
JOURNAL OF CLINICAL ONCOLOGY R E V I E W A R T I C L E

Genetic Basis of Acute Lymphoblastic Leukemia
Ilaria Iacobucci and Charles G. Mullighan

A B S T R A C T

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, and despite cure rates
exceeding 90% in children, it remains an important cause of morbidity and mortality in children and
adults. The past decade has been marked by extraordinary advances into the genetic basis of
leukemogenesis and treatment responsiveness in ALL. Both B-cell and T-cell ALL comprisemultiple
subtypes harboring distinct constellations of somatic structural DNA rearrangements and sequence
mutations that commonly perturb lymphoid development, cytokine receptors, kinase and Ras
signaling, tumor suppression, and chromatin modification. Recent studies have helped to un-
derstand the genetic basis of clonal evolution and relapse and the role of inherited genetic variants in
leukemogenesis. Many of these findings are of clinical importance, and ongoing studies imple-
menting clinical sequencing in the management of leukemia are expected to improve diagnosis,
monitoring of residual disease, and early detection of relapse and to guide precise therapies. Here,
we provide a concise review of genomic studies in ALL and discuss the role of genomic testing in
clinical management.
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Acute lymphoblastic leukemia (ALL) is of
B-cell precursor (BCP) lineage (BCP-ALL) or,
less commonly, T-cell precursor lineage (T-ALL).
Both comprise multiple subtypes commonly de-
fined by structural chromosomal alterations that
are initiating lesions, with secondary somatic
(tumor-acquired) DNA copy number alterations
and sequence mutations that contribute to leu-
kemogenesis. Chromosomal alterations include
aneuploidy and chromosomal rearrangements
that result in oncogene deregulation or expres-
sion of chimeric fusion genes. The prevalence of
these alterations varies according to age (Fig 1),
and identification is important for diagnosis, risk
classification, and, for some lesions, targeted
therapy (Table 1).

BCP-ALL WITH RECURRING
CHROMOSOMAL ALTERATIONS

KMT2A (MLL) rearrangements, particularly the
t(4;11)(q21;q23) translocation, are most frequent
in infants (, 1 year of age) and are associated with
poor outcome.4,5 High hyperdiploidy with gain of
at least five chromosomes and ETV6-RUNX1 are
each present in 25% to 30% of patients with
childhood ALL but occur in less than 3% of young
adults and are associated with favorable out-
come. Conversely, BCR-ABL1 (Philadelphia [Ph]

chromosome) –positive ALL composes 2% to 5%
of childhood and 25% of adult ALL, and although
historically associated with poor prognosis, out-
comes have been markedly improved with the use
of tyrosine kinase inhibitors (TKIs). The trans-
location t(1;19)(q23;p13) resulting in the TCF3-
PBX1 fusion occurs in approximately 5% to 6% of
childhood and adult BCP-ALLs.6,7 It was originally
considered to be a high-risk subtype of ALL, but
with contemporary therapy, it is now associated
with a favorable outcome, although some studies
have reported that it has an independent risk factor
for CNS relapse.8 A variant of the t(1;19) trans-
location, t(17;19)(q23;p13), results in the TCF3-
HLF fusion9 (, 1% of ALLs), which is associated
with a poor prognosis.10

Complex intrachromosomal amplification of
chromosome 21 (iAMP21) is most common in
older children and is associated with poor prognosis,
which is improved with intensive treatment.11 Hy-
podiploidy with less than 44 chromosomes occurs in
2% to 3% of patients and is a negative prognostic
factor.12 Hypodiploid ALL itself comprises several
subtypes with distinct transcriptional profiles and
genetic alterations, including near-haploid cases
(24 to 31 chromosomes) with Ras-activating mu-
tations and IKZF3 alterations, and low hypodiploidy
(32 to 39 chromosomes) with IKZF2 alterations and
TP53 mutations that are frequently inherited.13

Author affiliations and support information

(if applicable) appear at the end of this

article.

Published at jco.org on February 13, 2017.

Corresponding author: Charles G.

Mullighan, MD, St Jude Children’s

Research Hospital, 262 Danny Thomas

Place, Mail Stop 342, Memphis, TN

38105; e-mail: charles.mullighan@stjude.

org.

