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Visual extrapolation of contour geometry
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Computing the shapes of object boundaries from fragmentary
image contours poses a formidable problem for the visual system.
We investigated the extrapolation of contour shape by human
vision. Measurements of extrapolation position and orientation
were taken at six distances from the point of occlusion, thereby
yielding a detailed representation of the extrapolated contours.
Analyses of these measurements revealed that: (/) extrapolation
curvature increases linearly with the curvature of the inducing
contour, although there is individual bias in the slope; (i) the
precision with which an extrapolated contour is represented is
roughly constant, in angular terms, with increasing distance from
the point of occlusion; (iii) there is a substantial cost of curvature,
in that the overall precision of an extrapolated contour decreases
systematically with curvature; (iv) the shapes of visually extrapo-
lated contours are characterized by a nonlinear decrease in curva-
ture, asymptoting to zero; and (v) this decaying pattern of curva-
ture is explained by a Bayesian model in which, with increasing
distance from the point of occlusion, the prior tendency to mini-
mize curvature gradually dominates the likelihood tendency to
minimize variation in curvature.

contour completion | curvature | interpolation | occlusion |
shape perception

fundamental problem faced by the visual brain in comput-

ing object structure is the fragmentary nature of the retinal
inputs. Large portions of object boundaries are often missing in
the retinal images, either due to partial occlusion or because of
insufficient local image contrast. Occlusion in particular poses a
ubiquitous problem, given the multiplicity of objects in the world
and the loss of one spatial dimension during image projection. To
compute object structure from fragmented image data, the
visual system must solve two related problems. It must determine
(i) whether disparate image elements are in fact part of a single
continuous contour (the “grouping” problem), and (i) what
shape the contour has in the missing portions (the “shape”
problem).

A great deal of research has addressed the grouping problem
in the contexts of partly occluded contours, illusory contours,
and discretely sampled contours (1-11). This research has ex-
amined the geometric constraints that underlie the grouping of
local elements into extended contours, as well as how these
constraints relate to the statistics of natural images. By contrast,
there has been relatively little psychophysical work on measuring
the shapes of the missing portions (12-15). Because the missing
portions of contours are synthesized entirely by the visual system,
their detailed shapes are likely to be revealing about its under-
lying constraints and mechanisms.

Two constraints have been recognized in computational vi-
sion: (/) minimization of total curvature, and (ii) minimization of
variation in curvature. Minimizing total curvature [ xds (also
known as “bending energy”) tends to make contours as straight
as possible and leads to a class of interpolating curves known as
elastica (16). Although the relevance of minimizing total cur-
vature to the completion of extended portions of smooth con-
tours by human vision has not been directly investigated, there
is psychophysical evidence for the instantiation of a local version
of this constraint in the human perception of contours. In
particular, observers’ ability to visually integrate local elements

www.pnas.org/cgi/doi/10.1073/pnas.0408444102

into extended contours deteriorates systematically with increase
in curvature, defined in terms of the turning angles between
successive elements (1, 3, 5, 6, 9). These results are consistent
with an “association field” model of neural processing in which
the pattern of connection strengths between local orientation-
tuned units is strongest when their preferred orientations are
colinear and decreases monotonically with increasing turning
angle (3, 17)." They are also consistent with the measured
cooccurrence statistics of edge orientations along extended
contours in natural images (9, 10).

The minimization of variation in curvature [ (dx/ds)%ds, by
contrast, penalizes changes in curvature rather than curvature
itself. The resulting contours tend to be as close to circular as the
boundary conditions will allow and lead in the context of
interpolation to Euler-spiral curves (19). This minimization is
consistent with the usage of edge cocircularity (or tangency to a
common circle; ref. 20) to compute the strength of grouping
between oriented image elements. Measurements on the statis-
tics of natural images indeed point to a prevalence of cocircular
structure in natural images (9, 21), and psychophysical work
provides evidence for its role in visual contour integration (5,
22). Moreover, a recent reanalysis of physiological data suggests
that the association fields of individual orientation-tuned units
in the primary visual cortex may in fact be tuned to different
curvatures, with the “standard” shape of the association field
being a description of the population average rather than of each
individual unit (23, 24).

