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Although gene duplication is widely believed to be the major
source of genetic novelty, how the expression or regulatory
network of duplicate genes evolves remains poorly understood. In
this article, we propose an additive expression distance between
duplicate genes, so that the evolutionary rate of expression diver-
gence after gene duplication can be estimated through phylog-
enomic analysis. We have analyzed yeast genome sequences,
microarrays, and transcriptional regulatory networks, showing a
>10-fold increase in the initial rate for both expression and
regulatory network evolution after gene duplication but only an
�20% rate increase in the early stage for protein sequences. Based
on the estimated age distribution of yeast duplicate genes, we
roughly estimate that the initial rate of expression divergence
shortly after gene duplication is 2.9 � 10�9 per year, whereas the
baseline rate for very ancient gene duplication is 0.14 � 10�9 per
year. Relative expression rate tests suggest that the expression of
duplicate genes tends to evolve asymmetrically, that is, the ex-
pression of one copy evolves rapidly, whereas the other one
largely maintains the ancestral expression profile. Our study high-
lights the crucial role of early rapid evolution after gene�genome
duplication for continuously increasing the complexity of the yeast
regulatory network.

Brownian-based modeling � gene expression evolution � gene�genome
duplication � microarray � phylogenetic analysis

A lthough understanding the evolution of gene function is a
long-standing central issue, evolutionary genetics has been

primarily focused on DNA sequences (1). This paradigm has
recently shifted dramatically because of the advance of post-
genomics for generating important functional measures of genes
on a very large scale (2–10). In particular, DNA microarray
technology can simultaneously monitor the expression levels of
thousands of genes across many experimental conditions or
treatments, facilitating greatly the evolutionary study of gene
regulation after gene duplication or speciation (e.g., refs. 2, 3, 5,
6, 10, and 11). For instance, we (6) showed a significant but weak
coevolution fashion between cis-regulatory motif structure and
expression profile after yeast gene duplication, raising an inter-
esting question about the relative importance of cis- or trans-
regulatory elements for the evolution of gene expression.

However, how the expression or regulatory network of duplicate
genes evolves remains controversial (1–11), although gene or
genome duplication has been widely accepted as the major source
of genetic novelty (11–17). The aim of our study, by taking
advantage of the substantial functional genomics data in Saccha-
romyces cerevisiae, is to test whether (i) accelerated expression and
regulatory divergence occur shortly after gene duplication and (ii)
expression evolution after gene duplication is asymmetric, that is,
one duplicate has experienced substantial expression divergence,
whereas the other one largely remains the ancestral expression
pattern. To achieve these goals, an important step is to estimate the
evolutionary rate of expression divergence, which requires an
appropriate definition of evolutionary expression distance (E)
within a biologically meaningful model.

Given a set of microarray experimental conditions, the ex-
pression difference between two genes can be measured by
so-called standard metrics, e.g., the Euclidean metric, the Pear-
son correlation, or their variations (18, 19). Although these
metrics have been widely used in microarray clustering or
support vector machine analysis, an additional property, i.e., the
additivity along the phylogenetic tree, is desirable for evolution-
ary study (1). In this article, we propose an evolutionary expres-
sion distance related to the square of the Euclidean metric and
show it is additive under the statistical framework we developed
(5). We then design a least-squares approach to mapping the
pairwise expression distances onto the given phylogeny of the
gene family and estimate the rate of gene expression divergence.
The evolutionary rate of regulatory interaction is estimated for
further testing the hypothesis of rapid regulatory evolution after
gene duplication. Moreover, we develop a relative-rate test to
study asymmetric expression evolution after gene duplication.
All these methods are applied to the genome-wide gene families
of yeast to explore the pattern of functional evolution after gene
duplication.

Data and Methods
Functional Genomics Data. A total of 276 yeast microarray experi-
ments were downloaded from an on-line database (genome-
www.stanford.edu). As commonly suggested, we used the fold
change after the normalization for representing the gene expression
level (19). The yeast transcription factor (TF)–target gene interac-
tion data (presented by the P value) were from ref. 20.