© 2017 by American Society of Clinical

Oncology

0732-183X/17/3509w-975w/$20.00

DOI: 10.1200/JCO.2016.70.7836

© 2017 by American Society of Clinical Oncology 975

VOLUME 35 • NUMBER 9 • MARCH 20, 2017

http://jco.org
mailto:charles.mullighan@stjude.org
mailto:charles.mullighan@stjude.org
http://ascopubs.org/doi/full/10.1200/JCO.2016.70.7836


Secondary DNA deletions, gains, and mutations are charac-
teristic of BCP-ALL, are important cooperating lesions in leuke-
mogenesis, and may be acquired or enriched during disease
progression. These include alterations of lymphoid transcription
factors (IKZF1, PAX5, EBF1), cell-cycle regulation and tumor
suppression (CDKN2A/CDKN2B, RB1), regulation of apoptosis,
transcriptional regulation and coactivation (ETV6, ERG), and
epigenetic alterations.14 The prevalence, type of alteration, and
gene vary between subtypes. KMT2A-rearranged cases show low
frequency of secondary somatic mutations, which are often sub-
clonal, indicating that KMT2A rearrangement is sufficient to
induce leukemia.5 IKZF1 alterations are a hallmark of BCR-
ABL1–positive and Ph-like ALL and are associated with poor
outcome1,15-18; in contrast, other members of the IKAROS tran-
scription factor family, IKZF2 and IKZF3, are selectively mutated in
hypodiploid ALL.13 In high hyperdiploid ALL, secondary events
target genes in the Ras signaling pathway and in chromatin
modifiers.19

NEW SUBTYPES OF BCP-ALL

Approximately 25% of childhood ALLs and a higher proportion
of adult BCP-ALLs lack a unifying chromosomal alteration on
cytogenetic analysis (Fig 1). Several new subtypes of ALL have
been recently described that exhibit distinct leukemic-cell gene

expression profiles but diverse, often cytogenetically cryptic, founding
alterations.

Ph-Like ALL
The 2016 revision to the WHO classification of myeloid

neoplasms and acute leukemia recognized BCR-ABL1–like or Ph-
like ALL as a new leukemia entity of clinical importance due to its
association with an adverse prognosis and responsiveness to TKIs.20

Ph-like ALLs harbor a gene-expression profile similar to BCR-
ABL1–positive ALLs but lack BCR-ABL1.17,21 The prevalence of Ph-
like ALL increases with age and varies from 10% in standard-risk
childhood ALL to greater than 20% in adult ALL, with a peak
prevalence of 27.9% in young adults (age 21 to 39 years).1,2 In both
children and adults, Ph-like ALL is associated with high-risk clinical
features, a poor response to induction chemotherapy, elevated
minimal residual disease (MRD) levels, and/or poor survival.22

Common genomic features of BCR-ABL1–like ALL are al-
terations of B-lymphoid transcription factor genes (particularly
IKZF1 deletions) and genetic alterations deregulating cytokine
receptor and tyrosine kinase signaling. These include rearrange-
ments and mutation of CRLF2 (approximately 50%), rearrange-
ments ofABL-class tyrosine kinase genes (12%), rearrangements of
JAK2 (7%) and the erythropoietin receptor gene (EPOR; 3% to
10%), mutations activating JAK-STAT signaling (11%) and Ras
signaling (NRAS,KRAS, PTPN11, andNF1; 6%), and less common
kinase alterations (FLT3, NTRK3, BLNK, TYK2, and PTK2B).1,2,23

All kinase fusions retain an intact tyrosine kinase domain and
typically exhibit constitutive kinase activation (Fig 2). With the
exception of EPOR and JAK2 rearrangements, which are increased
in adult Ph-like ALL, there are no significant differences in the
frequency of kinase subtypes across different age groups (Fig 3).

CRLF2 encodes cytokine receptor-like factor 2, also known as
the thymic stromal-derived lymphopoietin receptor (TSLPR) that
forms a heterodimeric receptor with the interleukin-7 receptor a
chain (IL7Ra) for thymic stromal lymphopoietin (TSLP). CRLF2 is
deregulated by translocation into the immunoglobulin heavy chain
locus (IGH-CRLF2); focal deletion upstream of CRLF2, resulting in
formation of a P2RY8-CRLF2 fusion; and less commonly, CRLF2
point mutations (F232C).24 CRLF2 rearrangements are most
common in Ph-like and Down syndrome–associated ALL and are
age dependent, with P2RY8-CRLF2 associated with young age and
IGH-CRLF2 associated with older age and Hispanic ancestry.25,26

