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Abstract are necessary for the innate immune response and trigger the
induction of RIG-Iand MDAS5 to resist IAV infection in human nasal

We studied the relative roles of Duox2-derived reactive oxygen species  epithelium and mouse nasal mucosa.

(ROS) in host defense against influenza A virus (IAV) infection in

normal human nasal epithelial cells and mouse nasal mucosa. We Keywords: influenza A virus; Duox2; reactive oxygen species;
found that Duox2 primarily generated ROS rapidly after [AV infection ~ retinoic acid-inducible gene-I; melanoma differentiation-associated
in normal human nasal epithelial cells and that knockdown of protein 5

Duox2 aggravated IAV infection. In addition, Duox2-derived ROS

enhancement significantly suppressed IAV infection in nasal

epithelium. In particular, Duox2-derived ROS were required for the Clinical Relevance

induction of retinoic acid-inducible gene (RIG)-I and melanoma

differentiation—associated protein 5 (MDAD5) transcription. After We reveal that Duox2 is responsible for reactive oxygen species
intranasal TAV inoculation into mice, viral infection was significantly (ROS)-sensitive transcription of retinoic acid-inducible
aggravated from 3 days postinoculation (dpi) in the nasal mucosa, and gene-I and melanoma differentiation-associated protein 5 for
the IAV viral titer was highest at 7 dpi. Both RIG-Iand MDAS5 messenger | recognition of influenza A virus (IAV) and IFN-related innate
RNA levels increased dominantly in mouse nasal mucosa from 3 dpi; immune signaling can be induced through Duox2-derived
consistent with this, RIG-I and MDA5 proteins were also induced ROS in nasal epithelium to resist IAV infection. We propose
after IAV infection. RIG-I and MDA5 messenger RNA levels were that Duox2-derived ROS are critical mediators for the antiviral
induced to a lower extent in the nasal mucosa of the mice that were innate immune mechanism and may constitute a key element in
inoculated with Duox2 short hairpin RNA, and the IAV viral titer was treatment or prevention of acute IAV infection in nasal epithelia.
significantly higher in nasal lavage. Taken together, Duox2-derived ROS

The innate immune system of the exposed to viral particles, such as single- and  antiviral innate immune systems (1, 2).
respiratory epithelium serves as the firstline ~ double-stranded viral RNA, innate immune  Initiation of these innate immune responses
of defense against invading respiratory mechanisms can be activated to initiate is achieved through the recognition of
viruses. When respiratory epithelium is the production of IFN, a key molecule in invading viruses by pattern-recognition
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receptors (PRRs), and virus-derived
nucleic acids are considered to activate
various PRRs, including members of the
membrane-bound Toll-like receptor (TLR)
family, such as TLR3, -7, and -9, and the
recently identified cytoplasmic retinoic
acid-inducible gene (RIG)-I-like receptors
(RLRs), including RIG-I and melanoma
differentiation-associated protein 5 (MDAD5)
(3). After the recognition of viral RNAs,
the antiviral innate immune response is
activated, mainly through the rapid
expression of IFNs in nasal epithelium (4).
IFNs secreted after viral infection induce
antiviral innate immune responses via the
Janus kinase/signal transducer and activator
of transcription signaling pathway, which
facilitates intracellular antiviral signaling
through the induction of more than 300
IFN-stimulated genes (4). Reportedly, rapid
production of IFN-stimulated genes could
actually be associated with degradation of
viral RNA, preventing virus translation and
virion assembly, and suppressing viral
replication (5, 6).

Influenza A virus (IAV) is a highly
contagious agent that causes upper and
lower respiratory tract infection, and
exhibits tremendous genetic variability
through continuous mutations (7).
Accordingly, novel influenza strains
regularly evolve, to which humans have
little immunity, resulting in global
pandemics. For this reason, the cure rate of
IAV-related pulmonary infectious diseases
has not been changed over the last years.
Therefore, more research is needed to
control IAV infection in the respiratory
tract, and the identification of new
therapeutic inductors represents a critical
research goal.