Phylogenetic Analysis and Duplication Time Estimation. The complete
sequences of 43 genomes of bacteria, archaea, and S. cerevisiae were
downloaded from the Clusters of Orthologous Groups (COG)
database, where gene families are classified as COGs. Each COG
requires at least one homologous gene in the major lineages,
allowing us to date the age of yeast gene duplication. The phylogeny
of each gene family (COG) was inferred from amino acid sequences
by using the neighbor-joining method (21). After carefully exclud-
ing the potential lateral gene transfer events, we used several
methods (6) to compute the relative duplication time, with the
bacteria�yeast split as the time unit (�1.4–2 billion years ago): (i)
the linearized-tree method assuming a global molecular clock (22);
(ii) the nearest calibration (15), phylogenetic analysis to determine
whether a duplication event was before or after the yeast–
Escherichia coli split and then estimating the (relative) age assuming
a local clock; (iii) the simple distance ratio between the yeast
duplicates and the yeast–E. coli; and (iv) the amino acid distance
between duplicates used as a proxy for evolutionary time (10).

Phylogenetic Inference of Regulatory Interactions. After download-
ing the yeast regulatory interaction data (measured by the P
value) from ref. 20, we developed a relational database to

Abbreviations: COG, Clusters of Orthologous Groups; TF, transcription factor.

§To whom correspondence should be addressed. E-mail: xgu@iastate.edu.

© 2005 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0409186102 PNAS � January 18, 2005 � vol. 102 � no. 3 � 707–712

EV
O

LU
TI

O
N



retrieve regulatory interactions for all yeast gene families. For
each of 434 gene families with at least two yeast duplicates,
evolutionary events (gain or loss) for regulatory interactions can
be inferred by parsimony, given the inferred tree and the cutoff
P value. For instance, at cutoff P � 0.001, as suggested by Lee
et al. (20), we identified in total 1,358 evolutionary events of
regulatory interactions.

Evolutionary Distance (E) for Expression Divergence. For any dupli-
cate genes 1 and 2, let x1k and x2k be the expression levels,
respectively, in the kth microarray experiment, k � 1, . . . , m. Let
x�1 and x�2 be the means of expression, respectively. Then we define
the evolutionary expression distance between genes 1 and 2 as
follows:

Ê12 � �
k�1

m

��x1k � x�1� � �x2k � x�2��
2��m � 1�. [1]

In other words, the evolutionary expression distance is the
centralized squared Euclidean metric that is normalized by the
sample size.

We have shown that the expression distance defined by Eq. 1
satisfies the additive requirement. The general proof will be
published elsewhere, as illustrated here by the two-gene case
(Fig. 1). Let E12 � E[Ê12] be the expectation of expression
distance between gene 1 and gene 2, called the true expression
distance. After directly applying the expectation operator E[.] to
Eq. 1, one can show E12 � V11 � V22 �2 V12, where V12 is the
expression covariance between genes 1 and 2, and V11 (or V22)

the expression variance of gene 1 (or gene 2). On the other hand,
according to the stochastic model for expression evolution along
the phylogeny (5), the variance–covariance matrix of expression
profiles is given by V11 � �2 �E1, V22 � �2 �E2, and V12 � �2,
where �2 is the common variance component of the gene family,
and E1 and E2 are the expression branch lengths. It is therefore
straightforward to verify the additivity of E12, that is,

E12 � E1 � E2. [2]

The additivity assures that, given the evolutionary time t between
two duplicate genes, the evolutionary rate of expression diver-
gence is given by �E � E12�2t, which is the average rate over two
lineages, i.e., �E � (E1�t � E2�t)�2 � (�1 � �2)�2, as shown in
Fig. 1. For a large gene family, the additivity allows us to develop
a least-squares method for mapping the pairwise expression
distances onto the phylogeny, e.g., see ref. 23. Thus, the mean
rate of expression divergence can be estimated by �E � ET�T,
where ET is the sum of expression branch lengths, and T is the
total evolutionary time of the gene family. The software GENE-
EXPRESSION is available at http:��xgu.zool.iastate.edu.

