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Abstract

Obesity-related disease is a significant source of premature death
and economic burden globally. It is also a common comorbidity in
patients suffering from lung disease, affecting both severity and
treatment success. However, this complex association between
obesity and the lung is poorly understood. Autophagy is a
self-recycling homeostatic process that has been linked to beneficial
or deleterious effects, depending on the specific lung disease.
Obesity affects autophagy in a tissue-specific manner, activating
autophagy in adipocytes and impairing autophagy in hepatocytes,
immune cells, and pancreatic b-cells, among others. Obesity is
also characterized by chronic low-grade inflammation that can
be modulated by the pro- and antiinflammatory effects of the
autophagic machinery. Scant evidence exists regarding the impact
of autophagy in obesity-related lung diseases, but there are communal
pathways that could be related to disease pathogenesis. Important
signaling molecules in obesity, including IL-17, leptin, adiponectin,

NLRP3 inflammasome, and TLR-4, have been implicated in the
pathogenesis of lung disease. These mediators are known to be
modulated by autophagy activity. In this perspective, we highlight the
recent advances in the understanding of autophagy in obesity-related
conditions, as well as the potential mechanisms that can link
autophagy and obesity in the pathogenesis of lung disease.
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Clinical Relevance

Autophagy is a well-known important factor in lung disease
pathogenesis, but its relationship with obesity in lung diseases
has not been studied. With this perspective, we review what is
known to date and propose future directions in this field.

Obesity is the result of an imbalance
between energy intake and energy output
and has reached pandemic level in
developed countries. According to the
World Health Organization, the prevalence
of obesity has doubled since 1980, with 13%
of the adult population being obese (1).
Obesity accounts for 5.5–6.8% of the health
budget in the United States, and obesity-
related disease and organ dysfunction is a
significant source of premature death and
life years lost relative to life expectancy (2).
In addition to well-known associated
disorders such as type 2 diabetes mellitus,

hepatic steatosis, and atherosclerosis,
obesity has been implicated as a modulating
factor in a variety of other human
diseases. Obesity has been linked to
increased incidence of colon, prostate,
and hematologic malignancies (3), and
worsening autoimmune conditions (4),
but it may be protective in the critically
ill and in vascular disorders such as
postmyocardial infarction (5) or stroke (6).

Obesity-associated lung disease
presents unique phenotypes among
different lung pathologies, affecting both the
severity of disease and its response to

treatment. Obstructive sleep apnea (OSA)
and obesity hypoventilation syndrome are
the two diseases most intimately associated
with obesity (7, 8). However, obesity has
also been linked to several other lung
pathologies, such as asthma, chronic
obstructive pulmonary disease (COPD),
and pulmonary fibrosis. Obese patients
have a 50% higher incidence of asthma
compared with nonobese patients (9).
These patients tend to have a neutrophilic
and Th17-driven inflammatory response
that is less responsive to treatment with
glucocorticoids (10–12). Patients with
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idiopathic pulmonary fibrosis (IPF) and
obesity have higher waitlist mortality and
90-day post-transplant mortality (13, 14).
Obese patients with acute respiratory
distress syndrome have longer duration of
mechanical ventilation and intensive care
unit stays but have mortality rates similar
to those of nonobese patients (15). In
contrast, patients with COPD and obesity
have lower in-hospital, in-hospital
mortality, and readmission rates (16, 17).

This complex association between
adipose tissue and the lung is poorly
understood. Recently, autophagy, the highly
conserved degradation of intracellular
organelles and proteins, has been shown
to play an important role in both obesity
and pulmonary disease pathogenesis. This
perspective review focuses on the functional
role of autophagy-obesity–related
pulmonary disease states.

Autophagy

Autophagy
Autophagy is a vital cellular process that
degrades and recycles intracellular
components through lysosomal degradation
(18). Cytosolic material such as damaged
organelles, lipid droplets (LDs), foreign
pathogens, or unwanted cytosolic proteins
are enveloped in double-membrane
autophagosomes that fuse with lysosomes
for degradation. This degradative process is
coupled with conserving energy and key
nutrients for cellular homeostasis and
function, which confers a prosurvival effect.
Autophagy can be regulated by numerous
pathologic conditions such as infection,
environmental stress, malignancy, as well
as by metabolic derangement including
starvation and obesity (19). There are unique
autophagy pathways that involve receptors
that confer selectivity to recognize
ubiquitinated-tagged cargo through
ubiquitin-binding domains and link them to
double-membrane autophagosomes through
light chain 3 (LC3) interacting regions (20).