Reactive oxygen species (ROS) are
believed to be inevitable toxic by-products
that cause cellular damage or stress (8).
However, mounting evidence suggests
that ROS generation is an important
component of the host’s arsenal to combat
invading microorganisms (9-11). The
most common free radical in biological
systems is superoxide anion and hydrogen
peroxide, products of various oxidative
enzymes, including nicotinamide adenine
dinucleotide phosphate oxidase (Nox).
Seven isoforms of Nox (Nox1, Nox2,
Nox3, Nox4, Nox5, Duoxl, and Duox2)
have been identified in humans, and Duox
has been shown to be the major Nox
isoform involved in ROS generation in
airway epithelium (8-10). Furthermore,
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interesting lines of research describe
Duox-mediated ROS generation as an
integral part of the host defense system at
mucosal surfaces (10, 12, 13). Recently, it
has been verified that Duox2 is primarily
responsible for protection against viral
invaders and plays an important role in
antiviral innate immunity (14). However,
the distinct relationship between Duox2-
derived ROS and IFN-related innate
immune responses is not fully
understood.

Here, we used normal human nasal
epithelial (NHNE) cells and an
in vivo model to clarify the role of Duox2
in acute IAV infection, and investigated
how Duox2-derived ROS are responsible
for antiviral defense mechanisms.
Our data suggest that Duox2 is critical
for the generation of key cell surface
viral recognition molecules/PRRs and serves
as a host-protective immune response
to control acute viral infection in nasal
mucosa.

Materials and Methods

More detailed MATERIALS AND METHODS may
be found in the online supplement.

Cell Culture

The Institutional Review Board (IRB) of
the Chung-Ang University College of
Medicine approved this study (IRB number
C20122095) and all subjects who participated
in the study provided written informed
consent. Specimens for the culture of NHNE
cells were obtained from the middle nasal
turbinate of five healthy volunteers. We
cultured these specimens using a system
designed for NHNE cells (14-16). Briefly,
passage-2 NHNE cells (1 X 10° cells/culture)
were seeded in 0.5-ml culture medium on
Transwell clear culture inserts (24.5 mmy;
0.45-pm pore size; Costar Co., Cambridge,
MA). Cells were cultured in a 1:1 mixture
of basal epithelial growth medium and
Dulbecco’s modified Eagle’s medium
containing previously described supplements.
All the experiments described herein used
NHNE cells at 14 days after air-liquid
interface formation.

Mice

Male C57BL/6] (B6) mice (Orientalbio,
Seoul, Korea) aged 7 weeks (19-23 g)
were used as wild-type (WT) and
maintained in our animal facilities under

specific, pathogen-free conditions. In vivo
experiments were approved by the IRB of
the Yonsei University College of Medicine
(IRB number 2014-0163).

Virus Inoculation

NHNE cells were either mock-infected
(PBS) or inoculated with IAV (WS/33,
HINI) at a multiplicity of infection (MOI)
of 1. IAV (WS/33, HINI; 213 pfu in 30 pl
PBS) was inoculated into mice by intranasal
delivery.

Real-Time PCR

Total RNA was isolated from NHNE cells
and homogenized mouse nasal mucosa
infected with WSN/33 (HIN1) at 10 and 30
minutes, 1, 2, and 8 hours, and 1, 2, 3, 7, 10,
and 14 days using TRIzol (Invitrogen,
Carlsbad, CA). Complementary DNA
(cDNA) was synthesized from 3 g of RNA
with random hexamer primers using
Moloney murine leukemia virus reverse
transcriptase (PerkinElmer Life Sciences,
Waltham, MA and Roche Applied Science,
Indianapolis, IN).

The Measurement of ROS

After stimulation with WS/33 (HIN1) for
1 hour, confluent cells were washed with
RPMI (lacking phenol red). The cells were
washed with 1 ml of Hanks’ balanced salt
solution at least five times to remove mucus
secretion, and were then incubated with

5 uM of 2',7'-dichlorofluorescein diacetate
(DCF-DA) for 10 minutes. Transwell

clear culture inserts were examined with

a Zeiss Axiovert 135 inverted microscope
equipped with a 20X Neofluor objective
and a Zeiss LSM 410 confocal attachment
(Zeiss, Minneapolis, MN).

Cell Transfection with Nox4, Duox1,
and Duox2 Short Hairpin RNAs
Expression of Nox4, Duox1, and Duox2
was suppressed using gene-specific short
hairpin RNA (shRNA) (lentiviral particles;
Santa Cruz Biotechnology, Dallas, TX), and
the transfection rates for shRNAs were
determined to be greater than 70% in NHNE
cells. The cells were transfected with

each shRNA using the Oligofectamine
reagent following the manufacturer’s
instructions (Invitrogen). The shRNA

(10 pl, 1 X 10* infectious units of virus)
and Oligofectamine (1 wg) were mixed
individually with the culture media.
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Duox2 Overexpression Using
Full-Length of cDNA Clones

For Duox2 overexpression in NHNE cells,
cells were transfected with the Duox2
(NM_177610) and Duoxa2 (NM_025777)
mouse cDNA ORF Clones purchased from
Origene (Beijing, China).

