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Abstract

Simple organisms including yeast and flies with mutations in the IGF-1 and Tor-S6K pathways are 

dwarfs, are highly protected from toxins, and survive up to 3 times longer. Similarly, dwarf mice 

with deficiencies in the growth hormone-IGF-I axis are also long-lived and protected from 

diseases. We recently reported that humans with Growth Hormone Receptor Deficiency (GHRD) 

rarely develop cancer or diabetes. These findings are in agreement with the effect of defects in the 

Tor-S6K pathways in causing dwarfism and protection of DNA. Because protein restriction 

reduces both GHR-IGF-1 axis and Tor-S6K activity, we examined links between protein intake, 

disease, and mortality in over 6,000 US subjects in the NHANES CDC database. Respondents 

aged 50–65 reporting a high protein intake displayed an increase in IGF-I levels, a 75% increased 

risk of overall mortality and a 3–4 fold increased risk of cancer mortality and these findings were 

confirmed in mouse studies. These studies point to a conserved link between proteins and amino 

acids, GHR-IGF-1/insulin, Tor-S6k signaling, aging, and diseases.

Mutations in growth pathways: from yeast to humans

Nutrient sensing pathways that regulate metabolism and growth can also promote aging and 

mortality [1].

Yeast, C. elegans and Drosophila

In S. cerevisiae, multiple pathways represent the central pro-growth and pro-aging signaling 

network activated by nutrients. The TOR1–Sch9 pathway is primarily activated by amino 

acids whereas the Ras2–cAMP–PKA pathway is turned on predominantly by glucose [1]. 

The activation of these pathways by nutrients inhibits the activity of the serine/threonine 

kinase, Rim15 (regulator of IME2), and consequently the activity of stress resistance 

transcription factors Msn2/Msn4 (multicopy suppressor of SNF1 mutation) and Gis1 

(glycogenin-like gene 1–2 suppressor), which play critical roles in lifespan regulation [2]. 
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Genetic disruption of TOR1–Sch9, Ras2, or both, extends lifespan in this organism by up to 

fivefold [3, 4]. In agreement with an effect of nutrient signaling on both aging and mortality, 

yeast cells deficient in TOR1–Sch9 or Ras2–cAMP–PKA signaling display reduced 

genomic instability and greater resistance to oxidative stress [3, 5, 6]. Reduced activity of 

the IIS (insulin/Igf-like signaling) pathway has been shown to extend life span in C. elegans 
and other multicellular organisms [7, 8]. This life-span increase requires the forkhead FoxO 

transcription factor, daf-16, which regulates genes involved in a wide range of defensive 

activities including cellular stress response, antimicrobial activity, and detoxification of 

xenobiotics and free radicals. The TOR pathway interacts intimately with IIS, and inhibition 

of its activity, including reduction of TOR and S6 kinase, as in yeast, can increase life span 

in C. elegans [1]. In Drosophila, as in C. elegans, reduced IIS can extend life span, 

establishing its evolutionarily conserved role [9] For example, mutations in the insulin 

receptor (InR), which is homologous to the mammalian insulin and IGF-I receptors and to 

C. elegans daf-2, results in a smaller body size, infertility in females and significantly 

increases longevity [10] and mutation of the insulin receptor substrate (IRS) homolog chico, 
results in reduced body size and increases lifespan of female flies by 48% [11]. Moreover, 

down-regulation of TOR pathway activity genetically [12] or by rapamycin [13]extends life 

span as it does in yeast and C. elegans. Extension of life span by rapamycin requires 

autophagy, reduced S6K activity, and eukaryotic initiation factor 4E binding protein (4E-BP) 

and is associated with reduced protein turnover[13], similar to what is seen in C. elegans. 

The effects of dietary restriction on lifespan in Drosophila appear to be mediated by reduced 

consumption of amino acids, particularly essential amino acids rather than reduction of 

sugar intake [14].