CRLF2 is overexpressed on the cell surface of leukemic lymphoblasts
and detectable by flow cytometric immunophenotyping. The ma-
jority of CRLF2-rearranged ALLs have additional alterations driving
JAK-STAT or Ras signaling, particularly activating JAK1 or JAK2
mutations, FLT3 and IL7R sequence mutations, SH2B3 deletions,
TSLP rearrangements, and Ras mutations.1,2,27 In most studies,
CRLF2 rearrangements are associated with poor prognosis, par-
ticularly in cases with concomitant IKZF1 alteration.28,29 Therapies
targeting JAK-STAT, PI3K/mTOR, and BCL2 signaling alone or in
combination have shown efficacy in preclinical models.30,31

Another major Ph-like ALL genetic subgroup involves ABL-
class rearrangements, which include fusions toABL1,ABL2,CSF1R
(encoding the macrophage colony-stimulating factor receptor),
PDGFRA, or PDGFRB that are all targetable by inhibitors of ABL1,
such as imatinib and dasatinib.1,2,32,33
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Fig 1. Age distribution of acute lymphoblastic leukemia (ALL) subtypes. The
prevalence of ALL subtypes varies in children with standard-risk (SR) ALL (age 1 to
9 years and WBC count , 50 3 109/L), children with high-risk (HR) ALL (age 10 to
15 years and/or WBC count . 50 3 109/L), and adolescents (age 16 to 20 years),
young adults (age 21 to 39 years), adults (age 40 to 59 years), and older adults (age
60 to 86 years) with ALL. Other, B-cell ALL lacking recurrent abnormalities; Ph,
Philadelphia chromosome. Data adapted.1-3
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Genomic rearrangements that produce JAK2 fusion genes or
rearrangements targeting EPOR are highly sensitive to JAK2 in-
hibitors, including ruxolitinib, in preclinical models. JAK2 is

rearranged to at least 14 different partner genes in Ph-like ALL.
EPOR rearrangements include reciprocal or cryptic translocations
with immunoglobulin and other loci that deregulate receptor

Table 1. Key Genetic Subtypes of ALL and Recurrent Genomic Features

Category Age Description

BCP-ALL
Hyperdiploidy with . 50 chromosomes Children . . adults Excellent prognosis; mutations in Ras signaling pathway and

histone modifiers
Near-haploid Children and adults 24-31 chromosomes; poor prognosis; Ras-activating mutations

and inactivation of IKZF3
Low hypodiploid Children and adults 32-39 chromosomes; poor prognosis; TP53 mutations,

deletions of CDKN2A/B and RB1, and inactivation of IKZF2
High hypodiploid Children and adults 40-43 chromosomes; rare; poor prognosis
Near-diploid Children and adults 44-45 chromosomes; distinct entity frequently with ETV6-

RUNX1 fusion or rearrangements forming dicentric
chromosomes

t(12;21)(p13;q22) translocation encoding ETV6-RUNX1 Children . . adults Excellent prognosis; cryptic rearrangement that is detectable by
FISH or PCR

t(1;19)(q23;p13) translocation encoding TCF3-PBX1 Children and adults Increased incidence in African Americans; generally excellent
prognosis; association with CNS relapse

t(9;22)(q34;q11.2) translocation encoding BCR-ABL1 Children , , adults Historically poor outcome, improved with tyrosine kinase
inhibitors; common deletions of IKZF1, CDKN2A/B, and PAX5

Ph-like ALL Children , adults Multiple kinase-activating lesions; poor outcome; amenable to
tyrosine kinase inhibitor therapy

CRLF2 rearrangement (IGH-CRLF2; P2RY8-CRLF2) Children and adults Common in Down syndrome–associated and Ph-like ALL
(approximately 50%); associated with IKZF1 deletion and/or
mutation and JAK1/2 mutation and poor prognosis in
non–Down syndrome–associated ALL

KMT2A (MLL) rearrangements Infants . . . children and adults Common in infant ALL; poor prognosis; low number of
additional somatic mutations, commonly in kinase-PI3K-RAS
signaling pathway

DUX4- and ERG-deregulated ALL Children and adults Distinct gene expression profile; majority have focal ERG
deletions and favorable outcome despite IKZF1 alterations