Duox2 Silencing Using Lentiviral
shRNA in Mouse Nasal Mucosa

For Duox2 silencing in mouse nasal mucosa
using shRNA lentiviral particles (Thermo
Fisher Scientific Inc, Waltham, MA), mice
were anesthetized with 50 mg/kg Zoletil
(Virbac Korea, Seoul, Korea) and 10 mg/kg
Rompun (Bayer AG, Leverkusen, Germany)
and given either mouse Duox2 shRNA
(clone ID V3LMM-425530) or scrambled
shRNA lentiviral particle (3 X 107 TU/ml)
twice 3 days apart, intranasally in a total
volume of 30 .l (17). After 6 days, the mice
were used for the experiments.

Statistical Analysis

At least three independent experiments were
performed with cultured cells from each
donor, and the results are presented as the
mean value (=SD) of triplicate cultures.
Differences between treatment groups were
evaluated by ANOVA with a post hoc test.
Differences were considered significant at
P less than 0.05.

Results

NHNE Cells Were Susceptible to 1AV
Infection

NHNE cells were obtained from five healthy
subjects to assess the susceptibility to IAV
and were infected with TAV WS/33 (HIN1)
at an MOI of 1. Supernatants and cell
lysates were harvested at 10 and 30 minutes,
1, 2, and 8 hours, and 1, 2, and 3 days
postinoculation (dpi). We then measured
the messenger RNA (mRNA) levels of IAV
using real-time PCR and found that IAV
mRNAs increased significantly from 1 day
after infection (mean IAV mRNA: 1.2 X 10°
(1 dpi); 1.8 X 10° (2 dpi); 2.2 X 10° (3 dpi);
P < 0.05; Figure 1A). We examined viral
titer of IAV by plaque assay and found that
viral titer also increased significantly from
1 dpi (2.2 X 10° pfu/ml). Peak titer of
IAV was 1.2 X 10° pfu/ml at 3 days after
infection (P < 0; Figure 1B). These findings
demonstrate the susceptibility of the nasal
epithelium to WS/33 (HIN1), and show
that the mRNA level and viral titer of IAV
increased from 1 day after IAV infection.

Duox2-Derived ROS Are Required for
Controlling IAV Infection

We reported that IAV infection induced
intracellular ROS generation at 1 hour
postinoculation (hpi) and verified that
Nox4, Duoxl, and Duox2 mRNA levels

increased significantly after IAV infection
in nasal epithelium, and the mRNA levels
of NoxI, Nox2, Nox3, and Nox5 were
minimally induced by IAV infection (14).
Based on these findings, we focused on
Nox4, Duox1, and Duox2 as possible Nox
subtypes that are involved in IAV-induced
ROS generation in nasal epithelium. We
then measured the mRNA levels of Nox4,
Duoxl, and Duox2 using real-time PCR
and observed that the mRNA levels of these
Nox enzymes increased considerably from
10 minutes after infection and were
maximal at 30 minutes (Nox4 mRNA,
32.0 = 1.1 fold over control; DuoxI
mRNA, 19.4 * 1.4 fold over control; Duox2
mRNA, 19.1 * 0.8 fold over control; P <
0.05; Figures 2A-2C) after IAV infection in
NHNE cells.

NHNE cells were transfected with
Nox4, Duoxl1, and Duox2 shRNA to
suppress the endogenous mRNA expression
of each Nox subtype, and ROS levels were
then measured using a fluorescence-based
assay with 2',7’-DCF-DA. Then, plaque
assay and Western blot analysis were
performed to measure the viral titer and
IAV nucleoprotein (NP). We found that
intracellular ROS generation at 1 hour after
IAV infection was significantly attenuated
in the cells that were transfected with
Duox2 shRNA, and the amount of
intracellular ROS was not changed in cells
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Figure 1. Normal human nasal epithelial (NHNE) cells were susceptible to influenza A virus (IAV) infection. NHNE cells from five healthy volunteers were
inoculated with WS/33 (H1N1) for 10 and 30 minutes, 1, 2, and 8 hours, and 1, 2, and 3 days at an multiplicity of infection (MOI) of 1. (A) Real-time