Despite the recognition of these two constraints in computa-
tional vision, their respective contributions to contour shape
completion by human vision have yet to be determined. In this
article, we investigate the visual extrapolation of curved con-
tours. Extrapolation is a critical component of the general
problem of shape interpolation, given that an interpolating
contour must both smoothly extrapolate each individual physi-
cally specified inducer as well as smoothly connect the two
extrapolants (25, 26). More importantly, extrapolation provides
a context in which the relative contributions of minimizing total
curvature and minimizing variation in curvature may be readily
distinguished. Minimizing total curvature exclusively results in
the linear extrapolation of inducer orientation at the point of
occlusion, whereas minimizing variation in curvature exclusively
leads to a circular extrapolation of estimated inducer curvature.
The relative contributions of the two constraints may therefore
be determined by examining the pattern of curvature along
visually extrapolated contours.

Experiment

We measured the perceived position and orientation of extrap-
olated contours at multiple distances from the point of occlusion
to obtain a detailed representation of their shape. The use of
smooth (rather than discretely sampled) contours and the use of
occlusion (rather than a contour simply coming to an end) both

*To whom correspondence should be addressed. E-mail: manish@ruccs.rutgers.edu.

TThis processing is naturally seen as reflecting the visual system’s generative model of
contours, i.e., its distributional assumptions on successive turning angles along con-
tours (8, 18).
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Fig. 1.
the position and orientation of the line probe to smoothly extrapolate the
shape of the inducing contour. (b) Observer settings were measured in terms
of the polar angle 6 and orientation ¢ of the line probe relative to the inducer
tangent at the point of occlusion.

Illustration of the basic experimental stimulus. (a) Observers adjusted

serve to trigger mechanisms of visual completion, thereby gen-
erating a more vivid percept of extrapolated-contour shape.

Methods

Observers viewed curved inducing contours that disappeared
behind the straight edge of a half-disk occluder (Fig. 1a). An
oriented-line probe protruded from behind the opposite, curved
portion of the half disk (visible length = 0.17° of visual angle).
Observers adjusted the position of the probe along the half-disk’s
circumference and its orientation, by toggling back and forth
between the two adjustments, until they perceived the probe as
smoothly continuing the shape of the inducing contour. Using
half-disk occluders has the benefit of preserving the distance of
the probe from the point of occlusion as its position is adjusted.
For each inducing contour, measurements were taken with half

disks of six different radii: 0.68°, 1.35°, 2.03°, 2.7°, 3.38°, and 4.06°
of visual angle.

Nine inducing contours were used: four circular arcs, four
parabolic segments, and one linear segment. The four nonzero
values of curvature (k) at the point of occlusion were 0.059°~1,
0.118°"1, 0.178°" L, and 0.237°~ L. All inducers had a visible arc
length of 4.56°. They were presented at random orientations
(£15°-45°), either as concave up or concave down. The inducing
contours and line probe were two-pixels thick (=2 min of arc),
and antialiased to produce a smooth appearance at the resolu-
tion of 1/4 of a pixel.

Three observers, J.M.F. (O2) and two naive, participated in
eight experimental sessions each. Each session consisted of 54
trials (nine inducers X six half-disk radii), with each trial
requiring combined adjustments of position and orientation.
Four experimental sessions presented the inducers as concave up
and four as concave down. Their order was counterbalanced.

Results

Each observer’s raw data consisted of eight paired settings of
angular position and orientation for each of the 54 combinations
of inducing contour and occluder size. These measurements
were standardized by transforming them into a single, canonical
coordinate frame, one which treats the inducing contour as if it
were presented horizontally at the point of occlusion and as
concave up (see Fig. 10). The standardized settings thus measure
the polar angle 6 and orientation ¢ of the adjusted probe relative
to the inducer tangent at the point of occlusion. The measure-
ments were collapsed over the concave-up and concave-down
sessions because no systematic differences were obtained be-
tween them.