MEF2D-rearranged ALL Children and adults Distinct gene expression profile and aberrant
immunophenotype (CD10 negative, CD38 positive);
sensitivity to HDAC inhibitors

ZNF384-rearranged ALL Children , AYA and adults Fusions are associated with early pro-B-ALL, expression of
myeloid markers, and activation of the JAK-STAT pathway

PAX5 rearrangements Children and adults Multiple partners, commonly from dic(7;9), dic(9;12), and dic(9;
20)

iAMP21 Older children Complex structural alterations of chromosome 21; rarely
associated with a constitutional Robertsonian translocation
rob(15;21)(q10;q10)c; poor prognosis

T-ALL
TAL1 deregulation Children , adults t(1;7)(p32;q35) and t(1;14)(p32;q11) translocations and

interstitial 1p32 deletion; generally favorable outcome
LMO2 deregulation Children (11;14)(p15;q11) translocation and 59 LMO2 deletion; generally

favorable outcome
TLX1 (HOX11) deregulation Children , adults t(10;14)(q24;q11) and t(7;10)(q35;q24) translocations; good

prognosis
TLX3 (HOX11L2) deregulation Children and adults t(5;14)(q35;q32) translocation; commonly fused to BCL11B,

also a target of deletion and/or mutation; poor prognosis
MLL rearrangements Children Multiple partners; disruption of HOX gene expression and of

self-renewing; poor outcome
9q34 amplification encoding NUP214-ABL1 Children Amenable to tyrosine kinase inhibitors, also identified in high-

risk B-ALL; other kinase fusions identified in T-ALL include
EML1-ABL1, ETV6-JAK2, and ETV6-ABL1

t(7;9)(q34;q34.3) Children Rearrangement of NOTCH1
NOTCH1 mutations Children and adults Impairment of differentiation and proliferation; overall favorable

outcome
FBXW7 mutations Children and adults Impairment of differentiation and proliferation; usually

evaluated in combination with NOTCH1
Early T-cell precursor ALL Children and adults Immature immunophenotype; expression of myeloid and/or

stem-cell markers; poor outcome; genetically heterogeneous
withmutations in hematopoietic regulators, cytokine and Ras
signaling, and epigenetic modifiers

NOTE. The frequency of some alterations in the adult cohort may be underestimated as a result of lack of studies.
Abbreviations: ALL, acute lymphoblastic leukemia; AYA, adolescents and young adults; B-ALL, B-cell acute lymphoblastic leukemia; BCP-ALL, B-cell precursor acute
lymphoblastic leukemia; FISH, fluorescence in situ hybridization; HDAC, histone deacetylase; PCR, polymerase chain reaction; Ph-like, Philadelphia chromosome–like; T-
ALL, T-cell acute lymphoblastic leukemia; ., high; .., very high; ..., considerably high; ,, low; ,,, very low.
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expression and also truncate the cytoplasmic tail of the receptor,
resulting in augmented JAK-STAT signaling.1,2,23,32 The extensive
preclinical data showing activation of signaling pathways, inhibition
with JAK-STAT or ABL inhibitors, synergy with conventional che-
motherapy, and anecdotal responsiveness to TKI therapy in patients
with Ph-like ALL have led to the multiple prospective studies ex-
amining the efficacy of TKIs in Ph-like ALL (Table 2).

DUX4- and ERG-Deregulated ALL
Several studies recently identified a subtype of BCP-ALL (up

to 7% of BCP-ALLs) with a distinct immunophenotype and gene
expression profile characterized by deregulation of the double
homeobox 4 gene (DUX4) and the ETS transcription factor gene
(ERG).34-37 DUX4 encodes a double homeobox transcription
factor located in a macrosatellite D4Z4 repeat in the subtelomeric
region of the long arm of chromosome 4.