PCR showed that the IAV messenger RNA (MRNA) level was elevated from 1 day postinoculation (dpi) and was highest at 3 dpi. (B) Plaque assay also
showed that viral titer was significantly higher from 1 dpi. Results are presented here as the mean = SD from five independent experiments. *P < 0.05
compared with levels in mock-infected cells. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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Figure 2. The mRNA levels of three nicotinamide adenine dinucleotide phosphate oxidase
(Nox) subtypes are preferentially induced to produce reactive oxygen species (ROS)

after IAV infection. NHNE cells were inoculated with WS/33 (H1N1) for 10 and 30 minutes,
1, 2, and 8 hours, and 1, 2, and 3 days at an MOI of 1. Real-time PCR showed that

Nox4 (A), dual oxidase (Duox) 1 (B), and Duox2 (C) mRNA levels are induced from 10 minutes
after infection. Results are presented here as the mean = SD from five independent
experiments. *P < 0.05 compared with mRNA levels in mock-infected cells.

transfected with Nox4 and Duox1
(Figure 3A). IAV viral titers in cells (5.9 X
10° pfu/ml) that had been transfected with
Duox2 shRNA before IAV infection
were significantly higher after infection
compared with IAV-infected cells (2.2 X
10° pfu/ml), cells transfected with control
shRNA, cells transfected with Nox4
shRNA, and cells transfected with Duox1
shRNA before IAV infection (Figure 3B).
In addition, Western blot analysis also
revealed that IAV NP expression showed
a more considerable increase in Duox2
knockdown cells than in cells showing
normal Duox2 expression (Figure 3C).
Subsequently, we transfected the cDNA
clones containing the entire pCMV-Duox2
and Duoxa2 sequences into NHNE cells for
the enhancement of Duox2-derived ROS.
RT-PCR showed that both Duox2 and
Duoxa2 mRNA levels were effectively
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elevated (Figure 3D) and the amount of
intracellular ROS was significantly higher in
cells overexpressing Duox2 and Duoxa2
at 1 hpi (Duox2 overexpression with
IAV infection, 58.9 * 4.6; only Duox2
overexpression, 24.7 = 2.7; IAV infection,
33.5 % 1.2; versus control 5.8 = 1.6; P <
0.05; Figure 3E). Interestingly, increased
IAV mRNA level (3.6 X 10° versus

3.9 X 10% P < 0.05; Figure 3F) and NP
expression (Figure 3G) at 2 dpi was
significantly attenuated in NHNE cells
overexpressing Duox2 and Duoxa2. These
results indicate that Duox2 is a key
mediator, critically important for the
generation of ROS and viral load
attenuation in NHNE cells. Attenuation
of Duox2-derived ROS generation
subsequently aggravated acute IAV
infection, and IAV infection could be
effectively controlled if the amount of

Duox2-derived ROS was increased in the
nasal epithelium.

TLRS3, RIG-I, and MDA5 Are
Responsible for Recognition of 1AV in
NHNE Cells

To further evaluate the potential role of
Duox2-derived ROS at 1 hpi after IAV
infection in nasal epithelium, we examined
the relationship between Duox2-derived
ROS and the transcription of PRRs after
IAV infection.

We infected NHNE cells with WS/33
(HIN1) at an MOI of 1, and the cell
lysates were harvested at 1, 2, and 3 dpi. We
then measured the mRNA levels of PRRs,
such as TLR3, TLR7, TLR9, RIG-1, and
MDAS5, which are known to sense double-
stranded RNA virus in the respiratory
epithelium. The results showed that TLR3,
RIG-I, and MDA5 mRNA levels were
significantly induced from 1 dpi, and
these levels were maintained up to 3 dpi
(Figure 4A). To analyze this in more detail,
we determined the levels of transcription
for TLR3, RIG-I, and MDA5 after IAV
infection using real-time PCR. Increased
TLR3, RIG-I, and MDAS5 gene expression
levels were observed from 8 hpi with
a peak at 1 dpi (TLR3, 969,121.4 +
551,543.3; RIG-I, 3,290,121.5 * 282,842.7;
MDADS5, 1,214,512.3 * 34,648.2; Figures
4B-4D). These data suggest that TLR3,
RIG-I, and MDAS5 are the dominant PRRs
responding to IAV infection, as such are
critical components of the innate immune
response in nasal epithelium.