Biological Meaning of Expression Distance. Gu (5) developed a
statistical framework for expression evolution under the Brown-
ian process. This simplest B model assumes that the expression
divergence of a gene family is mainly driven by small and additive
genetic drifts (random effects), with a constant rate measured by
�2 or the mutational variance under the drift-mutation model of
quantitative traits (24). In the two-gene case (Fig. 1A), the B
model assures E1 � E2 � �2t. Hence, the expression distance is
given by E12 � E1 � E2 � 2�2t, and the evolutionary rate of
expression divergence equals to the mutational variance, i.e., �E
� E12�2t � �2. Consequently, the B model could be considered
the neutral-evolution model of gene expression; in analogy,
under the classical neutral model, the evolutionary rate of DNA
sequence equals the mutation rate.

Moreover, Gu (5) studied several evolutionary mechanisms in
which selection forces may be involved. For instance, under the
dramatic-shift (S) model (punctuated-equilibrium), the expres-
sion branch lengths are E1 � �2t � S1

2 and E2 � �2t � S2
2, where

S1
2 and S2

2 are the expression variances caused by the duplication-
dependent dramatic shifts in both lineages, respectively. Under
the S model, the expression distance turns out to be E12 �
2�2t� S1

2 � S2
2, resulting in �E � E12�2t � �2 � S2�t, where S2 �

(S1
2 � S2

2)�2. Therefore, the accelerated (time-dependent) rate of
expression divergence may reflect the nonneutral fashion of
expression divergence after gene duplication (Fig. 1B).

Fig. 1. Illustration of models for expression divergence after gene duplica-
tion. (A) Schematic illustration for a rooted two-gene tree. E1 and E2 refer to
the expression lengths associated with the branches after gene duplication; �2

refers to the common expression variance. The expression distance E12 is the
sum of E1 and E2. (B) Schematic illustration for the time dependency of the
evolutionary rate under the S model.

Fig. 2. Histogram for the estimated age distribution of yeast duplicates. The
evolutionary time unit is defined by the time of the bacteria�yeast split, �2
billion years ago.
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Relative Expression Rate Test. Similar to DNA sequence evolution
(25–28), we implement the relative-rate test to examine whether
the expression divergence is asymmetric after gene duplication,
when an outgroup gene (gene 3) is available (Fig. 5A). The null
hypothesis is E1 � E2, i.e., equal expression divergence after
duplication (symmetric evolution). From the additivity of ex-
pression distance, i.e., E13 � E1 � E3, and E23 � E2 � E3, the
relative rate test for gene expression is to compute the statistic

�E � E13 � E23. [3]

The biological interpretation of �E can be illustrated under the
S model. Because E1 � �2 t � S1

2 and E2 � �2t � S2
2, we have

�E � E13�E23 � S1
2 � S2

2, i.e., to test which lineage may have more
dramatic (duplication-dependent) expression shift. Under the
null hypothesis, �E � 0, the P value can be empirically calculated
by the bootstrapping procedure. Therefore, the null hypothesis
of symmetric expression evolution is rejected at the significance
level � if P 	 �.

Effects of Microarray Experimental Factors. Let �	
2 be the variance

component of gene expression from the (nonbiological) exper-
imental factors (dye effects, spot effects, random errors, etc.)
(18, 19, 29). Consequently, the expectation of the expression
distance defined by Eq. 1. turns out to be

E*ij � Eij � 2�

2. [4]

That is, the expression distance, as well as the evolutionary rate
of expression divergence, tends to be overestimated. Neverthe-
less, the relative-rate expression test in Eq. 3 is statistically not
affected by the experimental factors; the facts E*12 � E1 � E2 �
2�	

2 and E*23 � E2 � E3 � 2�	
2 directly result in �*E � E*13�E*23

� E13�E23 � �E .

