
Materials 2015, 8, 4162-4175; doi:10.3390/ma8074162 
 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

Correlation between Mechanical Properties with  
Specific Wear Rate and the Coefficient of Friction of  
Graphite/Epoxy Composites 

Mahdi Alajmi and Abdullah Shalwan *  

Manufacturing Engineering Technology Department, College of Technological Studies,  

Public Authority for Applied Education and Training, Kuwait City 13092, Kuwait;  

E-Mail: Mahdisaud123@gmail.com 

* Author to whom correspondence should be addressed; E-Mail: ms.alajmi@paaet.edu.kw;  

Tel.: +965-22-314-853; Fax: +965-22-528-915. 

Academic Editors: Luciano Feo and Morreale Marco 

Received: 12 May 2015 / Accepted: 26 June 2015 / Published: 8 July 2015 

 

Abstract: The correlation between the mechanical properties of Fillers/Epoxy composites 

and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests 

were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm 

Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was 

made between the tensile strength, the modulus of elasticity, elongation at the break, and 

the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and 

coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric 

composite has had an eclectic effect on mechanical properties, whereas it has led to a 

positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement 

for polymeric composite, promoted a mechanical performance with a slight improvement 

to the tribological performance. Statistically, this study reveals that there is no strong 

confirmation of any marked correlation between the mechanical and the specific wear rate 

of filler/Epoxy composites. There is, however, a remarkable correlation between the 

mechanical properties and the friction coefficient of filler/Epoxy composites. 

Keywords: natural fiber; date palm fiber; graphite; mechanical properties; coefficient of 

friction; specific wear rate; correlation 
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1. Introduction 

In the last two decades, Polymer composites have been used in a wide variety of industrial 

applications, such as automobiles, furniture, and construction [1–4]. This is mainly due to their 

advantages compared to metal materials, such as their lower cost, low density, chemical resistance, 

high strength-to-weight ratio, less damage to processing equipment, and good relative mechanical 

properties [5–8]. In addition to the advantages of natural fibers, as an alternative option to synthetic 

fibers, date palm trees are spread widely throughout many areas, such as the Middle East, Northern 

Africa, India, and in the United States, and in large numbers. Moreover, date palm trees are considered 

from perennial trees, making them a renewable source of fibers. Using date palm fibers for reinforcing 

polymer composites is the attempt to create new manufacturing applications, added to their traditional 

and common applications, such as for ropes and baskets, where there are no tangible industrial 

applications for the date palm fibers [9–11]. However, there is a shortage of investigated research in the 

potential use of date palm fibers as reinforcement for polymer composites for mechanical and 

tribological applications, compared with other natural fibers, such as flax, jute, hemp, and coir [12–14]. 

From the mechanical point of view, fillers or fibers are an efficient way to reinforce and enhance the 

mechanical properties of polymers, i.e., tensile, impact, and flexural properties [8,15–18]. Extensive 

investigations have been carried out to improve the mechanical performance of polymer composites 

individually, without consideration of other types of performance, such as thermal or tribological 

performance. Most studies have focused on the effects of additives, such as fibers or filler, the 

percentage weight or modifications of the additives, and the operating conditions on the mechanical 

performance of polymer composites [8,18–22]. At the same time, few studies have investigated or 

considered the relationship between the mechanical and tribological properties of polymer composites. 

Moreover, the literature, as reported by many scholars, has not resolved the great dispute on the 

relation or correlation between the mechanical and the tribological performances of materials [23–27]. 

Enhancing the mechanical performance of polymer composites with convenient tribological 

performance, low specific wear rate and friction coefficient has been the main aim of many studies. 

Hence, they have considered the reverse relation between mechanical performance and tribological 

performance which materializes the optimal performance for polymer composites such as high density 

polyethylene (HDPE), polycarbonate (PC), polyethylene terephthalate (PETG), polypropylene (PP), 

polystyrene (PS) [26,28]. For instance, certain authors [26,29–31] have examined the correlation 

between the mechanical properties (S: tensile strength, e: elongation, and H: hardness) and the abrasion 

rate of a range of polymers. These studies, in considering the properties individually, reveal a weak 
correlation between the abrasion rate and S−1 or e−1 of the examined materials. Nevertheless, H−1 and 

the resistance abrasion of the examined materials were found to be closely correlated. However, other 

