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Abstract

Iron fulfils a central role in many essential biochemical processes in human physiology, which
makes proper processing of iron crucial. Although iron metabolism is subject to relatively strict
physiological control, in recent years numerous disorders, such as cancer and neurodegenerative
diseases, have been linked to deregulated iron homeostasis. Because of its involvement in the
pathogenesis of these diseases, iron metabolism constitutes a promising and largely unexploited
therapeutic target for the development of new pharmacological treatments. Several iron
metabolism-targeted therapies are already under clinical evaluation for haematological disorders,
and these and newly developed therapeutic agents will likely have substantial benefit in the clinical
management of iron metabolism-associated diseases, for which few efficacious treatments are
often available.

Iron is, after aluminium, the second most abundant metal on earth, and is an essential
element for all forms of life on earth. Numerous enzymes involved in DNA replication,
repair and translation rely on iron, often in the form of iron-sulphur (Fe-S) clusters, for
proper functioning in animals, plants and fungi, as well as in organisms from the two
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prokaryotic domains of life, Bacteria and Archeal. The biological activity of iron lies, to a
large extent, in its efficient electron transferring properties, enabling it to accept or donate
electrons while switching between its ferrous bivalent (Fe(ll), Fe2*), ferric trivalent (Fe(l1),
Fe3*) and its ferryl tetravalent (Fe(IV), Fe**) states, thereby functioning as a catalysing
cofactor in various biochemical reactions2. In vertebrates, the second main role of iron
involves the oxygen-binding characteristic of porphyrin-complexed iron, better known as
haem, which is crucial for the oxygen-carrying capacity of haemoglobin and myoglobin.

Taking into account these vital functions of iron in human physiology, it is clear that
systemic or cellular disorders in iron metabolism may have serious consequences. At the
systemic level, haem incorporated in haemoglobin (Hb) and myoglobin accounts for more
than half of the approximately 4 grams of iron present in the human body, and by far the
largest share of the total iron turnover is for haem production3. Consequently, an insufficient
iron supply, unmet demand for iron, or substantial loss of iron will lead to a shortage of Hb,
resulting in iron-deficiency anaemia4. Conversely, patients with red blood cell disorders
such as p-thalassemia suffer from anaemia that is associated with malformed red blood cells
that have a reduced life span due to dysfunctional $-globin expression and reduced Hb
production5. In an attempt to compensate the chronic anaemia, these individuals produce
large numbers of erythroid progenitors. This high erythroid activity is accompanied by a
greatly increased iron demand, which promotes iron absorption and, in turn, causes serious
comorbidity resulting from iron overloading.

At the cellular level, the presence of intracellular iron has a strong impact on the cellular
redox status, contributing to oxidative stress in individual cells. Reactive oxygen species
(ROS), such as superoxide (O,™) and hydrogen peroxide (H,05), which are formed by a
single and double univalent reduction of molecular oxygen (O,), respectively, are known to
catalyse specific cellular redox reactions and are therefore involved in a number of
signalling pathways. However, further reduction of relatively harmless H,O, results in the
formation of hydroxyl radicals (OHe) that are highly reactive, causing nonspecific oxidation
and damage to nucleic acids, lipids and proteins6. Iron, as well as other metals, catalyses the
formation of OHe from other ROS by Fenton chemistry7, which involves the oxidation of
Fe(lIl) (to Fe(l11)) and electron transfer to H,O,. The presence of superoxide further assists
this process by promoting the reduction of Fe(lll) to form Fe(ll) (and O,) to complete the
catalytic electron transport cycle of iron known as the Haber—\Weiss reaction8.

As a consequence of its well-established roles in iron-deficiency anaemia and iron-loading
anaemia, iron metabolism has historically remained within the scope of haematological
pathologies. However, over the past decade, a range of ageing-related, non-haematological
disorders has been associated with deregulated iron homeostasis as well. In this Review, we
discuss iron metabolism as a target for the development of new therapeutics or drug delivery
strategies in these diseases. We provide a systematic overview of the iron regulatory
pathways and its key players, as well as the major pathophysiologies associated with
dysfunctional iron homeostasis, and then review some the most promising iron metabolism-
targeted therapeutics thus developed, which could provide new therapeutic options for these
often difficult to treat disorders.
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Physiology of iron metabolism

Systemic iron regulation - the hepcidin—ferroportin axis

Cellular iron

Hepcidin is a peptide comprising 25 amino acids that is encoded by the HAMP gene and
named for its high expression in the liver9. Hepcidin was originally thought to be a peptide
with moderate antimicrobial activity9,10, but it was soon recognized to be the master
regulator of systemic iron metabolism11. Hepcidin regulates the systemic flux of iron by
modulating the levels of ferroportin on the cell surface, the only known cellular exporter of
unbound iron in vertebrates12. By directly binding to the extracellular domain of ferroportin,
hepcidin induces endocytosis and degradation of the transmembrane protein, thereby
preventing iron egress from the cell13. High levels of ferroportin are found in enterocytes in
the duodenum (to transport absorbed iron), in hepatocytes (to transport stored iron), and in
macrophages (to transport recycled iron), which together control systemic iron levels14-16.
By reducing surface ferroportin, the expression of hepcidin limits the absorption,
remobilization and recycling of iron, thereby reducing iron plasma levels (Figure 1).

With hepcidin as the central orchestrator, all major regulatory pathways of systemic iron
homeostasis converge on HAMPtranscription, mostly via SMAD signalling (Figure 2). As a
result, alteration or genetic mutation of proteins that act within these pathways have been
associated with a variety of disorders, including primary and secondary forms of iron
overload, and chronic anaemia. Consequently, these proteins, together with ferroportin, are
some of the most interesting therapeutic targets that could be exploited for a variety of
disorders (Table 1).

regulation

Cellular iron trafficking can be separated into three processes: intake, utilization and efflux
(Figure 3, Table 2). There are four general pathways by which individual cells internalize
iron. The most important pathway is centred around transferrin (Tf), an abundant plasma
protein that acts a natural chelating agent with two high-affinity binding sites for ferric
ironl7. TT fulfils several crucial physiological roles that include the solubilisation of
relatively insoluble Fe(l1l), the prevention of iron-mediated redox toxicity, and the systemic
trafficking of iron. Although under normal circumstances less than 0.1% of total body iron is
Tf-bound, the high turnover of Tf ensures that each day 20-30 mg of iron is delivered to the
bone marrow for erythropoiesis. Cellular internalization of transferrin-bound iron typically
occurs after docking with the membrane-bound transferrin receptor 1 (TfR1), which has
nanomolar affinity for iron-bound Tf, but not for apotransferrin (apoTf) (i.e. iron-free Tf) at
physiological pH18. The Tf-TfR1 complex is internalized via clathrin-mediated endocytosis,
and Fe(ll1) is liberated from Tf as a result of a drop in pH to 5.5. Subsequently, TfR1 and
apoTf, which remain associated at this low pH, are recycled back to the cell surface, where
the pH is physiological and apoTf is thus released19. In addition to the TfR-mediated uptake
of transferrin, cells may also utilize an alternative, low-affinity route for transferrin
internalization20.

The second route by which cells can acquire iron is through the uptake of non-transferrin
bound iron (NTBI), which can be regarded as ‘free iron’. Currently, three cellular membrane
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transporters have been shown to be involved in the uptake of NTBI: divalent metal-ion
transporter 1 (DMT1)21, Zrt- and Irt-like protein 14 (ZIP14)22, and, most recently, ZIP823.