Observers’ extrapolation of linear segments was highly accu-
rate with no systematic bias in their positional and orientational
settings (mean rms deviations from linear extrapolation: 2.45°
for angular position 6, and 3.59° for orientation ¢). Settings were
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Fig. 2.

Extrapolation data for the parabolic inducers. The mean settings of angular position 6 and orientation ¢ are shown in the Cartesian plane at each of

the six radial distances. Error bars for 6 and error cones for ¢ both denote SDs. The solid curves show the extensions of the inducing parabolas, and the dashed
lines show the linear extensions of the inducer tangents at the point of occlusion.
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precise, with low variability across multiple sessions (average
SDs: 2.33° for angular position and 3.28° for orientation).

The mean settings of 6 and ¢ for the parabolic inducers are
shown, plotted in the Cartesian plane, in Fig. 2. The (curved)
error bars at each radial distance denote * 1 SD around each
mean setting of angular position 6, and the error cones denote =
1 SD around each mean setting of orientation ¢.* Also shown on
the plots are the true extensions of the parabolic curves used to
generate the inducers (solid curves) and the linear extrapolants
of inducer orientation at the point of occlusion (dashed lines).
The corresponding plots for the circular inducers appear in Fig.
6, which is published as supporting information on the PNAS
web site. We analyze these extrapolation measurements for
precision, bias in shape, and the influence of inducer curvature.

Analysis of Precision. We performed tests of heteroscedasticity to
first examine the dependence of setting variability on distance
from the point of occlusion (by regressing the magnitude of each
data point’s deviation from the mean for that radial distance
against radial distance). For settings of angular position 6, only
2 of the 15 tests performed (5 curvatures X 3 observers) revealed
a significant dependence of setting variance on radial distance.
For settings of probe orientation ¢, 4 of the 15 tests performed
revealed a significant increase, and 1 test revealed a significant
decrease. Thus, on the whole, there is little evidence for a
systematic increase in setting variability as a function of radial
distance. This result implies that the precision with which an
extrapolated contour is represented is roughly constant, in
angular terms, as a function of distance from the point of
occlusion. A constant standard deviation in the angular position
implies that SDs in Cartesian position exhibit a scalar increase
with distance from the point of occlusion. These results are thus
consistent with the Weber law-like dependence found in previ-
ous studies on the extrapolation of linear motion and of the
direction of a static line segment (27, 28). The current results
extend these previous findings to the case of curved contours.

To examine the influence of inducer curvature on precision,
the SDs were collapsed over all six radial distances [i.e.,
a(k)=V/(1/6) =°_, 0*(k, r)], thereby yielding overall measures
of precision with which angular position and orientation are
represented along an extrapolated contour. All six tests per-
formed (two angular measurements for three observers) re-
vealed significant heteroscedasticity, in particular, a significant
increase in setting variance as a function of inducer curvature.
Thus, there is a significant “cost of curvature” (13), in that the
overall precision of an extrapolated contour decreases system-
atically with increasing curvature of the inducing contour. For
angular position, the average SDs across the three observers
increased from 2.33° for linear inducers to 5.73° for the highest-
curvature inducers. For orientation, they increased from 3.28° to
9.56° (see Fig. 7, which is published as supporting information on
the PNAS web site).

Analysis of Bias. To model the curvature of extrapolated contours,

we computed for each inducer the best-fitting (maximum-

likelihood) parabolic curve to the combined extrapolation data.
We defined the likelihood model as follows:

€(xl{6, o)

6 8 1 71 6,,(;<,r)79’r 2 1 71 d’p(&’)*dfr 2
= nn[ae\b—ﬂ_e 2( oo ) :| [We 2< o ) :|

r=1i=1

(1]

*Means and SDs were initially computed by using both circular and linear statistics. Values
obtained with the two methods were highly correlated (r > 0.999), which is to be expected
given the low variances. Throughout the article, we report the standard (linear) statistics.
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This model defines, for each curvature value « (here, of a
parabola at its vertex), the probability of obtaining a given
extrapolation dataset D = (0, ¢,), where r indexes the six radial
distances, and i indexes the eight repeated measurements. 6,(k,
r) and ¢,(k, r) are the ideal values based on the extension of the
parabola used to define the inducer. Based on the analysis of
precision, the SDs o and o, were taken to be independent of
radial distance and estimated from the extrapolation data for
each inducing contour.?