The ANOVA Model. We use the ANOVA model to account for
various sources of expression variation in microarray data (29),
which provides a rough estimate of the experimental variance �	

2.
For instance, we consider the cDNA microarrays during yeast
sporulation. Let yijkg be the log-transformed expression intensity
of gene g from array i � 1, . . . ,7, dye j (j � 1 for green and 2
for red) at time point k � 1, . . . ,7. The ANOVA model for yijkg

can be written as follows

yijkg � � � Ai � Dj � Tk � Gg � �AG�ig � �TG�kg � eijkg,

[5]

where � is the overall mean. The error terms eijkg are indepen-
dent and identically distributed with mean 0 and variance 
2. The
array effects Ai account for mean expression differences of
expression between arrays and the dye effects Dj for differences
between the average signals from each dye. The time-point
effects Tk account for overall differences in the time points. The
gene effects Gg capture the average levels of expression for
individual genes spotted on the arrays. The array-by-gene inter-
actions (AG)ig account for the effect of the spot on array i for
gene g. For example, some spots may be generally brighter than
others due to variations in the slide or uneven washing. The spot
effects account for such differences. Finally, the normalized
interactions between genes and time points, (TG)kg, capture
differences from overall averages that are attributable to the
specific combination of time k and gene g.

Hence, the experimental variance �	
2 may include the dye

effect Dj, the array-by-gene interactions (AG)ig, and the variance

2 of error terms eijkg, because the standard normalization
procedure may have largely erased the array effects Ai.

Results
Age Distribution of Yeast Gene Duplications. We have studied 434
yeast (S. cerevisiae) gene families in the COG database (in total,
1,906 genes), consisting of 201 two-, 113 three-, 39 four-, 18 five-
and 63 six-or-more-member gene families. For each gene family,
we inferred the phylogenetic tree and estimated the age of each
duplication event. The age distribution of 1,369 duplication
events we identified is shown in Fig. 2, representing 41% yeast
proteome in the COG database. The time scale used in our
analysis was the divergence time between prokaryotes and
eukaryotes, which is �1.4–2 billion years ago. We demonstrated
that technical issues of time estimation have little effect on the
shape of age distribution that reflects the general picture for the
occurrence of gene duplications over long-time yeast evolution.
Using amino acid distance as a proxy for duplication time gives
virtually the same result (not shown).

We noticed two peaks in the age distribution of yeast dupli-
cates (Fig. 2). The recent tremendous increase of duplication
events could well be explained by the yeast genome duplication
hypothesis (a polyploidization event) that might have occurred
�100 million years ago (13–14). In addition, there exists a very
ancient peak for gene duplications that occurred around the
divergence time between prokaryotes and eukaryotes. The age
distributions from bacteria (E. coli K12) and archaea (Thermo-
plasma acidophilum) also show this very ancient component of
duplicates (not shown). These observations together raise an
interesting question about the role of gene duplications during
the emergence of three major kingdoms.

Evolutionary Rate of Expression Divergence After Gene Duplication.
For each of 434 yeast gene families with at least two duplicates,
we estimated the expression distances (Eij) between any two
duplicate genes i and j, based on 276 yeast microarray datasets.
Given the inferred phylogeny from the multialignment of gene
family, the total expression branch length (ET) was estimated by
the least-squares mapping of expression distances on the topol-
ogy. Because the total evolutionary time (T) of the gene family
was obtained from the estimated duplication times (see above),
we estimated the evolutionary rate (�E � ET�T) of expression
divergence for each gene family.

Overall, the mean rate among yeast gene families under study
is 0.977 per time unit (the bacteria�yeast split); the 95% quantile
(0.09–6.50) reveals a substantial variation of expression rates. If
one further assumes the bacteria�yeast split was �2 billion years
ago, the mean rate of expression divergence after yeast dupli-
cation turns out to be 0.49 
 10�9 per year. Interestingly, the
evolutionary rate (�E) of gene expression after duplication is
time-dependent (Fig. 3A); the log-log regression (Fig. 3A) shows
�E is negatively correlated with the total evolutionary time (T)
of the gene family (R � �0.75, P value 	10�8). Fig. 3B shows
that in the early stage, the mean initial rate of expression
divergence would be as high as 5.8 per time unit, or 2.9 
 10�9

per year, which is �20-fold higher than the baseline expression
rate (0.14 
 10�9 per year). Our finding supports the notion of
rapid expression divergence shortly after gene duplication, which
is much more dramatic than in the sequence evolution of
duplicate genes (25–28). Indeed, only a moderate (�20%)
increase in the rate of protein sequence evolution is observed for
young gene families (R � �0.18, P 	 0.01). Consequently, the
ratio of expression rate to protein sequence rate is high (�7.1)
for young duplicates and decreases with the evolutionary time;
the average is �1.44 (Fig. 3B).