In 1997, DMT1 was identified as a key mammalian metal-ion transporter that is responsible
for the intestinal iron absorption of various cationic bivalent metals, such as Fe(ll), but also
Cd(11), Co(ll), Cu(ll), Pb(I1), Mn(11), Ni(Il) and Zn(I1)21. Around the same time, the
inheritable microcytic, hypochromic anaemia found in mk/ mk mice and Belgrade (b) rats,
which was already known to be associated with an impaired intestinal uptake and erythroid
utilization of iron, was shown to originate from homozygous mutations in the gene encoding
DMT1, Slci1a224,25. The critical role of DMTL1 in the absorption of dietary non-haem iron
has recently been confirmed using intestinal DMT1 knockout mice26, and in humans,
homozygous or compound heterozygous mutations in the SLC11A2 gene have been
associated with microcytic anaemia27. However, in contrast to the rodent models, patients
with DMT1 mutations are overloaded with iron, rather than deficient. This effect is likely
caused by a residual capacity for iron absorption, fulfilled either by the DMT1 mutant or by
an alternative (haem) absorption pathway that is further stimulated by a regulatory feedback
mechanism driven by the microcytic anaemia. The microcytic hypochromic anaemia in these
patients, and in the mk/mk mice and Belgrade (b) rats, is therefore primarily related to the
other main role of DMTL1.: the transport of Fe(ll) through the endosomal membrane. As
demonstrated in mk/mk mice, DMT1 co-localizes with TfR1 in the endosome to handle the
cellular import of iron that is liberated from the Tf-TfR1 complex. DMT1 dysfunction
particularly affects the developing red blood cells, as they require a substantial supply of
iron and are heavily dependent on Tf-TfR1-mediated import28.

More recently, ZIP14 has been shown to fulfil an important role in the tissue accumulation
of iron by NTBI. In genetic models of iron overloading in mice, ZIP14 deficiency reduced
iron content in the liver and pancreas and provided some level of protection against
hereditary hemochromatosis29. Each of the iron transporters only transport soluble Fe(ll),
and therefore require enzymes with ferroreductive activity to reduce Fe(lll) prior to
internalization. Family members of cytochrome b561, the best known of which is Dcytb,
which is expressed in the duodenum30, as well as STEAP, which is found in erythroid
progenitor cells31, have demonstrated such ferroreductive activity32. Recently, prion
proteins present on the surface of neuronal cells have been shown to possess iron-reducing
capacity as well, thereby assisting cellular uptake of NTBI in the brain33,34.

The third mechanism for iron internalization is the uptake of porphyrin-bound iron in the
form of Hb and haem. The scavenger receptor CD163 is almost exclusively expressed by
macrophages and is specialized to take in Hb in complex with the glycoprotein
haptoglobin35,36. Similarly, CD91 orchestrates the uptake of haem that is in complex with
the glycoprotein hemopexin37, and although CD91 is considered a promiscuous receptor
recognising other ligands, it is highly expressed by CD163-positive macrophages and may
therefore be an essential route for the clearance of iron that was incorporated into Hb and
other haem-containing proteins. HRG138 and FLVCR239 are also haem-importing proteins,
and although their role in cellular iron trafficking needs to be further elucidated, it has been
shown that HRG1 in particular is involved in the transport of haem across the lysosomal
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membrane upon internalization and degradation of erythrocytes and haemoglobin by
macrophages40.

The fourth general pathway for iron internalization consists of the uptake of the iron-storage
protein ferritin by receptors that include Scara541, TfR142, and a currently uncharacterized
human ferritin receptor that could be related to TIM-2, a well-characterised ferritin receptor
in mice43,44.

Once inside the cell, iron can be utilized and stored. Mitoferrin 1 and 2 are specialized
transporters that move iron into the mitochondria, where it assists with cellular respiration
and is used for the synthesis of Fe-S clusters and haem45. Intracellular iron can be ‘stored’
in two forms: stably incorporated into ferritin, an iron-sequestering protein that can contain
up to 4,500 iron atoms46, or as active unbound species, known as the labile iron pool (LIP).
Because an excess of LIP may cause oxidative stress-related toxicity, iron is generally stored
as cytosolic ferritin, with the liver functioning as the primary organ for systemic iron
storage. The LIP is largely responsible for the regulation of cellular iron homeostasis
through the iron regulatory protein (IRP)/iron-responsive element system, which post-
transcriptionally modulates the translation mRNAs of several proteins that are involved in
cellular iron trafficking, including DMT1, TfR1, ferritin and Fpn47,48.

The export of iron from cells is almost exclusively managed by ferroportin (Table 1). As a
result, hepcidin regulates systemic iron uptake and mobilization by inducing the degradation
of ferroportin as discussed above. The multi-copper oxidases ceruloplasmin (in serum and
astrocytes), hephaestin (in the intestine, placenta, heart, brain and pancreatic p-cells), and
zyklopen (in placenta), assist the export of iron by ferroportin by oxidizing Fe(ll) to Fe(lll),
thereby allowing it to be loaded onto transferrin49. There are, however, other possible
mechanisms for cellular export of complexed iron. These include the secretion of iron-
containing ferritin by hepatocytes50, macrophages and kidney proximal tubule cells51,
which is likely mediated by autophagy of cytoplasmic ferritin and subsequent release via the
secretory-lysosomal pathway51,52. Another pathway is the secretion of haem by Feline
leukaemia virus, subgroup C, receptor 1b (FLVVCR1b), which on the one hand may function
as an ‘emergency valve’ to prevent haem overload, especially in erythroid cells, and on the
other hand as a potential route for macrophages to directly supply haem to developing
erythroblasts53.

Iron and the pathophysiology of disease

Iron overload, iron deficiency and anaemia of inflammation and chronic disease

Iron overload is a major clinical challenge in management of hereditary hemochromatosis
and haemoglobinopathy-related anaemia, also known as iron-loading anaemia. Primary iron
overload, such as occurs in patients with hereditary hemochromatosis, is directly caused by
disordered iron metabolism that is associated with genetic mutations in regulatory proteins.
By contrast, secondary iron overload in patients with iron-loading anaemia is not
intrinsically related to iron metabolism, but rather results from the anaemia that stimulates
erythropoiesis and iron absorption. Moreover, the iron overload in severely anaemic patients
is further aggravated by regular blood transfusions to that aim to improve haemoglobin
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levels. Tissues commonly affected by iron overload include the liver, spleen, heart, pancreas,
and pituitary gland, and excess iron often eventually leads to complications such as liver
failure, myocardial disease, diabetes mellitus and other metabolic disorders54.

Iron deficiency occurs when the systemic demand for iron surpasses its supply. As
erythropoiesis is, in terms of iron requirements, the most important physiological process,
iron deficiency will typically present as iron deficiency anaemia. Increasing or
supplementing the dietary iron intake corrects iron deficiency in most cases, although in a
rare inherited form of anaemia known as iron-refractory iron deficiency anaemia (IRIDA),
mutations in 7MPRSS6 lead to inappropriately high hepcidin expression and restricted
intestinal iron absorption, so intravenous iron administration is often required55. A high
hepcidin level is also one of the hallmarks in anaemia of inflammation and chronic disease
(AI/ACD). Under conditions of chronic inflammation, such as inflammatory diseases and
cancer, increased expression of IL-6 and structurally related cytokines lead to activation of
the IL-6 receptor pathway, resulting in STAT3-mediated hepcidin expression and,
consequently, limited iron absorption and availability56. Additionally, activin B, a member
of the TGF-B superfamily that is expressed in the liver under inflammatory conditions, was
shown to induce HAMP transcription via the SMAD1/5/8 signalling pathway57. Although
the expression of hepcidin can be considered a useful defence mechanism against infections,
as it limits the availability of iron to invading pathogens, the presence of AI/ACD in patients
with chronic diseases is a common and substantial clinical problem that can negatively affect
the recovery and quality of life in these patients58.

Iron and cellular redox status

The mitochondrial generation of ATP is highly dependent on the formation and presence of
ROS, and mitochondria are a major source of cellular ROS. Mitochondrial iron homeostasis
is therefore of crucial importance in the control of cellular redox and potential oxidative
damage. For example, in Friedreich’s ataxia, a genetic disorder affecting the expression of
the mitochondrial iron-chaperone frataxin, cardiomyopathy is a major complication that has
been associated to mitochondrial iron overload. Additionally, complications secondary to
hereditary hemochromatosis, including liver and cardiac toxicity, have been related to ROS-
mediated damage and mitochondrial pathology59.