DUX4 is not expressed in normal B cells, and translocation to
IGH results in expression of a truncated DUX4 isoform in the
B-cell lineage.34-37 Less commonly, ERG-DUX4 fusions have also
been described.37 Prior studies had reported intragenic deletions of
the ERG gene in approximately 5% of childhood ALLs, which are
now known to be restricted to DUX4-rearranged cases. Notably
DUX4-rearranged ALLs commonly express aberrant ERG tran-
scripts and truncated C-terminal ERG proteins irrespective of the
presence of ERG deletions. The basis for this association has now
been elucidated (Fig 4). DUX4 rearrangement is an early initiating
event in leukemogenesis, and aberrantly expressed DUX4 binds to
an intragenic region of ERG, resulting in expression of a non-
canonical first exon and transcript, ERGalt. This encodes a trun-
cated C-terminal ERG protein that retains the DNA-binding and

transactivating domains of ERG, inhibits wild-type ERG tran-
scriptional activity, and is transforming.36 Notably, DUX4/ERG-
deregulated ALL is associated with a favorable outcome, despite the
presence of concomitant genetic alterations otherwise associated
with a poor outcome, such as IKZF1 deletions, which are present in
approximately 40% of patients.38,39 DUX4 rearrangement is not
evident on karyotypic analysis but is important to identify by gene
expression or sequencing approaches to accurately assign risk and
guide therapy.

MEF2D and ZNF384 Gene Fusions
Myocyte enhancer factor 2D (MEF2D) and zinc finger 384

(ZNF384) rearrangements characterize distinct B-ALL subtypes,
accounting for approximately 3% to 4% and 3% of pediatric
patients and approximately 6% and 7% of adult patients,
respectively.3,34,35,40

MEF2D is rearranged to BCL9, HNRNPUL1, SS18, FOXJ2,
CSF1R, and DAZAP1, with the most common target of rear-
rangement being BCL9. All fusions preserve the MEF2D MADS-
box domain that mediates DNA binding, result in enhanced
MEF2D transcriptional activity, and are transforming and leu-
kemogenic in vitro and in vivo.3,35,41 MEF2D ALL is associated
with older age of onset, an aberrant immunophenotype (CD10
negative, CD38 positive), and poor outcome. The deregulation of
MEF2D target genes results in a therapeutic vulnerability, because
one such gene is histone deacetylase 9 (HDAC9), and human
xenografts of MEF2D ALL are exquisitely sensitive to histone
deacetylase inhibitors, such as panobinostat.3

ZNF384 rearrangements involve the fusion of a 59 partner gene,
usually a transcriptional regulator or chromatin modifier (EP300,
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Fig 2. Signaling pathways in Philadelphia
chromosome (Ph) –like acute lymphoblas-
tic leukemia (ALL). Deregulation of JAK2,
ABL, or other (FLT3, NTRK3, BLNK, ABL,
PTK2B) signaling pathways in Ph-like ALL is
caused by activating mutations (lightning
bolts), fusion genes, and/or genomic de-
letions (X) that are responsible for over-
expression of cytokine receptors (eg,
CRLF2, IL-7, and EPOR), expression of
truncated receptors missing regulatory
domains (eg, EPOR), cell delocalization,
and constitutive activation of tyrosine ki-
nases. Some downstream signaling path-
ways are shown. Dashed circles and line
represent likely pathways activated by the
kinase alterations and amenable to in-
hibition by kinase inhibitors, respectively.
ABLi, Abelson murine leukemia viral on-
cogene homolog 1 inhibitor; BCL2i, B-cell
lymphoma 2 inhibitor; FAKi, focal adhesion
kinase inhibitor; FLT3i, Fms-related tyro-
sine kinase 3 inhibitor; JAKi, JAK inhibitor;
MAPK, mitogen-activated protein kinase;
MEKi, MAPK/ERK kinase inhibitor; mTORi,
mammalian target of rapamycin inhibitor;
PI3Ki, phosphoinositide 3-kinase inhibitor;
TRKi, tropomyosin receptor kinase in-
hibitor; Y, tyrosine residue.
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CREBBP, TAF15, SYNRG, EWSR1, TCF3, and ARID1B), to the entire
coding region of ZNF384. ZNF384-rearranged ALLs are often
diagnosed as B-ALLs with expression of myeloid antigens or as
B/myeloid mixed-phenotype acute leukemias, suggesting trans-
formation of a hematopoietic progenitor with B/myeloid po-
tential. ZNF384-rearranged B-ALL has an intermediate prognosis
and is characterized by upregulation of the JAK-STAT pathway,
suggesting a potential benefit from treatment with inhibitors of
this pathway.35

Other Rearrangements
Additional recurrent alterations in BCP-ALL include IGH

translocations, including CRLF2 and EPOR in Ph-like ALL, CEBP
gene family members, and ID4. Their frequency is low among
children younger than 10 years old (, 3%) but considerably higher
(10%) among adolescents and young adults (age 15 to 24 years),
and prognosis is poor.42