researchers have not found the same [32,33]. When factors are combined, they have emphasized the 

outcome of individual correlation analysis with further exploration of the mechanism of correlation 

and trade-offs between the studied properties [23,25,31,33–35]. Put differently, in order to get a clear 

understanding of the relation between mechanical properties and the tribological performance of 

polymer composites, several studies have combined mechanical properties in a single factor as 

opposed to specific wear rate or friction coefficient. For instance, Harsha et al. [35] studied the 

correlation between the mechanical properties and the three-body abrasive wear behavior of 
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fillers/Polyaryletherketone composites. This study reported that the correlation between the wear 

volume and mechanical properties emerged with only some of the factors of the selected mechanical 

properties, such as (Se)−1 and (HSe)−1. In the same context, Lancaster et al. [36] mention a similar 

conclusion when studying the mechanical and tribological behaviours of different polymer composites. 

Finally, establishing and comprehending the relationship between mechanical and tribological 

properties is considered an important element of work on enhancing the performance of polymeric 

composites in the future. The present study investigates the correlation between the specific wear rate 

(SWR) and the coefficient of friction (COF) of neat epoxy and its composites, based on different 

graphite percentages and date palm fibers with their mechanical properties. 

2. Material Preparation and Experimental Procedure 

2.1. Material Preparation  

The resin mixture was prepared by mixing the epoxy and the hardener with a ratio of 1:3, in line 

with the industrial recommendation. Epoxy resin (R246TX) Kinetix (H160 medium) hardener were 

used for the current work and supplied by Australian calibrating services Pty. Ltd (Melbourne, 

Australia). Furthermore, different volume fractions of graphite (0, 1, 3, 5, and 7 wt %) were used. The 

92% pure graphite filler size used in the current study is 45 μm, as supplied by chem- supply Pty Ltd, 

Australia. The graphite particles were mixed with the epoxy resin and the hardener and kept for a 

while until they reached the consistency of jelly. The fibers were separated from the meshes manually 

and washed with a tap water (2% detergent solution) to remove the contaminants, adhering dirt and 

dust. The extracted fibers were air dried for 48 h at room temperature. At this stage, optical  

microscopy (Motic stereomicroscope, SMZ168 series, Speed Fair Co., Ltd, Richmond, BC, Canada) was 

used to check and select the desired fibers (diameter = 0.5 ± 0.05 mm). In determining the fiber diameter, 

three measurements were taken at different cross sections in each fiber and the average diameter was 

calculated. Then, the fibers were cut to the desired length (80 mm) and preserved in polyethylene bags. 

The volume fraction of fibers (Vf) in the matrix was also fixed at about 35 vol %, as shown in Table 1. 

The mixture was carefully poured into the cavity of the molds, and a small steel tool was used to 

ensure the distribution of the matrix and the alignment of the fibers. The NE, GE, FE and GFE 

specimens for the mechanical test were prepared on the basis of ASTM D638-99 [37]. The standard 

dimensions (in specimen geometry) and the mold used are given in Figure 1a,b, respectively. 

Table 1. Designation of the fillers/epoxy composites. 

Material  Matrix (E) wt % Graphite (G) wt % Date palm fiber (F) vol % 

NE 100 0 0 
GE1 99 1 0 
GE3 97 3 0 
GE5 95 5 0 
GE7 93 7 0 
FE 100 0 35 

GFE 97 3 35 



Materials 2015, 8 4165 

 

With regard to the tribological test, tribological composite specimens were prepared in conformity 

with the block on ring (BOR) technique, ASTM G77-98 [38]. Figure 1c,d show the specimen 

dimensions and the metal mold used for preparing the BOR specimens. The prepared specimens were 

cut into pieces with the desired dimensions of 25 mm × 58 mm × 20 mm for tribological experiments 

based on the block on ring technique. All the prepared mechanical and tribological specimens were 

removed from the mold and cured for 24 h in the same atmospheric conditions. Moreover, the specimens 

were cured again in an oven at a temperature of 50 °C for 24 h.  

 

(a) (b) 

 

(c) (d) 

Figure 1. (a) Tensile specimen dimensions; (b) Used tensile test mold; (c) Tribological 

specimen geometry; (d) Tribological mold and fiber position. 

