of that strand can then connect to the leading

particle and so forth. The process by which particles become
electrically connected to the boundary is stage II.

In stage II, the particles bind together to form the network and
establish its topology. The lead particle of the ‘‘winning’’ strand
binds to the boundary. Successive particles bind to neighbors that
are already electrically connected to the boundary. The cascade
of bindings runs through all of the particles in a short time, on
the order of fractions of a second. The key aspect of this binding
is that the network topology begins to set during this time: Some
particles move toward each other and connect, whereas others
break apart from each other. In other words, each particle
becomes one of three types: type i is a trunk that connects to only
two other particles; type ii is a branching point that connects to
three or more particles; and type iii is a terminus that connects
to only one other particle (see Fig. 3 for a detailed view of each
kind of particle). Each particle that binds to the network chooses
its type in stage II depending on how many neighboring particles
it binds to, and therefore the topology of the network is largely
determined during this stage. Reconfiguration of the topology
may occur during stage III, but because the particles are tightly

Fig. 1. Time sequence for single experimental run. The number of particles
in the final network is 784. (a) Circular initial condition (t � 0 sec). (b) After the
voltage is applied, bumps form along the perimeter of the distribution (t � 10
sec). (c) Bumps self-organize into chains (t � 847 sec). (d) One chain connects,
the rest wither and form into outer termini, and interior particles begin to
form the inner network (t � 854 sec). (e) Network unfolds from the outside in
with little change in network structure (t � 928 sec). ( f) Final state of network.
The box indicates the area of detail shown in Fig. 3 (t � 4,647 sec).

Fig. 2. The growth of the six largest strands vs. time from a typical experiment; the distance has been scaled to the diameter of a particle. The dashed line is
the path of the average speed of the winning strand. The Insets show that the distance that the lead particle moves correlates well with the number of particles
in the strand, meaning that a lead particle of a strand moves by recruiting particles in its trail. The dashed lines in the Insets are again the paths of the average
speed for each strand.

Fig. 3. Detail of the final network from Fig. 1f. The network is characterized
by the three types of particles shown in the figure. Termini touch only one
other particle; trunk particles touch exactly two other particles; and branching
points touch three or more particles.
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bound within the network, the final structure is mostly deter-
mined in stage II.

Fig. 4 shows a measure of the connectedness of the particles
as a function of time. The graph shows the average number of
neighbors that each particle has surrounding it; we refer to this
quantity as the average adjacency, �c�, mathematically de-
fined as

�c� �
1
N �

i�1

N

ci �
1
N �

i�1

N �
j�i

N

��lc � �r�i � r�j�	,

where the sums are over the total number of particles, N, and
where ci and r�i are the adjacency and position of particle i, � is
the Heaviside step function, and lc is a cutoff length that would
ideally be set very close to a particle diameter d; lc is set to be
1.5�d in Fig. 4. Stage II is indicated in the plot; note the drastic
change in slope of �c� as a function of time after that point. The
top dashed lines are estimates of the initial adjacency by con-
sidering the relative number of perimeter particles to volume
particles �c�t�0 � 6 
 (2��)��N. The bottom solid line is the
steady-state adjacency given by 2(1 
 1�N).

It bears mentioning that the network rarely forms closed loops
(every terminus in the network has a distinct path to the
boundary). Indeed, loops are unstable in the network. Fig. 5 Left
shows a pair of particles artificially placed in a loop; within a few
moments the two particles separate from each other. Fig. 5 also
shows the separation of the two particles as a function of time.

Something also interesting to note is that branching points
mostly connect to three other particles. Connecting to four is
possible, but much rarer; connecting to five or six never happens;
and connecting to more than six is not possible in two dimensions
for particles of the same size.