Fig. 3a shows the standardized likelihood functions (i.e.,
normalized to have unit mass) computed for the observers’
extrapolations of the four parabolic inducers." Fig. 3b plots the
maximum-likelihood estimates of extrapolation curvature
against inducer curvature. For all three observers, the curvatures
of the extrapolated contours depend linearly on inducer curva-
ture (R values for a scalar-increase model: 0.985, 0.983, and
0.845), but the slope of this dependence varies (1.22, 1.06, and
0.55). Relative to the true curvature values used to generate the
parabolic inducers, observers O1 and O2 exhibit a slight over-
estimation of curvature (by 22% and 6%, respectively), whereas
O3 exhibits a substantial underestimation (by 45%).

Fig. 4a shows the standard deviations of the standardized
likelihood functions plotted as a function of inducer curvature.
For each observer, these increase linearly as a function of
inducer curvature (R values for a linear model: 0.958, 0.998, and
0.872). Increase in the spread of the standardized likelihood
function signifies an increase in uncertainty in observers’ esti-
mate of the curvature of the extrapolated contour (see 7). We
observed previously that the variance in observers’ local settings
of angular position 6 and orientation ¢ increased systematically
with inducer curvature. The current analysis demonstrates this
cost of curvature in a more direct way, i.e., by exhibiting greater
uncertainty in observers’ estimates of extrapolation curvature
for inducers with higher curvature.

When the same SDs are plotted against estimated extrapola-
tion curvature, rather than inducer curvature (see Fig. 4b), the
data points from all observers fall along a single line. Thus,
despite the individual differences in the curvatures of the
extrapolated contours, a single linear equation models the
dependence of the SD on extrapolation curvature for all three
observers (y = 0.0355x + 0.0027, R = 0.942). The more highly
curved an observer’s extrapolated contour is, the weaker the
overall precision with which it is represented.

Shape Models

Circular and Parabolic Models. In characterizing the geometry of
the observed extrapolated contours, we compare the fits of
various shape models. We begin by considering a circular model
M. and a parabolic model M,, each having a single parameter «
(the curvature of the circle, and the curvature of the parabola at
its vertex). Given that these models are not nested, classical
Neyman-Pearson techniques for model selection are not appli-
cable. However, Bayesian techniques have been developed,
based on the work of Jeffreys (31), to compare nonnested
models. These techniques rely on the notion of the Bayes factor,
which is the ratio of (marginal) likelihoods p(D|M,)/p(D|M.)
under the two models (32).

The Bayes factor essentially captures how one’s prior belief

SBecause of the small SDs in 6 and ¢, the von Mises distribution, which provides the
appropriate model of noise for circular measurements, is very closely approximated by the
Gaussian [indeed, it converges to the Gaussian in the limit as o — 0 (29)].

TThe standardized likelihood functions correspond essentially to the Bayesian posterior
distributions obtained under the assumption of a locally uniform prior distribution (30).

lunlike the Neyman-Pearson techniques, the Bayesian approach does not provide p values
or cutoff points. Rather, the Bayes factor ratio is interpreted directly as a measure of the
strength of evidence for one model over another.

PNAS | January 18,2005 | vol.102 | no.3 | 941
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Fig. 3.