Evolutionary Rate of Regulatory Interaction Between TF Genes. Rapid
expression divergence reflects rapid evolution of regulatory
network in the early stage after gene duplication. We tested this
prediction using TF–target gene interaction by large-scale chro-
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matin immunoprecipitation (ChIP) experiments (hereafter, reg-
ulatory interactions) (20). The advantage of ChIP technology is
that it detects the regulatory network without accurate identi-
fication of binding sites. We used parsimony to infer the evolu-
tionary events of regulatory interactions. Because the root of the
gene family tree is uncertain in many cases, we used turnover
events (gain or loss) in our study (see Data and Methods). Then
we estimated that the mean evolutionary rate (�R) of regulatory
interactions �R � 0.722 per time unit, or 0.36 
 10�9 per year.
Similar to the rate of expression divergence, we grouped dupli-
cate genes with similar duplication age (with a bin of 0.2 time
unit) and estimated the mean evolutionary rate for each group.
As shown in Fig. 4, the regulatory evolution in the young
duplicate group is almost 10-fold faster than in the ancient
group. The null hypothesis of equal rate among age groups is
highly rejected (P value 	10�5). Note that we used the cutoff P �
0.001 as did Lee et al. (20), but the pattern remains virtually the
same for P � 0.005 or P � 0.01 (not shown).

Asymmetric Expression Evolution After Gene Duplication. The view
of asymmetric evolution after gene duplication (25–28) predicts
that only one duplicate copy has undergone rapid expression
evolution shortly after gene duplication (high-rate expression
divergence), whereas the other copy largely kept the ancestral
pattern (low-rate expression divergence). We used the relative
expression rate test to study 111 yeast duplicate gene pairs (Fig.
5A), whereas an out-group duplicate gene was determined by
phylogenetic analysis with 43 complete genomes. Overall, 60

gene families (54%) show the null hypothesis (equal expression
divergence, E1 � E2) is rejected at the 0.05 significance level, and
47 gene families (42%) at the 0.01 significance level. It has been
recommended that a reasonable measure for type I error under
multiple tests is the false discovery rate (FDR) (30). Given the

Fig. 3. Rapid evolution of expression divergence shortly after gene dupli-
cation. Log-log regression (A) between the evolutionary rate (�E) of gene
expression and the total evolutionary time (T) of the gene family. (B) Evolu-
tionary rate of gene expression and protein sequence, as well as the expres-
sion�sequence ratio, averaged over each bin (0.2 time unit), is plotted against
T. The evolutionary time unit is defined by the time of bacteria�yeast split, �2
billion years ago.

Fig. 4. Evolutionary rate of regulatory interaction turnover, averaged over
each bin (0.2 time unit), is plotted against age of gene duplication. The
evolutionary time unit is defined by the time of bacteria�yeast split, �2 billion
years ago.

Fig. 5. Relative-rate test for asymmetric evolution of expression divergence.
(A) Schematic illustration for the relative expression rate test, whereas E3 � E3�

� E4�. (B) Histogram for the P values obtained from the bootstrapping in each
individual test. (C) Expression rates for highly as well as lowly diverged copy
after gene duplication, averaged over each time bin (0.2 unit), are plotted
against total evolutionary time relative to the bacteria�yeast split.
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histogram of the P values (Fig. 5B), we estimated FDR � 11.8%
at the 0.05 significance level; that is, there are �60 
 11.8% �
7 cases that could be false-positive. This result indicates that the
expression evolution of duplicate gene pairs is more asymmetric
than that of protein sequences, which is �30%, despite much
controversy (25–28). We tentatively classified these duplicate
genes into high (H) or low (L) expression-rate groups, respec-
tively. Fig. 5C shows that the mean expression rate in the H group
is much higher in young duplicates, whereas that in the L group
has no difference between young and ancient duplicates.