In stage III, the network expands into the available space
while maintaining its network topology. Particles located
nearest the boundary are the first to spread. The unfolding
then proceeds to the inner particles until the entire network
spreads to its maximum size. At this point, the network moves
only slightly in a slow wobble that neither affects its topology
nor its average spatial properties. Fig. 1 d–f depict the unfold-
ing process. Fig. 6 shows how the particles are radially dis-
tributed in the steady-state network. The mass dimension,
defined as the exponent obtained from � �(r) � N  r�m, was
fitted from the data shown in Fig. 6. The obtained values of the
dimension were �m � 1.74–1.91. Another feature of the

network can be seen in the density function P(n), which
measures the probability that there are n particles connected
‘‘upstream’’ of a given point, where upstream in this case
means toward the termini. Fig. 7 shows P(n) for a typical
steady-state network. The density distribution shows a power
law behavior for less than two orders of magnitude with an
exponent of 
1.14. The value of this exponent varies between

1.10 and 
1.33 with little dependence on the number of
particles in the experiment. This exponent was originally used
to characterize river basins (19) and later the internet (20); it
offers a measure of comparability between different networks.
For river basins, the exponents are similar because regardless
of details, they tend to approach a state of minimal energy
dissipation (19). The variability of the exponents in our
experiments may be due to finite scaling but may also suggest
that they may not reach an optimal dissipation state as
reported earlier (15–17); this may be due to dynamical effects
such as static friction.

The three stages described above are for a typical formation
of the network. It should be noted that deviations from this
description depend on the initial state of the system. First, if

Fig. 4. Graph showing the adjacency, �c�, as a function of time for five
different experiments. The dashed lines are an approximation to the value of
�c� at t � 0 sec, using geometric considerations. The solid line is the steady-state
adjacency, which is �2.

Fig. 5. Two particles separate from one another to break an artificial loop.
(Left) Three snapshots of two particles (indicated by the two arrows in each
photo), which were artificially placed in a loop (Top). After less than a second
the two particles separate from one another (Middle). At that point, the
particles return to a steady state (Bottom). Bright and dark areas on the photos
have been digitally inverted for better visibility. (Right) Graph showing the
separation of the two particles (scaled by the size of one particle radius) as a
function of time; the unfilled boxes represent the data points depicted by the
photos in Left. The dashed line is a linear fit to the initial movement of the
particles.

Fig. 6. The integrated number of particles as a function of the radius from
the center of mass of the network for several different experiments with a
similar number of particles.
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many particles start sufficiently close to the boundary in the
initial state, then it is possible that several networks form
simultaneously, each competing for ungrounded particles to
recruit into itself; the steady-state properties for these condi-
tions are contained in refs. 15–17. Second, the time to com-
plete stage I and stage III depends on three factors: (i) the
number of particles in the dish, (ii) how diffuse the particles are
in the initial state, and (iii) the geometry of the initial state.
Having more particles, more diffuse initial states, and less
symmetry decreases the distance of the particles from the
boundary and therefore speeds up stage I because of shorter
traveling distances and increased induced dipole interactions;
these three effects set a lower limit (�400) to the number of
particles that will still produce a network from a centered,
circular, and compact (all particles touching) initial state.
Having less particles and more diffuse initial states decreases
the time for stage III because it is easier to unfold as a network
into empty space.

Successive experiments with similar initial conditions produce
different networks; however, statistical features of the topology
are robust. For example, the number of termini, T, and branching
points, B, will be similar between experiments that have similar
number of particles in the network, N; moreover, both T and B
vary linearly with N. Fig. 8 shows a plot of T (Upper) and B
(Lower) as a function of N.

The geometry of the initial state can affect the topology of the
network. Because the binding of particles to the boundary is
strong, the network does not reconfigure easily; therefore, the
way the particles are distributed during stage II largely deter-
mines how the particles connect to one another. This constraint
sets the relative number of trunks, branches, and termini that the
network forms. Fig. 9 shows how different initial states lead to
different final networks.