Selective Autophagy
Selective autophagy denotes the removal or
degradation of specific cellular organelles or
components such as stressed endoplasmic
reticulum (ER) (ER-phagy) (21–24),
mitochondria (mitophagy) (25–28),
LDs (lipophagy) (29–31), aggregated
misfolded proteins (aggrephagy) (32–35),
and microbes (xenophagy) (36–39).

Furthermore, polyubiquitin chains are
generated on the outer mitochondrial
membrane during mitochondrial stress
(40). Recruitment of additional proteins
such as PINK1 and Parkin contribute to the
generation of autophagosome-mediated
degradation of mitochondria, leading to
mitophagy (25). Impairment in mitophagy
can lead to the accumulation of damaged
mitochondria and to increased production
of reactive oxygen species to propagate
further cell damage (41). Lipid stores can
also be used through autophagy to release
free fatty acids (FFAs) for b-oxidation
and energy production (42). Autophagy
contributes to LD and triglyceride (TG)
breakdown through either engulfing small
LDs into autophagosomes or pinching
a small portion of a bigger LD. In
hepatocytes, autophagy blockade led to
the accumulation of triglycerides and LDs
that were colocalized with autophagic-
associated proteins and compartments (29).
Autophagy participates in the regulation of
innate and adaptive immunity, playing a
crucial role in the resistance to bacterial,
viral, and parasitic infections (43).
Autophagy can participate in regulating
inflammatory signaling in immune cells.
Autophagy-deficient macrophages have
increased IL-1b production after endotoxin
stimulation (44). Autophagy-associated
antiinflammatory properties (43) have a
broad range of influence, exerting regulation
over inflammasome activation (44), IFN
response (45), nuclear factor (NF)-kB
signaling (46), lymphocyte development and
function (47), and the production of IL-1a,
IL-1b, and IL-18 (48–51).

Molecular Mechanism of Autophagy
Numerous environmental factors regulate
the activation or inhibition of autophagy.
The mammalian target of rapamycin
(mTOR) negatively regulates autophagy
when there is an abundance of nutrients or
growth factors (52). During starvation,
AMP-activated protein kinase inhibits
mTOR and activates uncoordinated-51–like
protein kinase initiation complex (53),
which enhances the activity of the Beclin 1
interacting complex that consists of Beclin
1 (BCL2 family proteins), VPS34 (a class III
phosphatidylinositol-3 kinase), and
ATG14L, leading to nucleation and
formation of the autophagosome by
increasing PI3P levels. The elongation of
the autophagosome membrane requires
two ubiquitin-like conjugation systems.

The first is the ATG5–ATG12 complex, which
is conjugated by ATG7 and ATG10 enzymes.
The second requires ubiquitin-like protein
microtubule–associated protein 1 LC3, also
called ATG8, which is cleaved by ATG4B into
LC3B-I and then converted to LC3B-II when
conjugated with phosphatidylethanolamine by
ATG3 and ATG7 (19). Conversion of
LC3-I to LC3-II is a classic hallmark of
autophagosome formation. Once the
autophagosome is complete, it fuses with
lysosomes to form autophagolysomes for
content degradation (Figure 1) (53).

Autophagy and Obesity
In the past decade, many advances have
been made in the understanding of
autophagy in the pathogenesis of human
disease (19, 53–56). Obesity creates a
chronic low-grade inflammatory state (57)
that potentially can be modulated by
autophagy-associated pathways. Regulation
of tissue-specific autophagy has been
shown to be critical in the development of
obesity and obesity-associated metabolic
disorders (58). Atg71/2 heterozygous mice
are more prone to metabolic syndrome
and inflammasome activation (59).
Monoallelic loss of Beclin 2, which
participates in autophagy, results in
obesity, impaired glucose tolerance, and
decreased insulin sensitivity (60).