Rodents

In mice, mutations that cause either deficiency in the levels of plasma GH and IGF-1 or a 

reduction in IGF-1 signaling lead to as much as a 50% increase in life span [15–17]. 

Homozygous Ames dwarf mutations in the Prop-1 gene (df/df) prevent the generation of the 

anterior pituitary cells that produce growth hormone, thyroid stimulating hormone, and 

prolactin and young adult df/df mice are approximately one third of the size of control mice 

but survive > 50% longer [15]. This effect of dwarf mutations on life span appears to be 

caused by the absence of plasma GH, which stimulates the secretion of IGF-1 from liver 

cells but can act on many different cell types [18]. In fact, IGF-1 is reduced dramatically in 

the plasma of df/df mice. The plasma GH deficiency appears to mediate the effects of Prop-1 
(Ames dwarf) and Pit-1 (Snell dwarf) mutations on longevity, since the mice that cannot 

release GH in response to growth hormone releasing hormone (GHRH) also live longer [18]. 

Furthermore, dwarf mice with high plasma GH, but a 90% lower circulating IGF-1 (growth 

hormone receptor/GH binding protein, GHR/BP, null mice) live longer than their wild type 

littermates [16]. Female mice lacking one copy of IGF-1 receptor (IGF-IR+/−) were shown to 

live 33% longer than their wild type controls [17], while a separate study using mice of a 

different background showed only a modest (5%) increase in mean lifespan of female 

Igf1r+/− compared to controls ([19]. Moreover, LID mice, with a 70% reduction in 

circulating IGF-1 do not live longer [20] raising the possibility that circulating IGF-1 levels 

are only responsible for part of the pro-aging effects of GH. Taken together these studies 

suggest that the reduction in GHR signaling in many different tissues, some of which 
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promote IGF-1 and insulin generation, is responsible for a significant portion of the life span 

increase in dwarf GH deficient and GHR/BP null mice. Analogous to the activation of yeast 

Sch9 and Ras by glucose, the mammalian IGF-1 receptor activates both Akt/mTOR/S6K and 

Ras, and regulates glucose metabolism and cellular proliferation [21]. Several studies have 

shown that treatment of mice with rapamycin, a pharmacological inhibitor of mTOR, 

resulted in lifespan extension [22–26] by retarding multiple aspects of aging including 

neoplasias [27]. Accumulating evidence has implicated increased IGF-1 or IGF-1 signaling 

as risk factors in a variety of cancers [28], suggesting that this pro-mitotic pathway can 

promote aging and also the damage and mutations necessary for tumorigenesis. A reduction 

in adenylyl cyclase activity by deletion of the adenylyl cyclase 5 (AC5) gene was also shown 

to extend life span and increase resistance to oxidative stress in mice [29], suggesting that 

these pathways, including homologs of Akt, S6 kinase and cAMP/PKA may play a partially 

conserved role in the regulation of aging and stress resistance in organisms ranging from 

yeast to mice [30].

Humans

Recently, we showed that humans with growth hormone receptor deficiency (GHRD), 

exhibiting major deficiencies in serum IGF-1 and insulin levels, displayed no cancer 

mortality or diabetes. Despite having a higher prevalence of obesity, combined deaths from 

cardiac disease and stroke in this group were similar to those in their relatives [31]. Our 

findings were also supported by a study of 230 GHRD subjects, which reported the absence 

of cancer in these individuals [32]. Although, neither GHR nor GH releasing hormone 

receptor deficient subjects appear to be long lived, mutations that reduce the activity of the 

IGF-IR protein were overrepresented among centenarians, suggesting that lower activity but 

not severe deficiency in GH/IGF-I signaling may be more beneficial for longevity 

extension[33, 34]. Moreover, lower IGF-1 levels were also shown to significantly predict 

survival, specifically in females, and in individuals with a history of cancer [35].