In conclusion, we presented phenomenological results on an
electromechanical system where stable ramified networks
form. We described in detail the dynamical formation of the
networks, including the three stages of growth: (I) strand
formation, (II) boundary formation, and (III) geometric ex-
pansion. Each of these stages is characterized by their asso-
ciated processes: strand formation by the cooperative move-
ment of particles toward the outer boundary in the form of
chains of particles, boundary formation by the rapid connect-
ing of the particles to each other and the boundary, and
geometric expansion by the particles filling the available space
while maintaining the network topology. We found that de-

spite the many physical factors that can affect growth of the
network, the system is topologically robust across experiments
with similar initial states; specifically, the statistical properties
of each particle type are similar between experiments. If,
however, the initial states are geometrically different, the
topology of the final state can be radically different; this is in
large part due to the rapid freezing of the network during stage
II. More work is needed to determine how the time scale of the
freezing affects the network topology.

We are aware of the many differences between our exper-
iment and other more ‘‘real’’ complicated systems. Neverthe-
less, it is our view that it presents an intriguing controlled
system unlike other physical ones in that here the f lux of charge

Fig. 7. The density distribution, P(n), of the number of particles that are
‘‘upstream’’ of a given particle. The density distribution follows a power law
for less than two orders of magnitude. This plot is for a typical steady-state
network. Typical values obtained for the exponent range between 
1.10 and

1.33, with little dependence on the total number of particles, N.

Fig. 8. The number of termini, T (Upper), and branching points, B (Lower),
plotted against the number of particles in the network. Experiments were run
with circular initial states, both diffuse and compact.

Fig. 9. Final networks (Lower) that emerge from different initial states
(Upper).
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needs to remain constant after the steady state is reached, a
feature more akin to biological systems than to other physical
systems like crack propagation or dielectric breakdown where
the f lux is highly peaked in time. We also are aware of the
special considerations due to the discreteness of constituents
in the network. Our view on this point is that it allows us the
leverage to describe the networks topologically while main-

taining a spatial description as well. The combination of
topological variation with spatial constraints has already gar-
nered interest in the neurosciences (21, 22).

J.K.J. thanks C. Strelioff and G. L. Warner for useful discussions and
comments on the manuscript. This work was supported by National
Science Foundation Grants PHY 01-40179 and DMS 03-25939 ITR.

1. Ball, P. (1999) The Self-Made Tapestry (Oxford Univ. Press, Oxford).
2. Swinney, H. L. (1996) in Critical Problems in Physics, eds. Fitch, V. L., Marlow,

D. R. & Dementi, M. A. E. (Princeton Univ. Press, Princeton), pp. 51–74.
3. Witten, T. A. & Sander, L. M. (1981) Phys. Rev. Lett. 47, 1400–1403.
4. Niemeyer, L., Pietronero, L. & Wiesmann, H. J. (1984) Phys. Rev. Lett. 52,

1033–1036.
5. Ben-Jacob, E. & Garik, P. (1990) Nature 343, 523–530.
6. Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., Ijjasz-Vasquez, E. & Bras, R. L.

(1993) Phys. Rev. Lett. 70, 822–825.
7. Matsushita, M. & Fukiwara, H. (1991) in Growth Patterns in Physical Sciences

and Biology, eds. Garcia-Ruiz, J. M., Louis, E., Meakin, P. & Sander, L. M.
(Plenum, New York), pp. 1–11.

8. Tsimring, L., Levine, H., Aranson, I., Ben-Jacob, E., Cohen, I., Shochet, O. &
Reynolds, W. N. (1995) Phys. Rev. Lett. 75, 1859–1862.

9. Ben-Jacob, E. (2003) Philos. Trans. R. Soc. London A 361, 1283–1312.
10. Albert, R. & Barabási, A. L. (1995) Rev. Mod. Phys. 74, 47–97.
11. Yook, S. H., Jeong, H. & Barabási, A. L. (2002) Proc. Natl. Acad. Sci. USA 99,

13382–13386.

12. Toroczkai, Z. & Bassler, K. E. (2004) Nature 428, 716.
13. West, G. B., Brown, J. H. & Enquist, B. J. (1997) Science 276, 122–126.
14. Banavar, J. R., Maritan, A. & Rinaldo, A. (1999) Nature 399, 130–132.
15. Merté, B., Gaitzsch, P., Fritzenwanger, M., Kropf, W., Hübler, A. & Lüscher,
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