Adipose tissue is a key regulator of lipid
storage and is a major endocrine organ
of the body. Obesity and high-fat diet
(HFD) feeding up-regulates autophagy
in adipocytes through induction of
mitochondrial and ER stress (61). Aberrant
autophagy activation leads to defective
browning of the adipose tissue, diminishing
its thermogenic capacity (61) and metabolic
profile (62, 63). Autophagy also plays an
important role in adipogenesis and
differentiation. Stimulation of autophagy
favors white adipocyte differentiation,
whereas autophagy blockade favors brown
adipocyte differentiation (64, 65).
Adipocyte-specific Atg72/2 mice had lower
baseline white adipose tissue (WAT) and
body weight and improved metabolic
profiles and were more resistant to HFD-
induced obesity (64, 65). In humans,
autophagy is up-regulated in adipocytes
of obese patients with type 2 diabetes mellitus
or insulin resistance, as evidenced by
increased autophagy markers, associated
transcription factors, and increased
colocalization of LDs with LC3
in autophagosomes (66–70). Interestingly
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though, autophagy markers have also been
found to be low in obese patients before
bariatric surgery (71). Pharmacologic
blockade of autophagy by mineralcorticoid
receptor antagonists prevents weight gain
after HFD and increases brown adipocyte
transcripts and adipocyte count. Treatment
with lipoxins in obese mice down-regulates
autophagy in WAT, attenuates hepatic
steatosis, and reduces inflammation (72, 73).
Thus, autophagic activity in adipocytes
promotes obesity through white adipocyte
differentiation and augments obesity-

associated disorders such as insulin
resistance, hepatic steatosis, and
inflammation.

Hepatocytes convert FFAs into TGs for
storage in LDs (74). Blockade of lipophagy
leads to accumulation of TGs and LDs
within autophagic compartments (29).
Lipotoxicity, caused by either exogenous
accumulation via HFD or endogenous
accumulation via TG/LD, contributes to
further inhibition of autophagy and
worsens TG/LD accumulation (Figure 2)
(29, 75). In obesity models, autophagy

markers are down-regulated in hepatocytes
compared with control subjects. Blockade
of autophagy in hepatocytes leads to
worsening of metabolic diseases such as
insulin resistance, hepatic steatosis, and ER
stress (76). Thus, autophagic activity in
hepatocytes has a beneficial role and
protects against obesity-associated
metabolic disorders such as hepatic
steatosis, insulin resistance, and impaired
glucose metabolism.

FFAs can promote the generation of
harmful reactive oxygen species in b-cells
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Figure 1. Molecular mechanism of autophagy. Environmental signals modulate mammalian target of rapamycin (mTOR) complex 1 (mTORC1), negatively
regulating autophagy by inhibiting the uncoordinated-51–like kinase 1 (ULK1) complex consisting of ULK1, ATG101, ATG13, and FIP200. Starvation and low
ATP levels down-regulate mTOR and directly stimulate the ULK1 complex. The ULK1 complex positively regulates autophagy by activating the Beclin 1
interacting complex, which consists of Beclin 1 (BCL2 family proteins), VPS34 (a class III phosphatidylinositol-3 kinase), and ATG14L. This increases the levels
of phosphatidylinositol 3-phosphate (PI3P), which promotes the nucleation of autophagosomal membrane. The elongation of the autophagosome membrane
requires two ubiquitin-like conjugation systems. The first is the ATG5–ATG12 complex, which is conjugated by ATG7 and ATG10 enzymes. The second
one requires the ubiquitin-like protein microtubule–associated protein 1 light chain 3 (LC3), also called ATG8, which is cleaved by ATG4B into LC3B-I. LC3B-I
turns into the active LC3B-II after conjugation with phosphatidylethanolamine by ATG3 and ATG7. Once the double-membrane autophagosome is
complete, it fuses with a lysosome to form the autophagolysosome to degrade the autophagosome contents. ATG, autophagy-related protein; FIP200,
focal adhesion kinase family interacting protein of 200 kD; VPS34, vacuolar protein sorting 34.
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(77). Autophagy is up-regulated as a
defense mechanism, protecting b-cells on
FFA exposure (78). However, excessive
FFAs can subsequently inhibit autophagy
through impaired autophagosome
maturation and turnover (79). Autophagy
in skeletal muscle potentiates exercise-
induced improvements in glucose
homeostasis and insulin sensitivity in HFD
mice (80). Controversy remains as to
whether autophagy may be protective in
non–exercise-related HFD models (81,
82). HFD impairs autophagy in the
medial-basal hypothalamus, the central
control for metabolic physiology and
feeding behavior. Selective autophagy
blockade of the hypothalamus leads to
obesity and insulin resistance in mice.
Starvation induces autophagy in agouti-
related protein (AgRP) neurons, which
produce AgRP to increase food intake
(83). Autophagy blockade in these neurons
during starvation attenuates AgRP release
and confers a lean phenotype (84).
Conversely, in pro-opiomelanocortin
neurons that suppress food intake (83),
autophagy blockade through ATG7 or
ATG12 leads to increased obesity from