Duox2-derived ROS Are Involved in
RIG-I- and MDA5-Mediated Immune
Response

To determine the relationship between
Duox2-derived ROS and induction of TLR3,
RIG-I, and MDAS5 transcription after IAV
infection, cells were transfected with Duox2
shRNA and then inoculated with TAV
WS/33 (HIN1). The mRNA levels of TLR3,
RIG-I, and MDA5 were analyzed by real-
time PCR at 1 dpi. IAV infection resulted

in increased mRNA levels of TLR3, RIG-I, and
MDAS5 at 1 dpi, and IAV-induced RIG-I and
MDA5 mRNA levels decreased significantly
in cells with knocked-down Duox2 gene
expression compared with cells transfected
with control shRNA (RIG-I, 1.3 X 10°
versus 5.1 X 10°% MDAS, 3.3 X 10° versus
1.2 X 10% P < 0.05). However, TLR3
mRNA levels were not attenuated in
Duox2 knockdown cells (Figures 5A-5C).
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Figure 3. Duox2 is mainly involved in IAV-induced intracellular ROS generation in the nasal epithelium. NHNE cells were transfected with control (Cont) short
hairpin RNA (shRNA), Nox4 shRNA, Duox1 shRNA, and Duox2 shRNA to suppress endogenous mRNA expression for 48 hours, and plaque assay was performed
to measure changes in IAV viral titers after the suppression of Nox4-, Duox1-, and Duox2-induced intracellular ROS generation (A and B). After transfecting control
shRNA and Duox2 shRNA into NHNE cells, Western blot analysis was performed to measure changes in IAV nucleoprotein (NP) after the suppression of
Duox2-derived intracellular ROS generation (C). NHNE cells were transfected with pCMV-Duox2 and Duoxa2 overexpression vectors to enhance Duox2-derived
intracellular ROS. RT-PCR showed that both Duox2 and Duoxa2 mRNA levels were significantly induced (D), and the amount of intracellular ROS also increased (E)
after transfection with Duox2 and Duoxa2 overexpression vectors. Plague assay and Western blot analysis were performed to measure changes in 1AV viral titers
(F) and IAV NP (G) after the enhancement of Duox2-derived intracellular ROS. The fluorescence intensity and Western blot analysis data are representative

of five independent experiments, and results are presented here as the mean + SD from five independent experiments. *P < 0.05 compared with levels in
IAV-infected cells or cells transfected with control shRNA or pCMV vector. DCF, 2',7’-dichlorofluorescein.
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Figure 4. The mRNA levels of Toll-like receptor (TLR) 3, retinoic acid-inducible gene (RIG)-I, and melanoma differentiation-associated protein 5 (MDAS)
are preferentially induced to recognize IAV in nasal epithelium. NHNE cells were inoculated with WS/33 (H1N1) for 10 and 30 minutes, 1, 2, and

8 hours, and 1, 2, and 3 days, at an MOI of 1. RT-PCR (A) and real-time PCR showed that TLR3 (B), RIG-I (C), and MDA5 (D) mRNA levels are induced
from 8 hours after infection. Results are presented here as the mean = SD from five independent experiments. *P < 0.05 compared with mRNA levels

in mock-infected cells. Pl day, postinfection day.

In addition, both RIG-I and MDA5 mRNA
levels were considerably elevated in cells
with an increased amount of Duox2-derived
ROS compared with cells that were infected
with IAV (RIG-1, 4.3 X 10° versus 2.5 X 10%
MDAS5, 5.6 X 10° versus 2.4 X 10 P < 0.05;
Figures 5D and 5E). Interestingly, both RIG-
Iand MDA5 mRNA levels were significantly
higher in Duox2-overexpressing cells
without IAV infection than in uninfected
cells (RIG-1, 6.1 X 10° versus 1.2 X 10°;
MDAS5, 7.4 X 10° versus 1.0 X 10% P <
0.05). These results provide strong evidence
that Duox2-derived ROS are essential for the
induction of cytoplasmic PRRs, RIG-1, and
MDAS in nasal epithelium.

Duox2-derived ROS Are Required for
Induction of RIG-I and MDAS5 in Nasal
Mucosa In Vivo

To prove whether Duox2 was involved
in the induction of RIG-I and MDA5

in nasal mucosa in response to IAV
infection, we established an in vivo model
of acute nasal IAV infection in mice.
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First, we infected B6 mice (n =3) with
IAV WS/33 (HIN1), via the intranasal
administration of a dose of 213 pfu. As
a gross determinant of virus-induced
morbidity, the body weights of the
infected WT mice were monitored

for 14 days and significant weight loss
values were observed from 6 dpi until
12 dpi compared with uninfected mice
(Figure 6A). Then we inoculated 213 pfu
IAV WS/33 (H1IN1) to B6 mice (n=5)
by intranasal delivery and performed the
plaque assay using nasal lavage (NAL)
fluid, which was obtained at 3, 7, 10, and
14 dpi. The results showed that viral titer
was elevated significantly from 3 dpi, and
the highest titer was observed at 7 dpi
(14,200 pfu/ml). Subsequently, the viral
titer gradually decreased until 14 dpi
(2,500 pfu/ml) in IAV-infected mice
(Figure 6B). Correspondingly,
hematoxylin and eosin-stained
micrographs of coronal nose sections
were obtained from WT mice at 0, 7,
and 14 dpi; mouse nasal mucosa from