Standardized likelihood functions and maximum-likelihood estimates for the extrapolation data with parabolic inducers. (a) Standardized likelihood

functions on extrapolation curvature corresponding to the four inducer curvatures at the point of occulsion. The dashed lines mark the inducer curvatures at
the point of occlusion. (b) Maximum-likelihood estimates of extrapolation curvature plotted as a function of inducer curvature.

concerning the two models [as expressed in the prior odds,
p(My)/p(M,)), is transformed into the posterior belief [as ex-
pressed in the posterior odds, p(M,| D)/p(M.|D)], as a result of
the measurements D. In the absence of any prior preference for
either model [p(M,) = p(M.)], the Bayes Factor simply gives the
posterior odds. Each (marginal) probability in the Bayes Factor
is computed by conditionalizing with respect to the parameter k
of the model and integrating

p(DIM,) _ Jp(Dlx, M,) p(e|M,) d _ [p(Dlx, M,) dx
p(DIM,)  [p(Dlk, M) p(k|M,.) dx — [p(Dl|k, M) dx’

[2]

where the second equality follows under minimally informative
prior distributions on k under both models, i.e., locally uniform
in the region of interest, and zero elsewhere. Bayes factor values
for the extrapolation data were thus computed by taking the
ratios, under the two models, of the areas under their likelihood
curves.

For both parabolic and circular inducers, these Bayes factors
were consistently >1 (in all 24 cases: three observers X four
curvatures X two inducer shapes; see Table 1, which is published
as supporting information on the PNAS web site). Thus, the
parabolic model provides a better fit than the circular model, not
only to the extrapolations of the parabolic inducers but also to
those of the circular inducers. In considering why this might be
so, note that an important difference between the two models is
that, starting from its vertex (the “initial” point for our parabolic
model), the curvature of the parabola decreases monotonically
with arc length, whereas the curvature of the circle is constant.
A natural hypothesis, therefore, is that visually extrapolated
contours have the property that their curvature decreases sys-
tematically with distance from the point of occlusion. The
parabolic model performs better because it is able to model this
decreasing-curvature trend, whereas the circular model is not.

Spiral Models. We test the above “decreasing-curvature hypoth-
esis” by fitting spiral models to the extrapolation data. Because
spirals are characterized by a monotonic variation in curvature,
the best-fitting parameters of a spiral model can naturally

942 | www.pnas.org/cgi/doi/10.1073/pnas.0408444102

indicate whether there is a systematic tendency for the curvature
of extrapolated contours to decrease.

The simplest form of monotonic variation in curvature,
namely a linear increase or decrease, defines an Euler spiral (also
known as the Cornu spiral or the clothoid). We define an Euler
spiral model with two parameters: the initial curvature  and the
constant slope in curvature vy. The curvature profile of this spiral
is thus given by k(s) = k + vs, where s is arc length. y > 0
corresponds to a linear increase in curvature, y < 0 to a linear
decrease, and y = 0 to the degenerate case of a circular arc.

To estimate the best-fitting Euler spirals to the extrapolation
data, we use a likelihood model with the same functional form
as before (Eq. 1). The ideal settings of angular position 6.(x, 7,
r) and orientation ¢.(k, 7y, r) at each radial distance are now
derived from the general form of the Euler spiral (19). Fig. 8,
which is published as supporting information on the PNAS web
site, shows the contour plots of the likelihood surfaces for the fits
of the Euler spiral model. In 23 of 24 cases, the maximum-
likelihood estimates for the rate-of-change-of-curvature term vy
are negative. By comparing the fits of the Euler spiral to the
degenerate case of the circular model (by using nested-model
hypothesis tests; see Table 2, which is published as supporting
information on the PNAS web site), we found that 18 of these
23 negative values were significantly different from 0 (the
positive value was not).

The fits of the Euler spiral model thus provide strong evidence
for the decreasing-curvature hypothesis. However, the Euler
spiral cannot be taken as a general model of extrapolated
contour shape. Because its decrease in curvature is linear, the
Euler spiral eventually reverses its sign of curvature, clearly an
undesirable property. A more reasonable pattern of behavior is
one in which the curvature converges asymptotically on 0. A
well-known spiral that has this property is the logarithmic spiral
(also known as the equiangular spiral, or the growth spiral). In
its most general form, its curvature profile is defined by k(s) =
1/(bs + a), where s is arc length. Based on this curvature profile,
we derive a general Cartesian form for the log spiral (see
Supporting Derivation, which is published as supporting infor-
mation on the PNAS web site) and define a two-parameter
model in terms of the spiral’s initial curvature k = 1/a and its
initial rate of change curvature y = —b/a’.