2.2. Experimental Procedures 

2.2.1. Mechanical Experiments of the Composites 

Tensile strength (S), Modulus of elasticity (M), and Elongation at break (e) were determined 

according to ASTM D638-99 [37], under ambient conditions, using TestStar Material Testing System 

(MTS 810) equipped with 100 KN. All tests were carried out with a gauge length of 50 mm and a 

cross head speed of 1 mm/min. The hardness was measured by means of a Durometer type D in 

accordance with ASTM D2240 [39]. The same three tests were repeated for each set of specimens, and 

the average values were calculated. Table 2 presents all the results of the mechanical experiments of 

filler/epoxy composites, with average values obtained from five test samples and the standard 

deviations (SD). 

Table 2. The mechanical properties of fillers/epoxy composites. 

Material Tensile, MPa (SD) Modulus, GPa (SD) Elongation, % (SD) Shore Hardness (SD) 

NE 55.5 (±3.57) 0.62 (±0.84) 9.1 (±5.91) 82.2 (±3.38) 
GE1 50 (±0.36) 0.983 (±0.73) 9.3 (±4.61) 82.7 (±2.64) 
GE3 39.1 (±2.81) 1.01 (±2.08) 10.8 (±5.94) 83.4 (±4.05) 
GE5 35.7 (±1.31) 0.61 (±0.57) 11.7 (±2.61) 83.7 (±3.45) 
GE7 30.86 (±4.22) 0.4 (±3.46) 12.8 (±4.05) 84.5 (±4.12) 
FE 66.2 (±3.92) 1.36 (±0.51) 7.3 (±4.84) 84.2 (±3.29) 

GFE 62.3 (±2.48) 1.28 (±0.72) 7.9 (±5.61) 84.7 (±3.14) 
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2.2.2. Tribological Experiments 

In this work, the friction and wear characteristics of fillers/epoxy composites are investigated in dry 

contact conditions and ambient conditions as follows: temperature, 25 °C; humidity, 50 ± 5 RH against 

stainless steel (AISI 304; hardness = 1250 HB, Ra = 0.1 μm) counterface. The experiments were 

conducted using the block on ring (BOR) technique. The test was conducted for 7.56 Km sliding 

distance and speed = 2.8 m/s at an applied load of 50 N. 

2.2.3. Linear Regression for Mechanical and Tribological Data 

A linear regression is a statistical analysis applied to assess the association between two variables.  

It was conducted to assess the relation between the mechanical and tribological performances of 

fillers/epoxy composites by finding the Coefficient of Determination, R2, as shown in Equation (1). 

The coefficient of determination, R2, is useful because it gives the proportion of the variance 

(fluctuation) of one variable that is predictable from the other variable. In other words, the coefficient 

of determination represents the percentage of the data that is the closest to the line of best fit. 

ܴଶ ൌ ሺ ∑௫௬ିሺ∑௫ሻሺ∑௬ሻ

ඥሺ∑௫మሻି ሺ∑௫ሻమඥሺ∑௬మሻି ሺ∑௬ሻమ
ሻଶ  (1)

where x and y are the variables and n = number of values or elements. 

3. Result and Discussion 

3.1. Specific Wear Rate and Friction Coefficient of Fillers/Epoxy Composites 

The summary of specific wear rate of the fillers/epoxy composites is presented in Figure 2. 

Generally, it is found that the optimum graphite percentage is about 3%, which leads to the lowest 

specific wear rate in the steady state. It is suggested that the reasons behind these findings is that there 

could be a high influence on the composite porosity, graphite film transfer, and the modifications on 

both rubbed surfaces on the wear performance of the composites [40]. 

 

Figure 2. Specific wear rate of the filler/epoxy composites after a 7.5-km sliding distance. 

The friction coefficients of the filler/epoxy composites are shown in Figure 3. The presence of the 

graphite in the composites helps to reduce the friction coefficient, since graphite is well known as a 

solid lubricant material, which is the main reason for selecting it as filler in the current study.  
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The filler/epoxy composites exhibit much better friction behavior when these composites are filled 

with graphite rather than neat epoxy. In other words, the coefficient of friction also decreases in the 

presence of graphite. It seems that the addition of the one weight percent of graphite reduces the 

friction coefficient of composites by about 12%. Moreover, filled epoxy composite with date palm 

fibers has led to a slight decrease in coefficient of friction, while the addition of graphite to this composite 

has led to a remarkable decrease in coefficient of friction, compared to the neat epoxy composite.  