7 dpi revealed severe subepithelial
consolidation, larger amount of secretion
in nasal cavity, and increased epithelium
detachment compared with nasal
mucosa from mice at 0 dpi (Figure 6C).
In particular, polymorphonuclear
neutrophil infiltration was dominantly in
nasal mucosa at 7 dpi (Figure 6D). These
pathological findings were not observed
in the nasal mucosa from mice at 14 dpi.
Based on these findings, we conclude
that mouse nasal mucosa is susceptible
to IAV and that infection is significant as
early as 3 dpi. IAV infection reached its
peak on Day 7 and then declined until
Day 14 in mice with normal immune
responses.

Finally, we attempted to determine if
differentially Duox2-generated ROS were
related to the induction of RIG-Iand MDA5
in response to IAV infection. For this
study, we transfected both control shRNA
(n =5, control short hairpin RNA [shCont]
mice) and Duox2 shRNA (n =5, shDuox2
mice) lentiviral particles by intranasal
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challenge twice, 3 days apart, and then
inoculated 213 pfu IAV WS/33 (HIN1)
into mice by intranasal delivery. We did not
observe any difference in the survival rate
between shCont mice, shDuox2 mice, and
WT mice before IAV infection. However,
this was accompanied by a significant
decrease in survival rate of shDuox2 mice
after IAV infection. Endogenous Duox2
gene expression on nasal mucosa was
decreased by 78% after Duox2 shRNA
transfection (shCont mice, 2.8 X 10°,
versus shDuox2 mice, 5.9 X 10% P < 0.05)
and the survival rate of mice transfected
with Duox2 shRNA after IAV infection
was significantly lower than that of shCont
mice at 12 dpi (Figures 7A and 7B).

This was accompanied by a significant
increase in the mean TAV mRNA level
from mouse nasal mucosa (shDuox2 mice,
2.3 X 107, versus shCont mice, 5.4 X 10°%
P < 0.05; Figure 7C) and in the viral

titer from NAL fluid (shDuox2 mice,

2.2 X 108, versus shCont mice, 4.7 X 10%;
P < 0.05; Figure 7D) at 7 dpi. These data

reveal that Duox2 participates in the
overall host defense of mouse nasal
mucosa during the early stages of IAV
infection.

After inoculating B6 mice (n=5)
with 213 pfu IAV WS/33 (HIN1)
by intranasal delivery, cell lysates from
nasal mucosa were harvested at 0, 3, 7,
10, and 14 dpi. We then measured
the mRNA levels of TLR3, TLR7, TLRY,
RIG-I, and MDA5 using real-time
PCR and found that the mRNA levels
of both RIG-I and MDA5 increased
significantly from 3 dpi (RIG-1, 9.9 X 10*
versus 8.8 X 10% MDA5, 3.1 X 10°)
compared with nasal mucosa from
uninfected mice (RIG-I, 8.8 X 10%
MDAS, 9.1 X 10%; P < 0.05; Figure 7E).
The mRNA levels of TLR3, TLR7, and
TLRY were minimally enhanced by
IAV inoculation (Figure 7E). The protein
expression of both RIG-I and
MDAS5 were also induced at 3 dpi in
cell lysates from mouse nasal mucosa
(Figure 7F).

Kim, Kim, Kim, et al.: Duox2 Is Required for RIG-I and MDA5 Expression

Next, RIG-I and MDAS5 gene and
protein expression levels were measured
with cell lysates from the nasal mucosa
of shDuox2 mice and compared with
shCont mice. The results revealed that
IAV-induced gene expression levels of
RIG-I (shCont mice, 5.5 X 10°; shDuox2
mice, 7.6 X 10% P < 0.05) and MDA5
(shCont mice, 1.4 X 10% shDuox2 mice,
3.9 X 10% P < 0.05; Figure 7G), as well
as their protein expression levels, were
significantly attenuated in the nasal
mucosa of shDuox2 mice (Figure 7H).
These results suggest that RIG-I and
MDAS5 are dominant receptors for IAV
recognition, and that Duox2 might be
essential for the induction of RIG-I and
MDAS expression levels in mouse nasal
mucosa.