Ferroptosis is a recently described form of controlled non-apoptotic cell death that heavily
depends on iron and ROS60. Ferroptosis has been associated with a diverse range of
pathologies including neurological disorders61,62, ischaemia-reperfusion injury63,64, and
cancer65,66. Although the ferroptotic pathway and its function still have several unknown
features, peroxidation of lipids by cytosolic ferrous iron plays a central role. Ferroptosis can
be induced by blocking the system X~ cystine/glutamate antiporter, which limits
glutathione production and thus reduces oxidative protection by glutathione peroxidase 4 67,
while chelation of iron protects cells from ferroptosis60. The interplay between
mitochondrial iron, ROS and ferroptosis has recently been reviewed in depth68-70, and will
undoubtedly uncover key therapeutic targets that can be exploited to design novel therapies
for diseases associated with abnormal ferroptotic activity.
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Iron and immunity

The relationship between iron and the immune system is well established. As part of the
innate immune system, macrophages are highly efficient phagocytes that fulfil a central role
in the first-line defence against microorganisms. In parallel, they are responsible for iron
recycling from red blood cells, and are thereby solely accountable for >95% of the iron
supply needed for steady-state erythropoiesis. In addition, they have an iron-independent
growth-supporting function in erythroid development71,72. Although these macrophage
activities appear to be quite dissimilar, a connection between iron status and macrophage
phenotype has been firmly demonstrated. First of all, multiple reports have shown that high
intracellular iron levels stimulate the secretion of inflammatory cytokines such as TNF-a by
macrophages73,74; the clinical significance of this has been illustrated by several preclinical
studies. For example, intravenous administration of ferumoxytol iron oxide nanoparticles
(also known as Feraheme; AMAG Pharmaceuticals), an FDA-approved for iron replacement
therapy in chronic kidney disease (see also Box 1), significantly reduced tumour growth and
suppressed liver metastasis in tumour-bearing mice, and was associated with a
proinflammatory phenotype in tumour-associated macrophages75. Similarly, iron-
overloaded macrophages in chronic venous ulcers have a strong proinflammatory phenotype,
producing of TNF-a and ROS, thereby delaying wound healing and supporting further tissue
damage76. Finally, unbound haem and iron can induce a switch in the phenotype of
macrophages from growth-supporting to inflammatory, which can be prevented by iron
chelation or scavenging of haem by hemopexin77. Because various complications in patients
with iron-loading anaemias have a chronic inflammatory component, such as liver fibrosis,
leg ulcers, pulmonary hypertension and musculoskeletal inflammation, it is tempting to
hypothesize that iron-mediated inflammatory activation of macrophages has a role in the
pathogenesis of these complications5.

Iron homeostasis infuences adaptive immunity as well. For example, a form of
immunodeficiency characterized by impaired development and function of lymphocytes has
been attributed to mutations in the gene encoding TfR1, 7FRC, which affects internalization
of the surface receptor78. Although iron deficiency is the underlying cause of this disorder,
illustrated by the reversal of defective lymphocyte proliferation by Fe(ll1) supplementation,
interestingly, patients are only mildly anaemic.

Another connection between iron and immunity is related to the defence against invading
pathogens. Microorganisms, as for all other forms of life, are highly dependent on the
presence of iron to support growth and proliferation79. As a consequence, to limit infectivity
of invading microorganisms, host organisms have developed strategies to restrict iron supply
to pathogens. NTBI is considered an important source of iron for microbes, which some of
them sequester by releasing iron-binding proteins known as siderophores. Capture of these
siderophores, as well as NTBI, by macrophage-produced lipocalin-2 is therefore an effective
defensive response to infection80,81. Another host mechanism to limit NTBI availability
under inflammatory conditions is to block cellular iron egress by reducing ferroportin
expression82. This inflammation-induced reduction of ferroportin is mainly driven by
upregulation of hepcidin transcription via IL-6R-activated JAK/STAT3-signalling (Figure 2,
Table 1), and via TGF-B1-TGF-B1R-mediated activation of SMAD signalling, which is
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distinct from BMP6-induced SMAD signalling83. Alternatively, ferroportin reduction is also
controlled by hepcidin-independent mechanisms, such as signalling via Toll-like receptors 2
and 6, allowing for a rapid systemic response under inflammatory conditions84.

Iron and cancer

Changes in cellular redox status have a considerable role in malignant transformation and
metastasis of cancer cells85, and consequently, many researchers have proposed and
investigated the potential relationship between malignancies and iron86,87. Although
several studies have indeed shown a correlation between the incidence and mortality of
cancer and systemic iron levels, as measured by transferrin saturation or serum ferritin, this
correlation is generally not strong, has shown conflicting outcomes, and it is often
confounded by the presence of other pathology88,89. There is, however, clear evidence that
deregulated iron homeostasis on a local — that is, microenvironmental and/or cellular —
level is associated with tumour progression, as illustrated by changes in expression of iron-
related genes in cancer cells (Figure 4), the levels of which are inversely correlated with
patient survival90-92. In the context of tumour progression, one can envision that
proliferating cancer cells, which require substantial amounts of iron to support their growth,
will attempt to increase their iron intake, for example by increasing the expression of
TfR193-95 and STEAP396,97; to modulate iron storage capacity by producing
ferritin94,96; and to limit their iron export by downregulating ferroportin91,98-100.
However, the additional intracellular oxidative stress that is accompanied by the increased
presence of labile iron may also make them more sensitive to ferroptosis65,67 and hinder
tumour metastasis85, illustrating the complex relationship between iron, ROS and cancer
cell survival. Furthermore, although a connection between iron and cancer growth has been
demonstrated in several forms of cancers, with breast cancer90,91,99-101, prostate
cancer98,102,103 and glioblastoma as established examples94,104, it seems reasonable that
many, but not all, cancer types will demonstrate a similar iron dependency.

Iron and neurodegenerative diseases

Iron homeostasis in the central nervous system (CNS) differs from that in other tissues105.
Endothelial cells of the blood—-brain barrier modulate iron influx into the CNS by importing
iron from the systemic circulation via TfR1 and DMTZ1, and subsequently releasing iron via
ferroportin at the basal side into the brain interstitium, forming a control mechanism
reminiscent of the absorption of iron in the duodenum106,107. The presence of an additional
layer of homeostatic regulation suggests that the brain may be spared from excessive iron
accumulation in iron-overloaded patients, which is supported by the fact that large iron
deposits in the brain are not typically found in patients with hemochromatosis108.
Nevertheless, genetic mutations associated with an inherited form of hemochromatosis are
overrepresented in patients with Parkinson’s disease (PD), parkinsonism and amyotrophic
lateral sclerosis (ALS)109,110, indicating that cellular, rather than systemic, disturbances in
brain iron homeostasis may have a role in the pathogenesis in these diseases.

Although progressive neurological disorders have been linked to disturbances in other
metals such as copper (a hallmark of Wilson’s Disease, but also found in Alzheimer’s
Disease (AD)111) and zinc (e.g. in PD112), many studies have implicated cellular iron
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overload and iron-induced oxidative stress in the development of PD, ALS, AD,
Huntington’s disease, multiple sclerosis (MS) and several other neurodegenerative diseases
(Figure 4)113,114. As an interesting example, prion protein (PrP€) has been shown to
promote the reduction of Fe(lll) to Fe(ll), enabling its uptake into cells by ZIP14 and
DMT133,34. However, the conversion of PrPC to its isoform PrPSC, which is implicated in
neurological prion diseases such as Creutzfeldt—Jakob disease, is promoted by unbound
iron115, and PrPSC can bind to ferritin to form an insoluble complex, thereby stimulating the
cellular intake of iron and promoting the formation of additional PrPSC 116.