impaired lipolysis and disrupted glucose
homeostasis (85, 86).

In summary, autophagy plays an
important role in regulating obesity-
related metabolic dysfunction. Lipid overload
can affect autophagy, which can lead to
decreased lipophagy, decreasedmitochondrial
turnover and increased ER stress, low-grade
inflammation, and finally, insulin resistance,
although differences in autophagy regulation
can be cell specific (Figure 3). Currently, no
studies have examined the effect of HFD on
autophagy in the lung.

Autophagy and Pulmonary Disease

Asthma. Significant advancements have
been made in the understanding of
autophagy in the pathogenesis of pulmonary
disease, often through modulation of the
inflammatory response. Autophagy has
been studied in asthma, COPD, IPF,
acute lung injury, OSA, and several
other pulmonary diseases (87). Dendritic
cell–specific ATG5–deficient mice exposed
to house dust mites develop severe
IL-17A–dependent, steroid-resistant
asthma and unprovoked airway

hyperresponsiveness (AHR) (88).
However, during virally mediated asthma
exacerbations, exuberant autophagy may
decrease IFN-g and increase viral load (89).
In human subjects, single nucleotide
polymorphisms in the ATG5 gene have
been associated with asthma (90). Markers
of autophagy were also elevated in the
sputum granulocytes and eosinophils of
subjects with asthma (91).

COPD. Markers of autophagy are
elevated in patients with COPD from
cigarette smoke or a-1 antitrypsin
deficiency (92). Autophagy was also up-
regulated in vitro (92–98) and in vivo in
models of COPD and chronic bronchitis
(95, 99). Inhibition of autophagy (93, 94,
100) and mitophagy (101) attenuate
cigarette smoke–induced lung injury and
chronic bronchitis. However, aggregophagy
and xenophagy seem to be protective for
disease pathogenesis (102, 103).

Pulmonary Fibrosis. Autophagy is
associated with the degradation of collagen
and is protective in in vivo models of
pulmonary fibrosis (104–107). TGF-b, one
of the hallmark cytokines of fibrosis, can
inhibit autophagy through mTOR (108),
favoring collagen deposition in fibroblasts
(109). Autophagy marker levels are low in
the lungs of patients with IPF (109, 110).
Mitophagy can also have a potentially
beneficial effect in the pathogenesis of
pulmonary fibrosis. PINK1-deficient mice
were susceptible to lung fibrosis induced by
bleomycin (111, 112). The role PINK1
expression plays in the lungs of patients
with IPF is controversial because there are
reports on high (111) and low (112) levels
related to ER stress (112).

Inhibition of autophagy and mitophagy
decreases cell viability in acute lung injury
(113, 114). Up-regulation of autophagy by
low-dose cytoprotective carbon monoxide
exposure can inhibit cell death in lung
epithelial cells (115). In chronic/recurrent
hypoxia animal models of OSA, autophagy
is induced and may be protective for
cardiac function (116). However, the
activation of mitophagy can be detrimental
in hypoxemic conditions (117).