PAX5 is also rearranged to a diverse range of fusion partners
in approximately 2% of B-ALLs. These commonly result in the

Unknown
10% CRLF2_JAK

mut
24% 

CRLF2_JAK WT
17%

JAK2r
5%

EPORr
4%

Other JAK-
STAT
14%

ABL-class
14%

Other kinase
4%

Ras
8%

Children

Other JAK-
STAT

7%

Ras
2%

None
identified

5% Unknown
3%

CRLF2_JAK
mut
15% 

CRLF2_JAK WT
37%

JAK2r
6%

EPORr
10%

ABL-class
10%

Other kinase
5%

Young adults

Unknown
11%

CRLF2_JAK
mut
8% 

CRLF2_JAK WT
39%

JAK2r
10%

Other JAK-
STAT
10%

None
identified

1% 
ABL-class

13%

Other kinase
3%

Ras
5%

Adults

Other JAK-
STAT

3%

ABL-class
3%

None
identified

8% Unknown
11%

CRLF2_JAK
mut
17%

CRLF2_JAK WT
42%

JAK2r
5%

EPORr
3%

Other kinase
3%

Ras
5%

Older adults

Fig 3. Frequency of Philadelphia chromosome (Ph) –like acute lymphoblastic leukemia (ALL) subtypes across age. Prevalence of CRFL2-rearranged JAK mutant (mut),
CRFL2-rearranged JAK wild-type (WT), JAK2 rearrangements (JAK2r), EPOR rearrangements (EPORr), other JAK-STAT alterations, ABL1-class fusions, all other kinase
lesions, and unknown subtype in children, young adults, adults, and older adults. Data adapted.1,2,23

Table 2. Clinical Trials in ALL Targeting Specific Alterations and/or Deregulated Pathways

ALL Subtype Target Therapy
Clinicaltrials.gov

Identifier Study Phase Age of Patients

Ph-like TKI-sensitive mutations Dasatinib + chemotherapy NCT02883049 Phase III 1-30 years
Ph-like TKI-sensitive mutations Dasatinib + chemotherapy NCT02420717 Phase II $ 10 years
Ph-like JAK2 activation mutations Ruxolitinib + chemotherapy NCT02420717 Phase II $ 10 years
Ph-like JAK2 activation mutations Ruxolitinib + chemotherapy NCT02723994 Phase II 1-21 years
MLL rearranged DNA methylation Azacitidine + chemotherapy NCT02828358 Not provided # 364 days
MLL rearranged DOT1L EPZ-5676 NCT02141828 Phase I/completed . 3 months to , 18 years

Abbreviations: ALL, acute lymphoblastic leukemia; DOT1L, DOT1 like histone lysine methyltransferase; TKI, tyrosine kinase inhibitor.
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59 N-terminal DNA-binding domain of PAX5 fused to the 39 C
terminus of the partner gene, resulting in loss of the transactivating
domain of PAX5. Several of these fusions inhibit the normal
transcriptional activity of PAX5, although it remains to be directly
shown whether these fusions promote leukemogenesis through
haploinsufficiency of wild-type PAX543 or whether they are exerting
an oncogenic effect.

GENETICS OF T-ALL

T-ALL is an aggressive and heterogeneous disease that accounts for
approximately 15% and 25% of pediatric and adult ALLs, re-
spectively. Approximately 50% of patients with T-ALL harbor
chromosomal translocations that most commonly involve the 14q11
(T-cell receptor a and d [TRA and TRD]) and 7q34 (TRB) regions,
juxtaposing the T-cell receptor genes to pivotal transcription factor
genes, such as TAL1, TAL2, LYL1, OLIG2, LMO1, LMO2, TLX1
(HOX11), TLX3 (HOX11L2), NKX2-1, NKX2-2, NKX2-5, HOXA
genes, MYC, and MYB. In addition, T-ALLs may harbor cryptic
rearrangements of ABL1 (NUP214-ABL1, EML1-ABL1, and ETV6-
ABL1) that may be amenable to TKI therapy. Moreover, gene ex-
pression profiling studies have helped in the classification of T-ALL
into molecular subgroups that are characterized by unique gene
expression signatures and aberrant activation of specific T-ALL
transcription factor oncogenes, including MEF2C, HOXA, TLX1,
NKX2.1, TLX3, TAL1, LMO1, and LMO2.44,45