Astrocytes, glial cells in the CNS that have a function in the control of nutrient supply and
brain remodelling, are thought to fulfil, in concert with endothelial cells of the blood—brain
barrier, a critical role in regulating iron homeostasis in the brain106,117. Astrocytes produce
hepcidin in response to inflammatory signalling and intracellular iron118, suggesting a
control mechanism via ferroportin, similar to the regulation of systemic iron levels by
hepatocytes. This regulatory feedback loop allows for local control over iron trafficking
within the CNS, although the abundance of hepcidin in the brain interstitium suggests that at
least some fraction of it is of systemic (likely hepatic) origin119. Low levels of ferroportin
have been found in brains of patients with AD120, as well as in rat models of PD121 and
ALS122. In a mouse model of MS, reduced expression of ferroportin and intracellular iron
overload were specifically found in macrophage-like microglia, but not in astrocytes123.
Moreover, iron-overloaded microglia can be found in active MS lesions and have a pro-
inflammatory phenotype that inhibits CNS repair, thus contributing to disease
progression124,125. Neurological dysfunctions are also found in patients with
aceruloplasminaemia: these individuals lack functional ceruloplasmin, a protein that
facilitates iron removal from tissues by oxidising exported Fe(ll) to Fe(lll), thereby
promoting its association with transferrin. This genetic disease is characterized by a loss of
neurons, particularly in the basal ganglia, and by astrocytes with an attenuated iron efflux
capacity and iron-overload126. Finally, in a clinical prospective study, higher ferritin levels
in the cerebrospinal fluid were found to be correlated with a lower cognitive function and
brain structural changes in patients with AD, but this correlation seemed to also be present in
individuals that were considered cognitively normal127. Interestingly, genetic mutations that
affect the ferritin light chain, which probably makes the iron-storage protein ‘leaky’, lead to
a heterogeneous neurological clinical presentation, known as neuroferritinopathy114,128.
This raises the question of whether dysfunctional ferritin or malfunctions in its cellular
processing may have some involvement in the pathogenesis of other neurodegenerative
diseases129.

Iron and atherosclerosis

In atherosclerotic plaques, iron is present in much higher concentrations that it is in healthy
tissues (Figure 4)130. The function of these iron deposits in atherosclerosis, and whether
iron accumulation has a causative role or is a mere consequence of the pathogenic process,
for example due to haemolysis, is still under debate. It seems reasonable to suggest that iron
could be directly involved by catalysing the formation of oxidized low-density lipoprotein
(LDL) in the arterial wall131, which is considered one of the hallmarks of atherosclerosis.
However, in iron-overloaded patients with type 1 hemochromatosis the incidence of
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atherosclerosis is actually lower, rather than higher, than it is in the rest of the
population132. Interestingly, the iron status of macrophages, which fulfil a key role in the
development and progression of atherosclerotic plaques133,134, could explain this paradox,
as macrophages of patients with this form of hemochromatosis contain less iron than do
those of healthy individuals. Conversely, patients with p-thalassemia, a disorder that is
accompanied by iron-loading especially of macrophages, indeed do have a higher risk of
developing atherosclerosis, confirming the so-called ‘iron hypothesis’ in
atherosclerosis135,136. A relationship between macrophages, iron and atherosclerosis could
partially be owing to iron’s direct role in the oxidation of LDL by macrophages, as well as a
phenotypic change in macrophages due to iron sequestration as described above.
Nevertheless, various experimental studies that have investigated intracellular iron
accumulation in macrophages as a driving mechanism for atherosclerosis have produced
conflicting results, suggesting that iron takes part in a complex network involving several
underlying mechanisms137-141.

Iron and other ageing-associated diseases

Besides cancer, neurodegenerative disorders and atherosclerosis, various other pathologies
have been linked to iron homeostasis. In diseases such as type 2 diabetes mellitus142,
osteoporosis143, osteoarthritis144, macular degeneration145, and liver fibrosis146, high
levels of iron have been associated with disease severity, suggesting a possible role in
pathogenesis or disease progression. Importantly, many of these disorders are considered
chronic ageing-associated diseases of multifactorial aetiology, and are substantial causes of
mortality and morbidity in the ageing Western society. This stresses the need for a thorough
exploration of the role of iron dyshomeostasis in these diseases, as well the utility of
targeting iron metabolism as a therapeutic approach or as a strategy to deliver
pharmaceutical agents.

Iron metabolism as a therapeutic target

Therapeutics targeting systemic iron availability

The use of iron-chelating agents is a straightforward approach for limiting and redistributing
systemic iron availability, and is therefore frequently used in the clinical management of
primary or secondary iron overload. The currently available chelators are deferoxamine
(Desferal, Novartis), deferiprone (Ferriprox, ApoPharma), and deferasirox (Exjade,
Novartis). More than 50 years ago, desferoxamine (DFO) was the first chelator that showed
clinical promise147. Iron chelation therapy was then rapidly demonstrated to be an effective
strategy for mobilizing and removing iron via faecal and urinary excretion, illustrated by a
marked decrease in mortality and iron-related complications in patients with thalassemia
major148. Despite its success, DFO has poor bioavailability and requires parenteral
administration that is often painful, and which should be executed slowly (up to 10h
infusion) and regularly (5-7 times a week), making patient compliance a major limitation. In
the following decades, the oral iron chelators deferiprone (DFP)149 and deferasirox
(DFX)150 were developed and approved for the treatment of iron overload, improving iron
chelation therapy patient satisfaction as compared to treatment with DFO151. Both DFO and
DFX are currently recommended as first-line chelation therapy in iron overload, but the
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toxicity profile of these compounds, which include hypersensitivity reactions, liver
dysfunction, renal dysfunction and neuronal hearing loss152, warrant further developments
in iron chelation therapies. For example, in preclinical models of iron-loading anaemia, the
administration of unmodified Tf, which can be considered the physiological iron chelator,
has effectively redistributed iron to developing erythroid cells153.

In addition to iron overload disorders, iron chelation has also been extensively investigated
as an adjuvant therapy in other disorders. In the 1990s, clinical trials of iron chelators in
patients with neuroblastoma showed antitumor efficacy154,155, which encouraged further
exploration of iron chelation therapy in cancer. Several novel chelating agents have been
explored, of which one is currently under clinical development (DpC, Oncochel
Therapeutics)156. In parallel, iron chelation has also shown clinical potential in
neurodegenerative disorders, including multiple sclerosis157, Alzheimer’s158 and
Parkinson’s disease159, thereby confirming the involvement of iron in the pathogenesis of
these disorders.

Since the discovery of hepcidin in the beginning of this millennium, a substantial number of
agents stimulating or blocking its expression or activity have been investigated (Table 3).
Several short hepcidin derivatives have been designed as hepcidin-mimicking agents with an
improved pharmacokinetic profiles, and are currently under development by Merganser
Biotech (M012, phase 1)160, La Jolla Pharmaceutical Company (LJPC-401, phase 1, see
Further information), and Protagonist Therapeutics (PTG-300, preclinical, see Further
information). Interestingly, preclinical studies have not only demonstrated beneficial activity
of hepcidin derivatives in several models for red blood cell and iron overload disorders, such
as p-thalassemia, polycythaemia vera, and hemochromatosis161,162, but also as an
antimicrobial agent, as it limits the availability of iron to certain types of microorganisms82.
Conversely, therapeutics that bind to and inactivate hepcidin have been developed and
studied for the treatment of anaemia of inflammation and chronic disease. Such hepcidin-
binding agents include humanized monoclonal antibodies (LY2787106, discontinued after
phase 1 in 2015, Eli Lilly163; and 12B9m, Amgen Inc164), an anticalin (PRS-080, Pieris
Pharmaceutical)165 and a L-RNA spiegelmer (Lexaptepid pegol (NOX-H94), NOXXON
Pharma)166,167.