Impact of Autophagy in the
Pathogenesis of Obesity-
related Lung Disease

Obesity and many pulmonary diseases share
common signaling pathways related to
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Figure 2. Role of autophagy in lipid metabolism in the liver. In hepatocytes, autophagy plays an
important role in lipid turnover from lipid droplets. In starvation, autophagy degrades lipid droplets
to increase free fatty acids and fuel b-oxidation. In obesity-related conditions such as
hyperinsulinemia and lipid accumulation, autophagy is inhibited, which causes a predisposition
toward more lipid accumulation and, in turn, further autophagy inhibition that, in organs such as the
liver, can lead to hepatic steatosis.
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inflammation. Several signaling molecules
in obesity, including IL-17, leptin,
adiponectin, NLRP3 inflammasome, and
TLR-4, have been implicated in the
pathogenesis of lung disease. Autophagy
regulates inflammation through a variety of
mechanisms (47). In obesity, autophagy
impairment in the bone marrow derived
macrophages and Kupfer cells of mice fed
an HFD produces increased release of
proinflammatory cytokines and macrophage
proinflammatory polarization (118).
Autophagy-deficient mice have increased
inflammasome activation (59). In addition,
autophagy deficiency in the hypothalamus
induces IKKb/NF-kB activation and
inflammatory changes in the hypothalamus
after HFD (119). Autophagy blockade in
cultured human adipocytes leads to increased
IL-1b, IL-6, and IL-8 secretion (69) and
to the activation of ER stress–induced
autophagy (120).

IL-17 is a known mediator of
neutrophilic inflammation in the airways in
various lung diseases (121, 122). IL-17 is
also up-regulated in obesity associated

with altered dendritic cell function (123).
IL-1b is required for the production of
IL-17A by CD41 T cells. Autophagy
decreases IL-1b (44, 124) by sequestering
pro–IL-1 b, thus down-regulating IL-17A
production (48). In obesity-associated
asthma, IL-17A plays an essential role in
disease severity and is required for AHR in
a murine model because IL-17–deficient
mice do not develop asthma under HFD
(125). Increased IL-17 levels are correlated
to worsening the exacerbating fibrosis
in bleomycin-induced lung injury (126,
127). Loss of autophagy in dendritic
cells leads to IL-17A–driven AHR in a
murine asthma model (88). After infection
with respiratory syncytial virus, lc3b2/2

dendritic cells have altered innate cytokine
production, leading to a Th17-skewed
CD41 T-cell response and lung injury
(128). Similarly, airway epithelial cells
deficient in LC3B had enhanced
inflammasome activation and increased
IL-1 and IL-17A production after
respiratory syncytial virus infection (128).
IL-17 is increased in the bronchial mucosa

of patients with COPD (122, 129, 130)
and asthma (130). Genetic deletion of
IL-17 in mice was protective against
cigarette smoke–induced lung
inflammation and apoptosis of type II
alveolar epithelial cells (131).

Innate lymphoid cells group 3 cells
are lymphoid cells that lack B or T receptors
and produce IL-17A as their signature
cytokine (132). In mice under HFD
conditions, innate lymphoid cells group 3 has
been shown to be present in the lungs and
can be stimulated by IL-1b produced by lung
or adipose tissue macrophages to produce
AHR (125). IL-17A has also been shown to
play an important role in pulmonary fibrosis
pathogenesis by stimulating collagen
production. Autophagy is activated by IL-17
inhibition, promoting degradation of
collagen in lung epithelial cells (133). IL-17
can also inhibit autophagy in lung epithelial
cells by regulating phosphorylation of
BCL2 (134). HFD conditions can cause
interstitial disease similar to sarcoidosis and
the progressive development of lung fibrosis
(135). Thus, the regulation of IL-17 by
autophagy could be altered in obesity
and could lead to the pathogenesis of
pulmonary diseases such as asthma and
IPF (Figure 4A).