Sequence mutations and DNA copy number alterations in-
clude those in NOTCH1, FBXW7, and MYB; in genes involved in

the JAK-STAT (IL7R, JAK1, JAK3, and STAT5B) and Ras/PI3K/
AKT (NRAS/KRAS and PTEN) pathways; in epigenetic regulators
(PHF6, SUZ12, EZH2, TET2, H3F3A, and KDM6A); in tran-
scription regulators (LEF1,WT1, BCL11B, and ZEB2); and in genes
involved in mRNA maturation and ribosome activity (CNOT3,
RPL5, and RPL10). Activating NOTCH1 mutations and loss-of-
function mutations of FBXW7, leading to inhibition of ubiquitin-
mediated degradation of the activated form of NOTCH1, occur
in more than 60% and 15% of T-ALLs, respectively.46 Despite
promising preclinical studies inhibiting NOTCH signaling by
g-secretase inhibitors, severe GI toxicities and lack of cytotoxic
antitumor responses still limit their direct translation into patient
benefit.47 Given the role of MYC, a known FBXW7 substrate, in
T-ALL leukemia initiation, inhibitors of the bromodomain and
extraterminal (BET) family of proteins have shown antileukemic
activities in in vitro and in vivo models of T-ALL.48

Early T-cell precursor (ETP) ALL is a distinct form of leu-
kemia characterized by reduced expression of T-cell markers
(CD1a, CD8, and CD5) and aberrant expression of myeloid or
stem-cell markers.49 ETP-ALL has a poor outcome, although this
is mitigated by contemporary risk-adapted therapy.50,51 ETP-ALL
is genetically heterogeneous, with mutation of multiple cellular
pathways including hematopoietic and lymphoid development
(RUNX1, IKZF1, ETV6, GATA3, and EP300); Ras, cytokine re-
ceptor, and kinase signaling (NRAS, IL7R, KRAS, JAK1, JAK3,NF1,
PTPN11, and SH2B3); and loss-of-function mutations targeting
epigenetic regulators (EZH2, SUZ12, EED, and SETD2).52 The gene
expression profile of ETP-ALL is similar to that of hematopoi-
etic stem cells, suggesting that ETP-ALL may represent one of
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2. Expression of truncated DUX4

3. Binding of DUX4 at ERG intron 6 

4. ERG deregulation and expression of ERGalt

5. ERG primed for RAG-mediated deletion 

6. ERGalt is proleukemogenic
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transcriptional deregulation of ERG and
expression of a novel ERG isoform, ERGalt,
and frequent RAG-mediated ERG deletions.
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transcription is initiated by DUX4 binding. It
inhibits wild-type (WT) ERG transcriptional
activity and is proleukemogenic.
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a spectrum of immature leukemias, rather than a true T-ALL. The
involvement of JAK-STAT and PRC2 pathways in ETP-ALL sug-
gests that JAK inhibition and/or chromatin-modifying agents may
be therapeutically useful.53

Recent studies have identified pathogenic noncoding muta-
tions in T-ALL, notably mutations upstream of the oncogene TAL1.
These generate a binding site for the MYB transcription factor,
thereby recruiting a protein complex including TAL1 and the
H3K27 acetylator CREBBP, resulting in formation of an oncogenic
superenhancer region with high levels of H3K27 acetylation.54

RELAPSED ALL

Relapsed ALL has a poor outcome with conventional therapy and
is more common with increasing age, so there is great interest
in characterizing genetic drivers of relapse. Genomic studies have
shown that leukemia evolution leading to relapse usually does not
proceed in a sequential linear fashion but, instead, follows
a complex branched pathway. Although primary chromosome
translocations are retained, the majority of patients who experience
relapse also exhibit new secondary genetic alterations or, com-
monly, relapse-acquired lesions frequently arising from a minor
clone at diagnosis. Genetic lesions driving clonal evolution may
arise from cooperation between recombination-activating genes
(RAG1 and RAG2) and activation-induced cytidine deaminase
(AID).15,55,56 Mutations influencing drug sensitivity and pro-
liferation in particular stroma or environments will outgrow and
become dominant.