This behavior may contribute to the lubricating action of the layer-lattice structure of graphite.  

 

Figure 3. Coefficient of friction of the fillers/epoxy composites after a 7.5-km sliding distance. 

3.2. Correlation of Tribological Behavior with Mechanical Behavior 

3.2.1. Specific Wear Rate and Mechanical Properties of Fillers/Epoxy Composites 

For the current work on neat epoxy and its composites, based on different graphite percentage and 

date palm fibers, the mechanical and wear properties of the materials were extracted and plotted to 

study the correlation between the adhesive wear performance and the mechanical properties.  

Several attempts were made to find any correlation between individual mechanical properties with 

the steady state of the specific wear rate under a 50 N applied load after a 7.56-km sliding distance 

using the BOR technique. The sample of the plotted figures are given in Figure 4, showing the inverse 

of the tensile strength (S−1), modulus of elasticity (M−1), elongation at the break (e−1) and hardness 

(H−1) against the specific wear rate of the studied materials. Considering the individual mechanical 

property, there is no remarkable and significant correlation between the mechanical properties and the 

specific wear rate. In other words, tensile strength, modulus of elasticity, elongation at the break,  

or hardness has no correlation with the specific wear rate of the materials. For instance, the maximum 

R2 was approximately 12% out of 100%, which was between the modulus of elasticity and the specific 

wear rate. This confirms the concept of wear, as it is the response to the interaction between the 

asperities, is not dependent on the mechanical properties of the materials [41].  

The combination of more than one mechanical property may give better a correlation with the 

specific wear rate. Figure 5 displays some of the mechanical properties combined together against a 

specific wear rate. Despite the fact that there is a slight increase in the error square (36%) compared to 

the individual properties (<12%), there is no strong evidence to confirm that there is correlation 

between the mechanical and the tribological properties. Therefore, this work is highly in agreement 

with the literature stating that there is no correlation, as reported by [29,42–44]. All the results of the 

correlation analysis between the mechanical properties with specific wear rate are presented in Table 3. 
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(a) (b) 

 
(c) (d) 

Figure 4. Correlation between the individual mechanical properties and specific wear rate 

(SWR) of the materials. (a) Tensile strength; (b) Modulus of elasticity; (c) Elongation at 

the break; (d) Hardness. 

(a) (b) 

(c) (d) 

Figure 5. Correlation between the combined mechanical properties and SWR of materials. 

(a) (Me)−1; (b) (MeH)−1; (c) (SH)−1; (d) (SMH)−1. 
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Table 3. Correlation analysis results of the correlation between the mechanical properties 

and specific wear rate (SWR) of the materials. 

Factor S−1 M−1 e−1 H−1 (SM)−1 (Se)−1 (SH)−1 (Me)−1 

R2% 4.38 11.8 6.45 0.03 3.17 9.36 4.63 36.63 
Factor (MH)−1 (eH)−1 (SMe)−1 (SMH)−1 (SHe)−1 (MeH)−1 (SMeH)−1 - 

R2% 12.06 6.7 6.27 3.18 10.33 36.66 6.39 - 

3.2.2. Coefficient of Friction and Mechanical Properties of Fillers/Epoxy Composites 

From the literature review, there remains a lack of research in the studying of the correlations 

between the mechanical properties and the friction coefficient of filler/polymer composite materials. 

Therefore, various attempts were made to find any correlation between individual mechanical 

properties with the steady state of the coefficient of friction (COF) under 50 N applied load after a 

7.56-km sliding distance using the BOR technique. Considering individual mechanical properties, 

Figure 6 shows the correlation results of the tensile strength (S−1), modulus of elasticity (M−1), 

elongation at the break (e−1), and hardness (H−1) against the coefficient of friction of the studied 

materials. The correlation results show a remarkable and significant correlation between S−1 and e−1 

(83.3% and 73.2%), while the modulus of elasticity and hardness have no correlation with the 

coefficient of friction of the materials (22.5%, 11.9%).  

 
(a) (b) 

 
(c) (d) 

Figure 6. Correlation between the individual mechical properties and COF of the materials. 

(a) Tensile strength; (b) Elongation at the break; (c) Modulus of elasticity; (d) Hardness. 
  