Discussion

We found that Duox2 is the dominant
source of ROS in response to IAV infection,
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Figure 6. IAV infection in vivo. Wild-type (WT) mice were infected with 213 pfu IAV WS/33 (H1N1) and assessed for loss of body weight (A) (circles,
no infection mice, n = 3; triangles, infection mice, n =3, *P < 0.05 compared with mean body weight of no infection mice) and viral titer from nasal
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from five mice). Hematoxylin and eosin (H&E) micrographs of nose (coronal) sections obtained from WT mice infected with 213 pfu IAV on Days O,
7, and 14. The H&E micrographs are representative of nose sections from five mice (C) and polymorphonuclear neutrophils (PMNs) were counted
in subepithelium of nasal mucosa (D). *P < 0.05 compared the number of PMNs in nasal mucosa of mice at PI 7 and Pl 14. R, right; L, left; S,
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and Duox2-derived ROS are integral
mediators of transcription of RLR family
genes, including RIG-I and MDAS5,
which are major components of IAV
recognition receptors in the nasal
epithelium (Figure 8).

In the respiratory tract, ROS are
regarded as one of the pathological
components of chronic inflammatory
airway diseases, such as asthma, pneumonia,
and chronic obstructive pulmonary
disease (18-20). Based on this knowledge,
some researchers have suggested that
faster clearance of ROS could reduce
lung damage and improve lung function
(21, 22). However, ROS have recently
been shown to function as messengers,
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influencing a variety of immunological
processes and enhancing host immunity
through prevention of pathogen-induced
proinflammatory cytokines (23-25). ROS
generation by exogenous pathogens has
also been established in respiratory
epithelial cells, and modulation of ROS was
reported to be important for respiratory
virus-induced innate immune mechanisms
(8, 9, 14). In the present study, we showed
that TAV infection increased ROS
generation in the human nasal epithelium
and IAV infection was aggravated when the
functions of enzymes that result in ROS
generation were clearly knocked down.
Therefore, we aimed to assess how ROS
contributed to the immune response

against IAV infection in nasal epithelium.
We demonstrated that IAV-induced ROS
were involved in the activation of IAV
recognition receptors, especially RIG-I
and MDAS5, and scavenging of ROS
suppressed the transcription of both
receptors after IAV infection in the nasal
epithelium. The current findings suggest
that the absence of ROS could lead to
accelerated IAV infection by impeding
the transcription of viral recognition
receptors in nasal epithelium. Although
little is known about the regulatory
mechanisms behind RLRs in the nasal
epithelium, we conclude that IAV-
induced ROS might be a critical mediator
for RIG-I and MDAS5 transcription in
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controlling IAV replication. Therefore,
further research on the enzymatic

source of IAV-induced ROS generation
may promote a greater understanding of
the RLR-mediated innate immune
response and suggest better therapeutic
strategies for acute IAV infection in nasal
epithelium.

In particular, the importance of
Nox enzymes in innate host defense is
exemplified by the role of Nox2 in the
generation of high amounts of ROS
in phagocytic cells, as part of an
antibacterial mechanism. However, Duox
has been widely appreciated as a critical
component for ROS production in the
lungs (9, 26-29), and evidence points to
Duox as the main Nox isoform that
generates ROS in the apical portion of
bronchial epithelial cells (30, 31). We
also previously reported that Duox is the
most abundant Nox subtype in human
nasal epithelium (10). Recent studies
suggest that Duox may participate in
innate host defense, and also appears
to be involved in protective cellular
signaling in response to a defined danger
signal, performed by an intracellular
NOD-like receptor system, such as
NOD2-mediated antibacterial responses
(13, 32). A direct contribution of Duox-
derived ROS to the early steps of antiviral
host defense has also been reported, and
Duox-derived ROS has been shown to
reduce the alternative splicing of
influenza viral gene segments and cause
decreased release of viral particle (33).
In the present study, we found that
Duox2 is a dominant enzyme in ROS
generation after IAV infection in
nasal epithelia. In particular, knockdown
of Duox2 could aggravate IAV infection
in nasal epithelium, and the innate
immune response would be stronger in
Duox2-overexpressed cells. Duox2 gene
expression was elevated rapidly after
IAV infection, and ROS production was
initiated to activate viral recognition
receptors. We suggest that suppression
of Duox2-derived ROS or reduction
of Duox2 expression inactivates
a series of RLR family genes, leading
to deterioration of IAV infection.