A similar ferroportin-reducing effect can be achieved with agents that target ferroportin
directly, blocking the binding of hepcidin and preventing internalization and degradation of
the iron exporter protein. The structure of ferroportin has not yet been resolved, but the
solved crystal structure of a bacterial homologue and modelling of human ferroportin
strongly suggest that the transporter comprises 12 transmembrane domains with a central
porel68,169, sharing structural features with the major facilitator superfamily (MFS) of
transporters. The cys326 residue that is essential for the binding of hepcidin is likely located
inside the central pore, which could indicate that binding of hepcidin could structurally
block ferroportin function before internalization has taken place169,170. Fursultiamine, a
small molecule also known as thiamine tetrahydrofurfuryl disulfide that targets the cys326
residue of ferroportin, indeed reduced hepcidin-mediated internalization of ferroportin and
stimulated cellular export of iron, however its function /n vivois limited due to rapid
conversion of fursultiamine into thiaminel71. An antibody against ferroportin (LY 2928057,
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Eli Lilly), which has been explored clinically, has had more success /n vivol72. However,
the largest challenge of any strategy directly targeting hepcidin or its receptor, ferroportin, is
an underlying homeostatic feedback mechanism that may cause a rebound in hepcidin
expression, thereby likely abolishing a large part of any long-term therapeutic effect164.
This feedback loop may explain why the development of LY2928057 seems to have been
discontinued upon completion of a phase 2 trial in 2015 (NCT01991483).

Due to the homeostatic control over hepcidin expression, approaches that interfere with the
underlying regulatory pathways may therefore be more useful, although none has thus
progressed past phase 2 of pharmaceutical development. Several strategies have inhibited
hepcidin expression by modulating the BMP6/SMAD pathway. Capturing BMP6 to prevent
its binding to the BMP6 receptor (BMP6R) has been investigated using an humanized
antibody (LY3113593, Eli Lily, lost through attrition in 2016 (see Further information,
NCT02604160), a fusion protein of hemojuvelin (HJV) and the Fc domain of 1gG (FMX-8,
phase 2 trials have been terminated in 2016 due an inability to recruit patients meeting
eligibility criteria, FerruMax Pharmaceuticals173), or non-anticoagulant heparin-derivatives
that bind BMP6 in preclinical studies174. A second strategy aims to reduce BMP6-induced
hepcidin transcription downstream of the BMP6—BMP6R interaction, by blocking SMAD
phosphorylation using dorsomorphinl75 or its derivatives176, or by siRNA-induced
degradation of mRNA encoding for TfR2 (ALN-HPN, discontinued for unknown reasons,
Alnylam Pharmaceuticals Inc)177.

A hepcidin agonistic strategy comprises inhibition of matriptase 2 (MT-2)-induced cleavage
of HIV. HJV is a coreceptor in the BMP6R complex that is required for iron sensing and
hepcidin induction178, and MT-2 cleaves HJV, thereby suppressing BMP/SMAD-induced
hepcidin expression179,180. MT-2 is a type Il transmembrane serine protease that is
structurally similar to matriptase, an endothelial enzyme associated with tumour
development. Although a crystal structure of MT-2 is not yet available, modelling of the
active domain has identified a number of residues that can be targeted, which allows the
development of small-molecular inhibitors against MT-2181,182. Serum-stabilized antisense
DNA (IONIS-TMPRSS6-LRX, lonis Pharmaceuticals183,184) or liposomal siRNA (ALN-
TMP, Alnylam Pharmaceuticals Inc185), block MT-2 mRNA translation, and have shown
preclinical efficacy in animal models of B-thalassemia and iron overload. In addition, several
physiological protease inhibitors have demonstrated specific MT-2-inhibiting activity 186,
and some of them have a Kunitz domain that could be an important lead for further
development of hepcidin-inducing peptides187.

The IL6-JAK1/2-STAT3 pathway is a second regulatory pathway that induces hepcidin
expression. The isoflavone genistein promotes phosphorylation of STAT3, in addition to
SMAD4, and thereby induces hepcidin expression in zebrafish, but its activity in a
preclinical or clinical setting needs to be evaluated188. Conversely, inhibition of JAK by
kinase inhibitors effectively reduces hepcidin expression /n vitro (1,2,3,4,5,6-
hexabromocyclohexanel189) and /n vivo (AG 490190), and similar effects have been
obtained by disrupting STAT3 dimerization using a STAT3-binding peptide191.
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Therapeutics targeting cellular iron trafficking

For many diseases disordered iron metabolism typically occurs only on a cellular level,
whereas systemic iron homeostasis seems unaffected. Therapies that target cellular iron
uptake, storage or efflux, may therefore be particularly promising. Several compounds target
cellular uptake of iron, and DMT1 in particular has been a frequent target in preclinical
studies. Structural modelling of human DMT1192,193, as well as the crystal structure of
ScaDMT, a prokaryotic DMT1 homologue found in Staphylococcus capitis194, suggest that
DMT1 is a 12 transmembrane protein of 2-fold symmetry and contains a hydrophobic core
that coordinates the coupled transfer of a bivalent metal ion and a proton into the cytoplasm.

Several small molecule inhibitors of DMT1-mediated iron transport have been investigated.
Ferristatin restricts cellular intake of free iron /n vitro, but its efficacy /n vivo has not yet
been evaluated195. Although the inhibitory effect of ferristatin was at first attributed to
degradation of TfR1196, subsequent work demonstrated that ferristatin directly inhibited
activity of DMT1195. Similarly, ferristatin 11 is a structurally unrelated compound that has
shown potent TfR1-inhibiting properties, mediated via DMT1 internalization, /n vitro, as
well as /n vivol97,198. Interestingly, ferristatin 11 also induces hepcidin expression via JAK/
STAT3 signalling /n vivo199. However, the metabolisation of ferristatin 11, also known as
direct black 38 or chlorazol black, includes the formation of benzidine, which is classified
by the WHO as Group 1 carcinogen (carcinogenic to humans)200, thereby limiting its
translation for therapeutic purposes. The selenium-containing drug ebselen, which is known
for its antioxidant activity that resembles glutathione peroxidase, strongly inhibits DMT1-
mediated uptake of iron (IC50 ~0.2 uM)201, so could have therapeutic potential in treating
iron-related oxidative stress in a range of disorders, as has been shown preclinically for iron-
induced cardiomyopathy202. Comparably potent DMT1 inhibition was achieved with
pyrrolidine dithiobarbamate (PDTC, 1C50 1.5 pM) and A9-tetrahydrocannabinol (THC),
which also have antioxidant activity201. Recent screening studies have identified a series of
pyrazole derivatives and benzylisothioureas as potent inhibitors of DMT1 both /in vitro (IC50
<1 uM) and /n vivo (30-85% inhibition, 50 mg/kg, taken orally)203-205. A particularly
interesting, but not yet explored strategy to limit iron overload may be the oral
administration of a non-bioavailable DMT1 inhibitor, i.e. a compound that is not
systemically absorbed and therefore likely has no systemic off-target effects, but would
inhibit absorption of iron from the intestine. Although the capacity of the intestine to absorb
haem-bound iron206 and nanosized particulate iron (such as the ferritin core)207, which
bypass the DMT1 absorption pathway via unknown mechanisms, clearly forms a potential
limitation of this approach, combining intestinal DMT1 inhibition with dietary restrictions
could be a relatively safe therapeutic option in the treatment of primary or secondary iron
overload.