Expression Distance and Rate Corrected for Experimental Variance.
One remaining question is whether our results could be affected
by nonbiological experimental factors. We applied the ANOVA
procedure to the yeast sporulation microarray data (31) to obtain
a rough estimate of �	

2. Fig. 6 shows the percentage of the sum
of squares for each source. The mean of squares for the dye
effect, Dj, the array-by-gene interactions (AG)ig, and the error
terms, eijkg, is 0.031, 0.229, and 0.015, respectively, per gene.
After assuming these are typical values for the current cDNA
microarray procedure, we obtain �	

2 � 0.031 � 0.229 � 0.015 �
0.275. We then recalculated the evolutionary rate of expression
divergence after gene duplication. It showed that the mean initial
rate of expression divergence now is down to 3.4 per time unit,
or 1.7 
 10�9 per year, which is �41% lower than the original
estimate. However, it is still �10-fold higher than the baseline
expression rate. In other words, the relatively high level of
experimental variance does not alter our main result.

Discussion
We conducted a genome-wide phylogenetic expression analysis
after yeast gene duplication. Together, we conclude there is at
least a 10-fold increase in the initial rate for both expression and
regulatory evolution shortly after gene duplication, while only an
�20% rate increase in the early stage for protein sequences.
Moreover, relative expression rate tests suggest that the expres-
sion of duplicate genes tends to evolve asymmetrically; that is,
the expression of one copy evolves rapidly, whereas the other one
largely maintains the ancestral expression profile.

We have addressed several technical issues to examine
whether our major conclusion might be affected. It is well known

that time estimations from molecular data are not accurate (1).
We therefore used several alternative dating approaches and
found that the age distribution of yeast gene duplicates is
generally robust. To investigate the effect of phylogeny infer-
ence, we selected 100 gene families (random sample) to infer the
phylogenetic trees using parsimony and likelihood methods. The
results from this random sample are very consistent with age
distribution, as shown in Fig. 2. Nevertheless, the evolutionary
rates of expression and regulatory interactions were calculated
under alternative dating approaches, which were virtually iden-
tical to Figs. 3 and 4 (data not shown).

We recognized that the expression distance tends to be
overestimated if some nonbiological experimental factors inher-
ited in the microarray data have not been appropriately cor-
rected (19, 29). In this sense, the estimated expression rate
should be interpreted as up-bound. Notice that the potential
crosshybridization among recent duplicates may cause our esti-
mate to be more conservative. More advanced chip technology
and statistically sound experimental design might provide an
accurate estimate for the expression distance in the near future.
Nevertheless, we have tried to reduce the noise inherent in the
yeast microarray dataset we used in the current study. Using the
ANOVA approach, we estimated roughly the experimental
variance and concluded that rapid expression evolution is un-
likely to be an artifact of nonbiological experimental factors. It
should also be noted that the rate difference, which is funda-
mental for testing asymmetric expression after gene duplica-
tions, is fairly robust.

Our phylogenomic expression analysis suggests that the phy-
logeny of a gene family should be inferred from sequences rather
than from microarray data for two reasons. First, it avoids the
circular argument, and second, the microarray expression data
are not suitable for tree making, because the rate is not only
strongly time-dependent but also highly variable among lineages.
Consequently, the correct percentage of tree making using
expression profiles is very sensitive to model selection, as shown
by our empirical and simulation studies. In other words, phylo-
genetic inference based on expression data tends to be mislead-
ing, because the evolution of expression is complicated.

Because the regulatory interaction data (20) were presented by
the P value, we have to rely on the cutoff value to determine the
status of TF gene regulation. The choice of cutoff should balance
the false-positive and -negative rates, which may be arbitrary. In
additional to P � 0.001, as suggested by Lee et al. (20), we tried
several alternative cutoff values from P � 0.0001 to 0.01. Although,
as expected, the number of regulatory interactions varies consid-
erably, the rapid evolution of the pattern shortly after gene dupli-
cation (Fig. 4) is not sensitive to the cutoff value. Of course, it is
desirable to develop a method without the help of the cutoff. It
would also be interesting to determine how the functional diver-
gence of TF protein sequences (32) could affect the TF-binding
pattern. These problems may be addressed in future studies.
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