In contrast, overexpression of Duox2
increased ROS generation and enhanced
both RIG-I and MDAS5 transcription,
resulting in activation of the innate
immune response against IAV infection
in nasal epithelium.
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and MDAS5, and Duox2-derived ROS would be necessary for IAV sensing in human nasal

epithelium.

The precise molecular patterns of virus
replication recognized by RIG-I and MDA5
have been reported, and the elucidation
of a role for the RLRs in virus-induced
IFN production has been facilitated by
the availability of RIG-I"’~ and MDA5 '~
mice (34, 35). Both RLRs might be
dominant receptors for RNA virus that
result in the activation of innate
immune systems, and initial observations
using embryonic fibroblasts and bone
marrow—derived dendritic cells
generated from these mice revealed
striking phenotypes, including a failure to
produce IEN in response to a variety of
viral infections (2, 5). Thus far, three
families of PRRs, including RLRs, TLRs,
and nucleotide-binding domain and
leucine-rich-repeat-containing (NLR),
have been identified and shown to be
activated in response to IAV pathogens
(36). The mechanism by which influenza
viral infection triggers the secretion of

NLR-induced inflammatory cytokines,
such as IL-1B, IL-18, and IL-33, has
been clearly reported, and we believe
that NLRs might be closely related to
inflammasome activation (36, 37).
Therefore, we focused on the function of
TLRs (TLR3, TLR7, TLRY) and RLRs
(RIG-I, MDAS5) in enhancing the

innate immune response against IAV
infection in NHNE cells and in vivo nasal
mucosa.

Interestingly, we found that Duox2-
derived ROS might be involved in RLR
signaling to resist IAV infection in human
nasal epithelia, and the induction of RIG-I
and MDAS transcription was dominant
in mouse nasal mucosa after IAV
inoculation. Most importantly, the IAV
viral titer was markedly higher in the nasal
mucosa or NAL fluid of shDuox2 mice
than in shCont mice, and lowered
induction of RIG-I and MDA5 expression
was observed in the nasal mucosa of

shDuox2 mice. Both RIG-I and MDA5
significantly contribute to the response
to viral infection, and appear to be
capable of producing IFNs; previously,
we showed that intracellular Duox2-
generated ROS contribute to type III IFN
secretion against IAV infection in
NHNE cells (14). Herein, we discern
that Duox2 is primarily involved in the
rapid induction of IAV recognition
receptors, especially RIG-I and MDAS5, and
might initiate the innate immune response
for the secondary control of IAV infection.
A Duox2-mediated innate immune response
would be expected if nasal epithelium
frequently encounters various viruses,
including IAV, and Duox2-derived ROS
would be required for IAV sensing in
human nasal epithelium or mouse nasal
mucosa.

In previous studies, a role of ROS
in RIG-I signaling in autophagy has
been documented, and ROS were
associated with RLR-mediated cytokine
production (38, 39). It has not been
clearly proven how ROS and Duox2 are
responsible for the innate immune response
in nasal epithelia, and we could not
verify the concrete mechanism underlying
the ROS-sensitive transcription of
RIG-I and MDAS5 in nasal epithelium.
However, we propose a role for Duox2-
derived ROS as a mediator of the
antiviral defense mechanism in nasal
epithelium, and that Duox2 might
contribute to the activation of IFN-
related innate immune signaling through
the induction of cytoplasmic RLRs
expression.

In conclusion, our study provides
insight that Duox2-derived ROS may be
crucial for the clearance of influenza virus
in nasal epithelium. The absence of
Duox2 leads to dysregulation of RIG-I
and MDAS expression and impedes
efficient innate immunity, which
aggravate IAV infection. H

Author disclosures are available with the text
of this article at www.atsjournals.org.

Figure 7. (Continued). mouse nasal mucosa. Western blot analysis was also performed using cell lysates to compare RIG-I and MDAS protein

expression levels at 7 dpi (F). shDuox2 mice (n = 5) were infected with 213 pfu IAV WSN/33 (H1N1) and were assessed for RIG-1 and MDA5 mRNA
levels using real-time PCR (G) and protein levels using western blot analysis (H) at 7 dpi. Western blot analysis results are representative of five
mice, and PCR results are presented here as the mean * SD from five independent experiments. *P < 0.05 compared with levels in shCont mice
and shDuox2 mice. PRR, pattern recognition receptor.
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