The central role of ZIP14 in transport of NTBI into tissues that are typically affected by iron
overload, especially the liver and pancreas29, makes the inhibition of ZIP14 an appealing
strategy for the clinical management of iron overload. Similar to other members of the ZIP
transporter family, ZIP14 is predicted to comprise eight transmembrane domains, which are
all involved in the transport of bivalent metals208. Whether ZIP14 is a sufficiently druggable
target still needs to be evaluated.
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The hypoxia-inducible factor (HIF) transcription factors, which are composed of a
heterodimerized a- and B-subunit, may be another very attractive target for interfering with
iron metabolism209. HIFs modulate, by binding to a hypoxia response element (HRE) in the
promoter of a target gene, the expression of a wide range of proteins that are involved in
cellular oxygen status, glucose metabolism, angiogenesis and erythopoiesis. In parallel, the
promoters of several genes encoding key iron trafficking proteins, namely DMT1210,211,
DCytB211, TfR1212, and FPN213, especially those with roles in intestinal cells, also
contain such HREs and have been shown to be susceptible to HIF regulation. As a
consequence, inhibitors of HIFs, for example those that bind within the C-terminal PAS
domains of HIF-2a to prevent HIF-2 heterodimerization214, may form an appealing
strategy for limiting iron absorption and iron overload215. The oxygen-sensitive prolyl-4-
hydroxylases (PHDs) are physiological intracellular inhibitors that regulate the post-
translational expression of HIFs by promoting the hydroxylation of two proline residues in
its a-subunit, labelling it for recognition by the VHL-E3-ubiquitin ligase complex and
subsequent degradation216,217. PHD2, which seems to be most dominant of the three PHDs
with respect to HIF regulation, is a homotrimeric protein that contains a coordinated Fe(ll)
and a hydrophobic pocket at its active site, and requires 2-oxoglutarate (2-OG) as a co-
substrate218. By using 2-OG analogues as competitive substrates to pharmacologically
inhibit PHDs, it is possible to stabilize HIF expression, which is a very promising strategy
for promoting erythropoiesis in patients with anaemia219. Although the direct effect of HIF
stabilization on the expression of erythropoietin is a key characteristic of this strategy, PHD
inhibition also improves duodenal iron adsorption and utilization, as illustrated by an
improved mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH) of
erythrocytes in a rat model for anaemia of inflammation and chronic disease220. Moreover,
increased HIF-1 expression by inhibition of PHD2 improved neuronal survival in models of
PD, likely due to an increased expression of the lysosomal proton pump ATP13A2, which
reduced the cytosolic iron pool by improving lysosomal iron storage conditions221.

A substantial number of pharmaceutical companies, as well as one tobacco company, are
actively pursuing the development of such inhibitors for the treatment of anaemia in chronic
kidney disease and end-stage renal disease. Promising candidates that have already entered
phase 3 clinical trials include FG-4592 (Roxadustat, Fibrogen/Astellas Pharma/
AstraZeneca22?2), GSK1278863 (Daprodustat, GlaxoSmithKline223), and AKB-6548
(Vadadustat, Akebia Therapeutics224), and several others are currently being evaluated in a
phase 2 (BAY85-3934, Molidustat, Bayer Pharma AG225; JTZ-951, Japan Tobacco226),
phase 1 (DS-1093, Daiichi Sankyo (discontinued in 2016)); ZYAN1, Zydus Cadila227), or
preclinical (JNJ-42905343, Johnson & Johnson220) setting.

Drug targeting strategies exploiting iron metabolism

Iron and iron-based materials have been widely researched for drug targeting and diagnostic
applications, and iron oxide nanoparticles have especially received attention due to their
superparamagnetic properties that can be used for therapeutic and diagnostic purposes (Box
1). The metabolism of iron can be utilized for the delivery of therapeutics to specific sites in
the body by targeting iron-related proteins that are upregulated in certain tissues and
pathological processes (Figure 5). Targeting TfR1 using drugs and drug delivery systems
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functionalized with transferrin, antibodies, antibody-derivatives, or TfR-targeted peptides, is
a commonly employed and arguably the best-known strategy, as illustrated by its usage as a
prototypical system for mechanistic studies of active targeting to cancer cells228. An
impressive amount of different TfR-targeted delivery systems have been designed and
evaluated for cancer therapy by exploiting the increased expression of TfR in some tumours,
and this strategy has shown preclinical benefit when using a low-dose regimen229. At least
three TfR-targeted systems are currently under clinical development (Table 3)(MBP-426,
Mebiopharm; SGT-53, SGT-94, SynerGene Therapeutics)230,231.

An elegant strategy that has been evaluated in preclinical cancer models is the application of
transferrin-artemisinin conjugates as cytotoxic agents232. Artemisinin, discovered and
developed by Tu Youyou, for which she was awarded the 2015 Nobel Prize in physiology
and medicine, is a drug with antimalarial activity that is isolated from the herb Artemisia
annuaand contains an intramolecular peroxide bridge. Fe(ll) is involved in the activation of
artemisinin by cleavage of this endoperoxide bridge, resulting in the formation of reactive
carbon-centred radicals and subsequent cytotoxicity233. By using transferrin as a targeting
moiety, both iron and the inactive artemisinin can be delivered to TfR-overexpressing cancer
cells; upon internalization of the complex the released Fe(l1) is oxidized to Fe(ll), which in
turn reduces and activates artemisinin into its cytotoxic form232. However, the effect of such
artemisinin-constructs on other tissues with high TfR1 expression, notably the bone marrow,
has not yet been reported. A second notable application of TfR-targeting therapeutics is the
transport of drugs and drug delivery systems across the blood—brain barrier. The endothelial
cells of the blood—brain barrier transcytose TfR-transferrin complexes to the brain
parenchyma to fulfil the iron requirements of the CNS. Exploiting this mechanism,
transferrin and antibodies that target TfR can be used as a Trojan horse to deliver drug
carriers and macromolecules to the brain, but future evaluation should demonstrate its
practical potential in a clinical setting234,235.

Ferritin is a commonly used biomolecule for drug targeting, as it can efficiently encapsulate
large amounts of drugs because of its ‘nanocage’ structure236. Ferritin can function as a
ligand as well to target cells that highly express ferritin-internalizing receptors, such as
Scarab and TfR1237. Moreover, ferritin can be disassembled and reassembled by changing
the pH to low or physiological, respectively, which facilitates drug loading and endows the
protein with pH-triggered drug release properties, enabling discharge specifically upon
uptake and lysosomal processing by the target cell238.

A relatively specific approach to target a subset of macrophages is the use of haemoglobin
clearance mechanisms. The haemoglobin-scavenger receptor, CD163, is exclusively
expressed by macrophages and monocytes that recycle iron35, and it can also be found in
solid tumours239 and inflamed tissues240, for example, as these tissues have increased iron
requirements. Consequently, a liposomal targeting strategy exploiting tissue-specific
expression of CD163 using an anti-CD163 antibody has demonstrated effective macrophage
targeting /n vivo as compared to untargeted nanocarriers241.

The value of haem as a targeting ligand, which uses differences in cellular affinity for haem
to specifically target subsets of cells, has not yet been fully explored. As /n vitro studies have
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shown that PLGA nanoparticles functionalized with haematin, the oxidized Fe(l11) form of
haem, localize in tumour cells242, and haem-targeting improves the uptake of
oligonucleotides in hepatocytes243, further evaluation of haem-targeting is certainly
warranted.

Merits and challenges of targeting iron metabolism as therapeutic strategy

The majority of therapeutics that target iron metabolism has been developed in the context of
haematological diseases and iron homeostasis disorders, such as iron deficiency and
overload. However, considering the rapidly growing evidence implicating iron in a variety of
other (often ageing-related) disorders, such as neurodegenerative diseases and
atherosclerosis, further exploration of these therapeutics agents and their targets in other
pathologies is certainly warranted. Although unbalanced iron trafficking should not be
considered the sole cause, the chronic and inflammatory character of the underlying
pathologic processes in iron metabolism-related diseases suggest that an iron-induced
change in redox state within the affected tissues may form the missing link in the
pathogenesis of several multifactorial disorders86,105,244. Importantly, apart from directly
modulating the function of cells responsible for the condition, such as neurons and tumour
cells, iron also impacts the inflammatory activity of local immune cells, especially
macrophages134,245,246 (See also Box 1). Consequently, interfering with iron metabolism
may be a promising therapeutic strategy in these disorders for which there are currently few
effective treatments available. A clear additional advantage of such an approach is that it
typically addresses pathologic pathways that are complementary to those targeted by other
therapeutic approaches, allowing for additive or possibly even synergistic effects when used
in a combination strategy.