CR and protein/amino acid restriction

Caloric restriction (CR) has been consistently shown to increase longevity in a number of 

animal models, including yeast, C. elegans, and mice [36]. In yeast, amino acid scarcity 

which increases lifespan, acts through the Tor/Sch9 pathway [37], and amino acid 

withdrawal and repletion studies point to the TORC1 complex as a major amino acid 

transducer in mammalian cells [38, 39] which include the essential amino acids, leucine and 

methionine and to a lesser extent the non-essential amino acid arginine [40]. In yeast, we 

recently showed that methionine restriction does not extend lifespan and instead threonine 

and valine can promote stress sensitization by activating the mTOR pathway. Treatment of 

WT DBY746 yeast cells with serine, threonine and valine, and to a lesser extent methionine, 

promoted sensitization to peroxide induced stress, and treatment with myriocin, a Pkh 

blocker, to prevent Sch9 phosphorylation, only rescued serine sensitization but had no effect 

on methionine/threonine/valine treatment [37]. Moreover, the TORC1 inhibitor, Rapamycin 

was capable of suppressing the sensitization caused by threonine and valine, but was 

completely ineffective in suppressing the serine-dependent effects [37]. In rodents, reduced 

dietary intake of protein or certain essential amino acids, namely methionine and tryptophan, 
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can also extend longevity [41]. However, the effect of CR on the lifespan of non-human 

primates remains controversial, and may be heavily influenced by dietary composition [36].

As mentioned above, we recently reported that humans with GHRD and major deficiencies 

in serum IGF-1 and insulin levels, displayed no cancer mortality or diabetes [31]. Protein 

restriction or restriction of particular amino acids, such as methionine and tryptophan, may 

explain part of the effects of CR and GHRD mutations on longevity and disease risk, since 

protein restriction is sufficient to reduce IGF-1 levels and can reduce cancer incidence or 

increase longevity in model organisms, independently of calorie intake [42–51]. In a recent 

study of 6,381 US men and women from the NHANES III database we reported that high 

protein intake correlated with a 75% increase in overall mortality, and increased risk of death 

from cancer and diabetes in respondents aged 50–65 whereas the opposite was true in 

respondents older than 65 [36]. Mouse studies confirmed that high protein intake was 

associated with higher rate of cancer progression in young mice whereas it was beneficial in 

older mice [36]. A higher protein intake after age 65 may be necessary to reduce age-

dependent weight loss and prevent decrease in IGF-1 levels, which may be associated with 

frailty and mortality [36]. Studies have also noted poor nutrient absorption in older mice 

[52] and possibly limited systemic availability of dietary amino acids that may contribute to 

decreased muscle protein synthesis in humans [36].

Conclusions

In conclusion, studies in model organisms and humans suggest a conserved link between 

proteins/amino acids, GHR-IGF-1/insulin, Tor-S6k signaling, aging, and diseases. Protein or 

amino acid restriction may explain part of the beneficial effects of GHRD in mice and 

humans, as both result in IGF-1 reduction and protection from cancer, stress resistance and 

DNA damage. Our observations in humans and mice are also consistent with studies in 

yeast, worms and flies, which implicate the amino acid responsive TOR/S6K pathway in 

lifespan regulation and point toward simple interventions focused on amino acids to extend 

lifespan and improve healthspan.
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Highlights

1. Mutations in GH-IGF-1 and TOR-S6K pathways extend lifespan and protect 

from toxins.

2. These pathways and their components are highly conserved across species.

3. Protein restriction reduces both GHR-IGF-1 axis and TOR-S6K activity.

4. These findings point to a conserved link between proteins, GHR-IGF-1 and 

TOR-S6K.
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Figure 1. 
A model for conserved nutrient signaling pathways that regulate aging

Dietary restriction reduces the activity of conserved pro-aging genes and pathways directly 

by downregulating TOR and RAS-PKA (yeast), and indirectly, through reduced levels of 

IGF-1 and Ins/IGF-1 like growth factors (C. elegans, Drosophila and mice). This results in 

increased expression and/or activity of stress resistance genes that promote lifespan 

extension.
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