Common relapse-acquired lesions include mutations in the
transcriptional coactivator and acetyl transferase CREBBP (CREB-
binding protein [CBP]), which occur in up to 20% of relapsed
ALLs and impair sensitivity to glucocorticoid therapy,57-59 and
mutations in the 59-nucleotidase catalytic enzyme II (NT5C2)
gene, which confer increased resistance to purine analogs.60,61

Other recurrent somatic mutations in relapsed ALL include de-
letions in the DNAmismatch repair gene mut-S homolog 6 (MSH6)
and the glucocorticoid receptorNR3C1 andmutations in the H3K36
trimethyltransferase SETD2, the lysine-specific demethylase KDM6,
and the epigenetic regulator MLL2.62,63

Ras pathwaymutations (eg,KRAS,NRAS, FLT3, and PTPN11)
are often selected for or acquired during treatment and thus
predominate in the relapsed leukemic clone. They are associated
with high-risk features and poor prognosis, but treatment with
MEK inhibitors has been reported to offer clinical benefit in vitro
and in xenograft models.64

INHERITED VARIANTS AND RISK FOR ALL DEVELOPMENT

Inherited variants and rare deleterious mutations have been shown
to play a role in the risk of developing ALL. Some of these variants
are in IKZF1 (7p12.2), CDKN2A/CDKN2B (9p21), ARID5B (10q21.2),
CEBPE (14q11.2), PIP4K2A (10p12.2), and GATA3 (10p14). ARID5B
and PIP4K2A genotypes are associated with risk of hyperdiploid
ALL, whereas the risk allele in GATA3 has been associated with
Ph-like ALL.

TP53 alterations occur in 91% of low-hypodiploid ALLs in
children, 43% of which are found in nontumor cells, suggesting
that low-hypodiploid ALL represents a manifestation of Li-Fraumeni
syndrome.13 Risk of developing ALL is increased by 20-fold in pa-
tients with Down syndrome, whereas the rare constitutional Rob-
ertsonian translocation, rob(15;21)(q10;q10)c, is associated with an
approximately 2,700-fold increased risk of developing iAMP21-ALL
compared with the general population.

There are recent reports of several families with deleterious
inheritedmutations in the ETS domain of ETV6, which affect DNA
binding efficiency and altered intracellular localization of the
protein,65,66 and with a mutation in PAX5 (p.Gly183Ser), which
attenuates the transcriptional activity of PAX5.67

CLINICAL IMPLICATIONS

Accurate, comprehensive identification of the full range of genetic
alterations in ALL is important for diagnosis, risk stratification,
implementation of targeted therapy, and sensitive monitoring of
treatment response. This is now possible but poses logistic, fi-
nancial, and ethical challenges.

Ideally, diagnostic testing should detect all types of alter-
ations of clinical relevance, including nucleotide substitutions,
insertion/deletion mutations, DNA copy number alterations,
and chromosomal rearrangements. The choice of the optimal
detection method will depend on the number of genes to be
screened and the desire to detect genomic rearrangements, as
well as the desired sensitivity. Sequencing-based assays that use
DNA or RNA of sets of genes are able to accurately detect
mutations and rearrangements in a clinically relevant time
frame68 but may not detect all focal deletions characteristic of
ALL. It is likely that unbiased approaches such as transcriptome,
exome, and whole-genome sequencing will be increasingly used.
Sequencing-based approaches have also been used successfully to
analyze antigen receptor rearrangements and quantitate MRD
more sensitively than flow cytometric or conventional poly-
merase chain reaction–based approaches.69 Active areas of in-
vestigation include the use of similar approaches to quantitate
specific mutations and rearrangements that facilitate resistance
to therapy (eg, IKZF1, CREBBP, and NT5C2, and ABL in BCR-
ABL1–positive ALL) and to incorporate these into clinical trials
and management and the use of such results to change therapy
when a mutation that confers resistance to a specific agent
emerges.

These approaches are also important to identify mutated
genes and deregulated pathways amenable to inhibition by tar-
geted therapies, either at initial diagnosis or at relapse, partic-
ularly for high-risk ALL subtypes. This includes treatment of
Ph-like ALL with kinase-activating mutations that have shown
evidence of activity in case reports and are now are being tested
in clinical trials (Table 2). It is likely that genomic data will also
inform the use of immunotherapeutic approaches. For example,
T cells engineered with a chimeric antigen receptor targeting the
thymic stromal lymphopoietin receptor encoded by CRLF2 have
demonstrated potent activity in preclinical models of Ph-like
ALL.70
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