Singh and Fulvio
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To compare the fits of the logarithmic-spiral model and
Euler-spiral model (two nonnested models with two parameters
each), we again use Bayes Factors. Assuming no prior preference
for either model and minimally informative prior distributions
on their parameters k and v, the Bayes factor for the log-spiral
model M, against the Euler-spiral model M, is given by the ratio
of the integrated likelihoods [ [ p(D|«, ) dk dvy under the two
models. These marginal likelihoods were approximated by nu-
merical integration of the volumes under the likelihood surfaces
of the two models. The resulting values of the Bayes factor ratios
for the extrapolation data with both parabolic and circular
inducers were consistently >1 (Table 3, which is published as
supporting information on the PNAS web site), indicating that
the logarithmic spiral provides a superior fit to the extrapolation
data than the Euler spiral model.

Bayesian Contour Extrapolation

We outline a Bayesian model that captures the decaying-
curvature behavior of visually extrapolated contours. Based on
the association-field model of connectivity between orientation-

Singh and Fulvio

tuned units in the primary visual cortex and extensive behavioral
data on the visual system’s preference for colinearity of local
elements in contour integration (3, 5, 6, 9), we take the prior
distribution on contour curvature to be a Gaussian centered on
zero, that is p(k.) ~ N(0, o;,,) for some o,,. This prior simply
entails that, in the absence of any image information, the visual
system’s default preference is for a contour to go straight.

The likelihood, which reflects the information derived from
the image data, is taken to be based on a process that estimates
the curvature of a contour segment and then simply extends the
contour while maintaining this curvature, i.e., in a cocircular
fashion. Again, there is a great deal of evidence for cocircularity
from the statistics of natural images (9, 21), psychophysical
performance in contour integration (5, 22), and a recent reanal-
ysis of physiological data (24). Thus, the mean of the likelihood
function is taken to be the estimated curvature of the inducing
contour at the point of occlusion, w;x = k;. A critical assumption
of the model is that the spread of the likelihood increases
monotonically with distance from the point of occlusion. In other
words, the continuation of estimated inducer curvature is subject
to systematically greater noise, with increasing distance from the
point of occlusion. We assume a Weber-like dependence,
namely, a linear increase in SD with radial distance: oj(r) =
01ix(0) + mr, where 0x(0) is the SD when gap size is zero (in-
finitesimally thin occluder). Thus, €(ke|k;, r) ~ N(ki,
Ulik(o) + mr).

Given the assumption that the prior distribution and likeli-
hood are both Gaussians, there exist well known analytic for-
mulas for the posterior (30). In particular, the posterior is also
a Gaussian with the mean given by

Mpr Mik 1 1
Mpos :< + )/(7"'7) [3]
post 0-127r O-lzik 0127r Uﬁk

Substituting the appropriate values of means and SDs, we obtain the
following expression for the (maximum a posteriori) curvature
estimate of the extrapolated contour at each radial distance r

o . < T )
Ke(r) - /J“Fost(r) = K; o_ﬁr + a'lzlk(o) + 20',,~k(0)mr + m2r2 .

[4]

Setting 7 = 0, we obtain &.(0) = k;,/(05, + o7 (0)). Thus, the
“initial” curvature of the extrapolated contour is a function of
the relative sizes of 07;,(0) and ag,. Under the natural assumption
that the continuation of estimated inducer curvature is subject to
very little noise at or near the point of occlusion, we have
0ik(0) << 0, and, therefore, k.(0) ~ k;; that is, the extrapolation
curvature near the point of occlusion essentially equals the
estimated inducer curvature. On the other hand, if one considers
the possibility that oy (0) is approximately equal to oy, then the
initial extrapolation curvature would have one-half of the mag-
nitude of the estimated inducer curvature.