The secretion of IL-1b and IL-
18 is regulated by the NLRP3
inflammasome (136). In obesity, the
NLRP3 inflammasome is activated by
obesity-associated “danger signals” and
participates in the regulation of T cells in
the adipose tissue, contributing to a
proinflammatory state (137). NLRP3 has
been shown to be up-regulated in the
adipocytes of obese patients with metabolic
syndrome (138). Autophagy can regulate
inflammatory responses related to
NLRP3 inflammasome (50) and target
ubiquitinated inflammasomes for
degradation (139), limiting inflammation.
Under HFD conditions, FFAs are able to
induce inflammasome-dependent IL-1b
and IL-18 production and inhibit the
autophagosome formation that results in
impaired insulin signaling (140). In a
hyperoxia model, NLRP3-deficient mice
are resistant to oxidative damage, and
interestingly, this resistance is correlated
to PINK1 expression (114). NLRP3
inflammasome (as well as IL-17) is required
to develop AHR in obese mice (125), but
the relation between autophagy and NLRP3
under obesity conditions in other lung
diseases has not been studied. Thus,

High Fat Diet

Autophagic Activity

Adipose Tissue Hepatocytes β cells Myocytes Hypothalamus

Obesity
Insulin resistance
Hepatic Steatosis

Figure 3. Tissue-specific regulation of autophagy under high-fat diet conditions. Under high-fat diet
conditions, mice have tissue-specific changes in autophagy. In adipose tissue, there is an increase
in autophagic activity as a response to endoplasmic reticulum stress, leading to degradation of
the antiinflammatory adipokine adiponectin. In hepatocytes, b cells, and hypothalamic neurons, there
is decreased autophagy under a high-fat diet, leading to lipid accumulation, b-cell toxicity, and
inflammation. In myocytes under exercise, there is an increase in autophagy, leading to decreased
insulin resistance. Thus, aberrant autophagy contributes to obesity disease pathogenesis, leading to
insulin resistance, hepatic steatosis, and inflammation.
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autophagy may act as a defense mechanism
to limit obesity-associated inflammation
and lung disease through the inhibition
of the NLRP3 inflammasome–mediated
IL-1b and IL-18 production (Figure 4B).

Obesity is correlated with higher levels of
leptin, an adipokine that influences appetite.
Leptin has also been shown to stimulate the

production of inflammatory cytokines such as
TNF-a, IL-1b, IL-1RA, IL-R2, and IL-6 in
innate and adaptive immunity (141, 142).
Airway epithelial cells express receptors for
leptin and adiponectin, suggesting a potential
ability to respond to this systemic mediator
(143). Leptin levels have been correlated with
the severity of COPD (143), asthma (143),

and acute lung injury (ALI) (144). In patients
with COPD, increases in leptin levels
correlate with a proinflammatory state (145).
Leptin polymorphisms have also been
associated with COPD severity (146).
Leptin has been shown to promote a
Th17-mediated inflammatory response in
lupus-prone mice (147) and to inhibit
autophagy in CD41 T cells (148). Inhibition
of autophagy can increase leptin levels (85,
86), suggesting that leptin and autophagy
regulate one another, contributing to
both obesity and pulmonary disease
(Figure 4C).

Adiponectin is another key adipokine
in metabolism that is classically down-
regulated in obesity. HFD/obesity-
associated ER stress promotes the
degradation of adiponectin through
autophagy, and this has been associated with
glucose intolerance or diabetes in human
studies (149, 150). Adiponectin has also
been shown to have antiinflammatory
effects such as suppression of TNF-a, IL-6,
and NF-kB and up-regulation of IL-10
(141). Mice deficient in adiponectin have
increased IL-17A–mediated neutrophilic
infiltration of the lung (151). Adiponectin
has also been shown to regulate IL-17A
release in other diseases such as psoriasis
(152). Adiponectin is a known positive
regulator of autophagy in myocytes (81),
and adiponectin-induced autophagy
has been found to have beneficial
antiinflammatory effects in cardiovascular
diseases (153, 154), but currently, no
studies have examined its effects on
autophagy in the lung. In macrophages
stimulated with LPS, adiponectin can
inhibit autophagy-mediated TNF-a
production (155). Treatment with
adiponectin can abolish AHR in asthma
murine models (156) and decrease
inflammation in ALI murine models
(157, 158). Thus, adiponectin may play a
role in augmenting autophagy-mediated
immune modulating and attenuating
obesity-associated inflammatory cytokine
release and lung injury (Figure 4C).