However, the broad involvement of iron metabolism in many, rather diverse physiological
and pathological processes potentially makes its use as a therapeutic target a double-edged
sword. Although iron-targeted therapeutic interventions may effectively change the iron
status in diseased tissues to treat a disorder, they also have an inherent risk of perturbing
systemic iron homeostasis that may lead to substantial side effects, such as erythropoietic
disorders. Using a targeted strategy that allows the delivery of therapeutics to specific tissues
could limit such off-target activity.

In addition, most iron metabolism-related disorders are associated with cellular iron
accumulation, which, due to the late onset of symptoms, is most likely a chronic process that
takes several years to establish. Interfering with this process once iron-induced cellular
damage has already occurred may not have a direct therapeutic effect, and prevention may
be more efficacious in this context. Nevertheless, limiting further deterioration and
modulating the inflammatory state within the affected tissue could certainly make iron
metabolism-targeted therapies an effective adjuvant treatment124,247.

Conclusion and outlook

Over the past decade, a multitude of iron metabolism-targeting agents have been developed
and clinically evaluated in diseases with an obvious iron-related background, such as
anaemia, iron overload and iron-loading anaemia. However, alterations in iron metabolism
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have demonstrated involvement in a wide range of disorders, such as cancer,
neurodegeneration and atherosclerosis, but also type 2 diabetes, osteoporosis, osteoarthritis,
retinal disorders and liver fibrosis.

The chronic inflammatory and ageing-related character of many of these conditions suggests
that a slowly changing intracellular iron level, causing a shift in cellular redox status that
eventually may result in cell damage, is an underlying mechanism that could be exploited for
the development of new therapeutic approaches. Further investigation is therefore required to
explore current and newly developed therapies that target iron metabolism in a much broader
context than haematological pathologies alone. Modulation of macrophage activity by
targeting their role in iron recycling may be a particularly interesting approach. Similar to
iron metabolism, the role of an altered macrophage phenotype has been increasingly
implicated in various disorders248, and both concepts seem to be interconnected245.
Targeted approaches — for example those using nanosized drug delivery systems that
preferentially accumulate in phagocytic cells, to specifically interfere with iron trafficking in
macrophages — would thereby enable therapeutic modulation of macrophage activity in
cancer and chronic inflammatory disorders75,249,250. To achieve this, the cellular
mechanisms governing the relationship between macrophage phenotype and its iron load
need to be further elucidated. For example, recent work has demonstrated that internalization
of unbound haem induces an inflammatory phenotype in macrophages, whereas using haem
in complex with hemopexin, which is be scavenged by CD91, such a phenotypic switch was
not observed77. This observation indicates that the pathway of internalization, rather than
the absolute load of iron, has a dominant role in the influence of iron on the phenotype of
macrophages, thereby providing valuable clues for the identification of new strategies for
macrophage-modulating therapies.

Overall, owing to the substantial advances in our understanding of the role of iron in a range
of diseases, it has become clear that targeting iron metabolism is a compelling new
therapeutic strategy for these disorders. Although further research is still required to
systematically explore the value of targeting the various iron-related proteins in individual
pathologies, these efforts will almost certainly prove to be valuable in the quest for novel
efficacious therapies for diseases associated with disturbed iron metabolism.
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Glossary terms

Microcytic, hypochromic anaemia

Low systemic Hb levels associated with a reduced Hb concentration inside each red blood
cell, making them small (microcytic) and pale (hypochromic). This is most commonly
caused by iron deficiency, but is also found in patients with red blood cell disorders such as
thalassemia.

Nat Rev Drug Discov. Author manuscript; available in PMC 2017 June 02.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Crielaard et al.

Page 18

Hemochromatosis

Hemochromatosis is a family of hereditary diseases that are characterised by genetic
mutations affecting an iron metabolism-regulating protein and resulting in excessive iron
absorption. Since there is no physiological mechanism for iron excretion, this will eventually
lead to iron overload.

Anticalin

Technology developed by Pieris Pharmaceuticals that modifies lipocalins, which are natural
extracellular proteins that bind and transport a variety of ligands, to make therapeutics that
target a specific molecule.

Spiegelmer

Technology developed by NOXXON Pharma that uses L-RNA aptamers as therapeutic
agents that bind a specific molecule. L-RNA, the stereoisomeric form of physiological p-
RNA, is not sensitive to nuclease activity and therefore has improved biological stability.

Kunitz domain

A Kunitz domain, or Kunitz-type protease inhibitor domain, is the active domain of various
protease inhibitors. Their relatively short peptide sequence of around 60 amino acids makes
them an interesting lead for the development new biopharmaceutical protease inhibitors.
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Box 1
Iron oxide nanoparticles

Over the past few years, an enormous variety of iron oxide nanoparticles have been
developed for diagnostic and therapeutic applications, although few have reached the
clinic and several have been withdrawn for various reasons251. Also known as
superparamagnetic iron oxide nanoparticles (SPIONSs), these sterically stabilised particles
typically contain magnetite (Fe304) and maghemite (yFe,O3), and the resulting magnetic
properties make them particularly interesting as magnetic resonance imaging-contrast
agents. Due to their nanosized dimensions, iron oxide nanoparticles primarily localize in
phagocytic cells, mostly macrophages252, and in the liver, spleen and lymphatic tissues,
so iron oxide nanoparticles can be utilized for imaging these tissues. For example,
Feraheme (ferumoxytol, AMAG Pharmaceuticals), which is clinically approved for iron
replacement therapy in chronic kidney disease, has been investigated as marker for the
presence of macrophages in solid tumours253, and has recently been shown to modulate
the activity of these macrophages towards a proinflammatory, anti-tumoural
phenotype75. There are several additional promising applications of SPIONSs, such as
using their magnetic properties and localisation tumours to create local hyperthermia by
applying an alternating magnetic field (NanoTherm, MagForce AG), or using them as
drug carriers that release their payload as a result of magnetically induced heating254.
While SPIONs are generally considered non-toxic, it is important to realise that there is
no physiological route of iron excretion from the human body, other than a passive
intestinal loss that is typically limited to 2 mg iron per day. Therefore, intravenously
administered iron oxide, which would be in the range of 400 mg iron (Feraheme,
NCT01336803), for example, will add to the total iron pool and may, in parallel, cause an
proinflammatory phenotypic switch in the macrophages clearing these nanoparticles75.
Further evaluation regarding the long-term tolerability of SPIONSs as routinely used
imaging agents may be therefore warranted.
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Key points

- Iron metabolism is a tightly regulated physiological process that has
relatively low redundancy and its deregulation often leads to iron deficiency
or iron overload.

- Iron deficiency and iron overload are historically associated with erythroid
disorders, but a deregulated iron metabolism has also been implicated in
numerous ageing-related, non-haematological disorders including
neurodegenerative disorders, atherosclerosis and cancer.

- Intracellular iron is directly involved in the formation of reactive oxygen
species that can cause cellular oxidative damage, and which are important for
ferroptosis, a form of non-apoptotic cell death.

- The internalization of iron by macrophages can modulate macrophage
activity towards a pro-inflammatory phenotype, which is likely also
dependent on the pathway of iron intake.

- Agents that interfere with key regulators of iron metabolism and cellular iron
trafficking represent a promising new class of therapeutic agents for various
diseases, as they exploit pathological pathways that are complementary to
those targeted by existing treatments.