From Eq. 4, it also follows that with increasing distance from
the point of occlusion (i.e., as r — =), the curvature of the
extrapolated contour decreases asymptotically to zero (i.e., k. —
0) at a rate that is modulated by the slope term m (Fig. 9, which
is published as supporting information on the PNAS web site).
This decay is consistent with the pattern of curvature observed
along visually extrapolated contours.

Fig. 5 shows the decay of curvature of the Bayesian extrapo-
lated contour as a function of radial distance for different values
of m. The plots in this figure correspond to the situation where
the spread of the likelihood near the point of occlusion, g;(0),
is substantially smaller than the spread of the prior distribution,
oy Consistent with the above analysis, the curvature of the
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extrapolated contour near the point of occlusion essentially
equals the estimated inducer curvature.

Thus, under simple and natural assumptions concerning the
prior and likelihood distributions, the Bayesian model captures
the pattern of decaying curvature seen in observers’ extrapolated
contours. Moreover, by manipulating the relative magnitudes of
the standard deviation of the prior distribution and the initial SD
of the likelihood, it can capture the individual variability seen in
the overall curvature of observers’ extrapolated contours.

Conclusions

Dependence of Extrapolation Shape on Curvature. The visual system
systematically takes into account the curvature of inducing
contours when extrapolating their shapes. Each observer exhib-
ited a linear increase in extrapolation curvature with inducer
curvature, although there was individual bias in the slope. Most
current models of contour completion take into account only the
positions and orientations of the inducing contours. The current
results show that a successful model must take into account their
curvatures as well.

Constant Precision in Angular Terms. The variability in positional
and orientational settings is roughly constant, in angular terms,
at different points along an extrapolated contour. A constant SD
in angular position implies linearly increasing SDs in Cartesian
position as a function of distance from the point of occlusion.
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This result extends previous findings on the extrapolation of
linear direction to the case of curved contours.

Cost of Curvature. The precision with which an extrapolated
contour is represented becomes systematically weaker with
increasing curvature. This weakening of precision correlates
more strongly with extrapolation curvature than with inducer
curvature. Indeed, despite the individual bias in the curvature of
the extrapolated contours, all observers exhibited essentially the
same linear dependence on extrapolation curvature (see Fig. 4).

Extrapolation Shape Characterized by Decaying Curvature. The
shapes of extrapolated contours were consistently captured
better by a parabolic model than a circular model, regardless of
whether the inducing contours were parabolic or circular. This
result motivated the decreasing-curvature hypothesis, which was
then directly tested and supported by the fits of an Euler spiral
model. Fits of a logarithmic spiral model further clarified that a
nonlinear decrease in curvature, asymptoting to zero, better
describes the shapes of visually extrapolated contours than a
linear decrease.

Bayesian Model Captures Curvature Decay. A Bayesian model clar-
ifies how the two constraints of minimizing curvature (or ten-
dency toward colinearity) and minimizing variation in curvature
(or tendency toward cocircularity) interact to produce the
observed pattern of decaying curvature along visually extrapo-
lated contours. The tendency toward colinearity is embodied in
the prior distribution, whereas the tendency toward cocircularity
is embodied in the likelihood. The shapes of visually extrapolated
contours derive from the relative strengths of these two con-
straints at different distances from the point of occlusion. Near
the point of occlusion, the likelihood dominates the prior, with
the result that the extrapolated contour is maximally curved.
With increasing distance from the point of occlusion, the influ-
ence of the likelihood weakens (as a result of an increase in its
spread) so that the prior gradually comes to dominate the
likelihood. This shift in relative weights leads to a systematic
decay in the curvature of the extrapolated contour.

The current study also raises intriguing questions concerning
how well human observers will perform in extrapolating natural
contours that contain structure at multiple scales and how the
application of the current model may be extended to include such
cases. These and other related questions await systematic inves-
tigation.
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