TLR-4 signaling and ER stress are
related to the proinflammatory response in
obesity. HFD can stimulate TLR-4, which,
in turn, increases the expression of
proinflammatory cytokines that lead to
mitochondrial and ER stress (61). ER
stress is one of the most important
stimulators of autophagy in WAT under
obesity conditions (149, 150). However,
TLR-4 has been shown to be protective
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Figure 4. Proposed mechanisms of obesity- and autophagy-related pathogenesis of lung disease. (A)
Obesity induces the production of inflammatory cytokines such as IL-1b by macrophages in the adipose or
lung tissue, leading to the production of IL-17. IL-17 has been correlated with worsening lung inflammation
and injury in diseases such as asthma and fibrosis. Autophagy can sequester pro–IL-1b, decreasing IL-1b
production and thus negatively regulating IL-17 levels. (B) Obesity is characterized by NLRP3
inflammasome activation that increases the production of inflammatory cytokines such as IL-1b and IL-18,
which has been shown to contribute to lung disease pathogenesis. Autophagy can inhibit inflammasome
activation, thereby decreasing IL-1b and IL-18 production. (C) Adipocytes are characterized by adipokine
production such as leptin and adiponectin. Under obesity conditions, leptin levels are increased as a
result of leptin resistance. Leptin has systemic effects and can increase the production of inflammatory
cytokines. Adiponectin is decreased in obesity. Adiponectin has antiinflammatory properties through
increasing production of IL-10 and inhibits the production of proinflammatory cytokines such as TNF-a,
IL-1b, IL-1RA, IL-R2, IL-6, and IL-17. ALI, acute lung injury; COPD, chronic obstructive pulmonary
disease; NLRP3, nod-like receptor protein-3.
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for the maintenance of normal lung
architecture because TLR-4–deficient
mice have emphysema and increased
autophagy levels after cigarette smoke
exposure (95). In a murine model of
hypercholesterolemia, mice were found to
develop emphysema and TLR-4 signaling
activation after feeding with HFD (159).
Impairment of TLR-4–dependent
autophagy activation in the bleomycin
pulmonary fibrosis models exacerbates
pulmonary fibrosis through the inhibition
of autophagy-associated collagen
degradation. This effect can then be
reversed when autophagy is stimulated by
rapamycin (160). All the above suggest that
TLR-4 can exert different regulatory
functions over autophagy, depending on

the stimuli such as CS, FFAs, or profibrotic
mediators.

Future studies should focus on the
regulation of these obesity-related
inflammatory mediators by stimulation
and inhibition of autophagy under HFD
conditions in animal models of asthma,
IPF, ALI, OSA, and COPD. We hypothesize
that the stimulation of autophagy in
these models may attenuate HFD or
obesity-associated lung injury.

Conclusions

Autophagy and obesity-related inflammation
are involved in pulmonary disease
pathogenesis. The growing interest in

autophagy and its role in obesity-associated
pulmonary disease is evolving. Obesity
promotes a systemic proinflammatory
environment that is exacerbated by obesity-
associated suppression of autophagy.
Defective autophagy leads to dysregulated IL-
17, leptin, adiponectin, TLRs, and NLRP3
inflammasome activation, as well as to
defective mitochondrial accumulation and
persistent ER stress, potentially leading to
worse lung injury. Currently the role of
autophagy in obesity-related lung disease is
still unclear, and efforts to identify these links,
given the high prevalence of obesity among
the world population, are needed. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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63. Rosenwald M, Perdikari A, Rülicke T, Wolfrum C. Bi-directional
interconversion of brite and white adipocytes. Nat Cell Biol 2013;15:
659–667.

64. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose-
specific deletion of autophagy-related gene 7 (atg7) in mice reveals
a role in adipogenesis. Proc Natl Acad Sci USA 2009;106:
19860–19865.

65. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y,
Pessin JE, Schwartz GJ, Czaja MJ. Autophagy regulates adipose
mass and differentiation in mice. J Clin Invest 2009;119:3329–3339.

66. Ost A, Svensson K, Ruishalme I, Brännmark C, Franck N, Krook H,
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