Materials 2015, 8 4170 

 

On the other hand, the correlation results between the combination of mechanical properties with 

the coefficient of friction are shown in Figure 7. The figure indicates that there was a stronger 

correlation between COF and (Se)−1, 90.5%, than when considering S−1 or e−1 individually. 

Additionally, Figure 7 displays that when considering S−1 or e−1 alone, each one obtains a better 

correlation than when combines with modulus of elasticity (M), 45.5% and 0.82%, respectively.  

In contrast, SH−1 and eH−1 (82.6%, and 77%, respectively), show a fluctuation in correlation degree 

with COF than considering S−1 or e−1 individually. It can be concluded that in filler/epoxy composite 

materials, the tensile strength and elongation at the break play a significant role in controlling COF.  

In other words, increasing the strength and elongation at the break leads to a low in COF. At the same 

time, the modulus of elasticity had more influence on the COF compared to the hardness. All the 

results of the correlation analysis between the mechanical properties with coefficient of friction are 

presented in Table 4. 

(a) (b) 

(c) (d) 

(e) 

Figure 7. Correlation between the combined mechanical properties and COF of the 

materials. (a) (Se)−1; (b) (SH)−1; (c) (eH)−1; (d) (SM)−1; (e) (Me)−1. 
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Table 4. Correlation analysis results of the correlation between the mechanical. 

Factor S−1 M−1 e−1 H−1 (SM)−1 (Se)−1 (SH)−1 (Me)−1 

R2% 83.3 22.6 73.2 11.9 45.5 90.55 82.62 0.82 
Factor (MH)−1 (eH)−1 (SMe)−1 (SMH)−1 (SHe)−1 (MeH)−1 (SMeH)−1 - 

R2% 21.37 77.02 35.61 45.14 89.29 0.46 34.78 - 

Micrographs of the neat epoxy worn surface after sliding against a stainless steel counterface under 

50 N applied load and a 2.8-m/s sliding velocity for different sliding distances are presented in Figure 8. 

The surface of the neat epoxy suffers from fragmentation (marked as “fg”). This is mainly due to the 

influence of the thermo-mechanical loading in the rubbing region. Additionally, there is a softening 

process (marked as “so”) taking place. At this long sliding distance, there is the appearance of fracture 

on the surface, which is due to the high shear loading in the interface, associated with the high 

temperature. Such behavior has been reported elsewhere, when vinyl ester [42] and polyester [13,43] 

have been tested under adhesive wear loading.  

Figure 9 shows the micrographs of the worn surfaces, indicating that there is a sign of film transfer 

and micro-cracks can be seen on the micrograph. From the literature, the high content of the fillers, 

graphite, in the composite may act as a crack initiator and be a weak area on the composite surface,  

as reported by [44,45]. There is no good integration between the two surfaces due to presence the 

graphite on the surface of the composites. 

 

Figure 8. Micrographs of neat epoxy after adhesive testing. (fg: fragmentation; so: softening; 

Cr: cracks) 

 

Figure 9. Micrographs of 5% graphite/epoxy composites after adhesive testing.  

(fl: film transfer; gr: graphite; mc: micro-crack) 
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Figure 10 shows that there is a debonding between the fiber and its surroundings, and also cracks on 

the surface of fiber. This is due to the rougher surface of the counterface associated with the high  

thermo-mechanical loading. Further, there is plowing process that occurs in the resinous region.  

 

Figure 10. Micrographs of 3% graphite/date palm fiber/epoxy after tensile test.  

(Pg: plowing; Cr: Crack; Db: debonding) 

4. Conclusions 

 Graphite, as an additive to polymer composites, has led to eclectic effects on mechanical 

properties of graphite/epoxy composites, at the same time as affirmative effects on tribological 

properties of graphite/epoxy composites. 

 Date palm fiber reinforced epoxy composites with or without graphite have shown an amended 

mechanical performance and slight improvement of the tribological performance. 

 Correlation studies did not reveal any correlation between the mechanical properties and the 

specific wear rate.  

 Tensile strength and elongation at the break play a significant role in the friction behavior of 

fillers/epoxy composite materials. 

 The correlation results between the combination of mechanical properties with the COF are revealed: 

o The modulus of elasticity had more influence on the COB compared to the hardness. 

o Hardness has a wobbling correlation with COF. 
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