- Targeting therapeutics to diseased tissues that express high levels of
transferrin receptor is a strategy that is used by several agents under clinical
development, and extension of this strategy towards other iron metabolism-
associated cellular transporters may be advantageous.
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Figure 1. Systemic iron metabolism.
Dietary iron is absorbed by duodenal enterocytes and added to the systemic iron pool upon

export via ferroportin (FPN, green). The systemic iron pool, which under normal steady-
state conditions is mainly bound to transferrin (orange), is primarily utilized for
erythropoiesis. Excess systemic iron is stored as ferritin (yellow) in the liver, and to a lesser
extent in other tissues. The iron utilized in senescent erythrocytes is recycled by
macrophages and released, via ferroportin, back into the systemic iron pool. Ferroportin
expression, and consequently systemic iron availability, is inhibited by hepcidin (blue), a
peptide primarily produced by the liver. In turn, transcription of the gene encoding hepcidin,
HAMP, is stimulated by the presence of iron and inhibited by erythropoietic demand.
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Figure 2. Regulation of hepcidin expression in hepatocytes.
Bone morphogenetic protein 6 (BMP6) is produced by non-parenchymal cells in the liver in

response to iron stores and flux. Binding of BMP6 to the BMP receptor complex on
hepatocytes, in conjunction with hemojuvelin (HJV) results in downstream signalling via
SMAD1/5/8 and SMAD4, which in turn stimulates HAMP transcription and expression of
hepcidin. HJV is stabilized by neogenin, and cleaved by matriptase 2 (MT-2), allowing for
fine-tuning of BMP6 signalling. SMAD signalling is additionally regulated by transferrin
receptor 2 (TfR2), upon association with human hemochromatosis protein (HFE) and HJV.
HFE also interacts with TfR1, where it competes with holotransferrin. Consequently, when
iron supply is high, HFE is displaced from TfR1 allowing it to associate with TfR2, thereby
increasing hepcidin expression via SMAD signalling. Under inflammatory conditions,
interleukin 6 (IL-6) and related cytokines bind IL-6 receptor, resulting in JAK1/2-STAT3
activation and hepcidin expression to restrict iron availability. Finally, developing erythroid
cells confer their iron requirements via secretion of erythroferrone (ERFE), which inhibits
hepcidin expression, via a currently unknown receptor and signalling pathway, to stimulate
iron uptake under circumstances of high erythropoietic demand.
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Figure 3. Cellular iron trafficking pathways.
Iron intake. Non-transferrin bound iron (NTBI) can be transported directly (solid arrow) into

the cell by DMT1, ZIP14 and ZIP8, after reduction of Fe(lll) to Fe(ll) by ferrireductases
STEAP, DcytB or SDR2. Transferrin-bound iron is taken up via binding to TfR1 and
endocytosis (dashed arrow) of the receptor, release and reduction of Fe(l11) and transport
into the cytoplasm via DMT1. Haemoglobin associates with haptoglobin to allows
endocytosis by CD163, upon which haemoglobin is degraded, and haem transported into the
cytosol. Systemic haem is scavenged by complexation with haemopexin and endocytosis via
CD91. Haem can be directly transported, also from the endosome, into the cytosol by HRG1
and FLVCR2, where it is processed by haem oxygenase 1 and iron released as Fe(ll). Scara5
internalizes ferritin that consists of light chains, after which iron is liberated and transported
to the cytosol. Ferritin composed of heavy chains can be endocytosed by TfR1 (not depicted
here).

Iron utilization. The labile iron pool (LIP) comprises cytosolic Fe(ll), which can be stored in
cytoplasmic ferritin or utilized for biochemical processes. Most of these processes take place
in the mitochondria, for which iron is supplied via mitoferrin, while FL\VCR1b allows export
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of mitochondrially produced haem. The LIP controls the expression of TfR1, DMT1, ferritin
and ferroportin via the posttranscriptional IRP/IRE regulatory system. Similarly, the
transcriptional HIF/HRE regulatory system controls several intracellular processes,
including the transcription of TfR1 and DMT1. HIF2a translation is inhibited by IRP1,
while, conversely, IRP1 transcription is inhibited by HIF. HIF expression is regulated by
PHD, which stimulates the degradation of HIFs under conditions of high oxygen.

Iron egress. Fe(l1) is exported by ferroportin, followed by oxidation to Fe(lll) by the
ferroxidases hephaestin or ceruloplasmin, and subsequent binding to transferrin. Intracellular
haem can be directly exported via FLVCR1a.

Not all pathways are present in all cells.
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Figure 4. Up- and downregulation of several key players in non-haematological pathologies.
Schematic overview illustrating the microenvironmental and systemic changes in iron and

iron metabolism-related proteins in selected pathologies in patients: multiple sclerosis (MS,
sclerotic plaques), Alzheimer’s disease (AD, frontal cerebral cortex), Parkinson’s disease
(PD, basal ganglia), atherosclerosis (AS, sclerotic plaques), and cancer (tumor tissue).

A. Upregulation of DMT1 has been observed in MS (preclinical)123, AD (preclinical)255,
PD256, and cancer (colorectal)257. B. TfR1 upregulation has been found in MS258,
atherosclerosis259, and cancer (colorectal257, breast95,101, glioblastoma94; normal TfR1
levels have been observed in AD260,261, while for PD normal levels262, and low levels
have been reported263,264. C. Increased levels of the macrophage-associated scavenger
receptor CD163 have been found in affected tissues of patients with MS265, AD266,
PD266, AS267, and cancer (breast268, prostate269, glioblastoma270. D. Tissue iron stored
as ferritin has found to be increased in MS271, AD272, PD264, AS259,273, and for cancer
both high levels (glioblastoma)94 and low levels have been reported (breast)101. E.
Similarly, microenvironmental iron deposits have been observed in MS271, AD271,272,274,
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PD256,264,274, AS273, and cancer (colorectal)257. F. Upregulation of FPN has been
demonstrated in tissues of patients with PD264, AS273, and cancer (colorectal257,
breast101), while low levels of FPN have been observed in MS (preclinical)123, AD120 and
also in breast91 and prostate98 cancer. G. Hepcidin levels are not in all diseases consistent
with (an inversed) FPN expression. High hepcidin concentrations have been found in MS
(preclinical, tissue)123, AS (serum)275, breast cancer (tissue91,101 and serum276) and
prostate cancer (tissue)98, whereas a low level has been observed in the tissues of patients
with AD120. H. Increased systemic ferritin concentrations have found in the cerebrospinal
fluid (CSF) of patients with MS277, AD127, and glioblastoma278, as well as in the serum
of patients with AS279 and breast cancer276, although the levels of serum ferritin have also
been found to be normal in patients with AS275 and non-skin cancers280. . Systemic iron
levels measured by iron concentration and transferrin saturation have been quite
inconsistent: higher than average levels have been found in a meta analysis in PD281,
normal levels have been found in MS282 and AS275, and low levels have been observed in
AD283,284. With regard to cancer, the association with systemic iron levels is quite unclear:
women with high levels of serum iron were at higher risk for developing non-skin cancer,
while men were at lower risk280.
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Ligands: Hb .
Merit:  Iron recycling macrophage nga'nds: Haem Ligands: L-ferritin
targeting Merit:  Macrophage, hepatpcyte Merit:  Drug carrier with pH-triggered
Ligands: Tf & cancer cell targeting release properties
Merit:  Blood-brain barrier & cancer Cancer cell targeting

cell targeting
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Figure 5. Proposed mechanisms for targeted drug delivery exploiting iron metabolism-associated
cellular targets.

The natural ligand and the merits of its use as a delivery strategy are presented for each
target. TfR1, CD163 and Scara5 allow endocytosis of drugs associated with their natural
ligands. Subsequent lysosomal processing would then liberate the targeted drug, which then
enters the cytosol by passive diffusion from the lysosome. This likely also occurs for haem-
targeted constructs upon internalization by CD91, but possibly direct transport of the haem-
linked drug into the cytosol by HRG1 and/or FLVCR2 could represent an alternative
mechanism. Drug targeting to FPN, for example by using hepcidin, has not been explored
until now, but forms an interesting approach for directing therapeutics to cell that
overexpress FPN, such as some types of tumour cells. Tf, transferrin; Hb, haemoglobin;
FPN, ferroportin
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