
New Therapeutic Targets in Alcoholic Hepatitis

Diana Arsene1, Omar Farooq1, and Ramon Bataller1,2

1Department of Medicine, Division of Gastroenterology and Hepatology, University of North 
Carolina, Chapel Hill

2Department of Nutrition, University of North Carolina, Chapel Hill

Abstract

Alcoholic liver disease (ALD) is a leading cause of liver related morbidity and mortality 

worldwide. ALD encompasses a spectrum of disorders including asymptomatic steatosis, 

steatohepatitis, fibrosis, cirrhosis and its related complications, and the acute on chronic state of 

alcoholic hepatitis. While multidisciplinary efforts continue to be aimed at curbing progression of 

this spectrum of disorders, there is an urgent need to focus our efforts on effective therapeutic 

interventions for alcoholic hepatitis (AH), the most severe form of ALD. AH is characterized by 

an abrupt development of jaundice and complications related to liver insufficiency and portal 

hypertension in patients with heavy alcohol intake. The mortality of patients with severe AH is 

very high (20–50% at 3 months). The current therapeutic regimens are limited. The development 

of new therapies requires translational studies in human samples and suitable animal models that 

reproduce clinical and histological features of human AH. This review article summarizes the 

clinical syndrome, pre-clinical translational tools, and pathogenesis of AH at a molecular and 

cellular level, with the aim to identify new targets of potential therapeutic intervention.

1. Introduction

Alcoholic Liver Disease is the leading cause of liver-related morbidity and mortality 

worldwide and is a major cause of death among adults with prolonged alcohol abuse1. 

According to WHO, 3.3 million deaths occur worldwide every year due to the harmful use 

of alcohol, representing 5.9% of all deaths. Alcohol is the third leading preventable cause of 

death in the US accounting for about 88,000 deaths per year2,3. This review highlights the 

natural history, pathogenesis, molecular and cellular targets, as well as the current and new 

therapies being investigated for Alcoholic Hepatitis.

Alcoholic liver disease encompasses different stages of liver disease as a consequence of 

susceptibility factors and duration of alcohol consumption; listed from least to most severe, 

are steatosis, alcoholic steatohepatitis (ASH), progressive fibrosis, end stage cirrhosis, 

decompensated cirrhosis, and superimposed hepatocellular carcinoma (HCC).
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Alcoholic hepatitis is an acute on chronic condition, diagnosed clinically by new-onset 

jaundice and/or ascites in the setting of ongoing alcohol abuse and underlying ALD. Severe 

forms of AH have very high short term mortality and represent one of the deadliest diseases 

in clinical hepatology, with a mortality rate of 30–50% at 3 months4.

The true incidence of AH is not well known; population based studies estimate 

approximately 4.5 hospitalizations for AH per 100,000 persons per year5. Patients with ALD 

can present with acute episodes of jaundice and liver decompensation from other reasons, 

such as sepsis, biliary obstruction, diffuse HCC, drug-induced liver injury and ischemic 

hepatitis. All the etiologies stated above present with a similar clinical picture and there is a 

lack of biomarkers or other laboratory tests to distinguish these acute entities. Where 

diagnosis is unclear, transjugular liver biopsies in patients hospitalized for acute hepatitis 

with underlying ALD to confirm the existence of AH is important.

2. Environmental and Genetic Risk Factors

There is a positive correlation between cumulative alcohol intake and degree of liver 

fibrosis; however extensive variability in the histological response to alcohol abuse exists in 

individuals. At similar levels of ethanol consumption, some patients only develop fatty liver 

or macrovesicular steatosis, while others progress to fibrosis and cirrhosis. Several risk 

factors for the susceptibility of ALD have been identified including sex, obesity, drinking 

patterns, dietary factors, non-sex-linked genetic factors, and cigarette smoking1,6,7(Figure 1).

Epidemiological studies suggest that several genetic factors influence the severity of 

steatosis and oxidative stress, and that the cytokine milieu, the magnitude of the immune 

response, and the severity of fibrosis also modulate an individual’s propensity to progress to 

advanced ALD. The genetic factors that influence an individual’s susceptibility to develop 

advanced ALD are largely unknown. Variations in genes encoding antioxidant enzymes, 

cytokines, other inflammatory mediators, and alcohol-metabolizing enzymes seem to play a 

role7.

Owing to its fibrogenic potential, variations in the rate of generation of acetaldehyde could 

explain the differences in the susceptibility of individuals to ALD after abusive alcohol 

consumption. Although polymorphisms in the genes encoding the main alcohol-

metabolizing enzymes such as ADH, ALDH and CYP2E1 are accepted to be involved in an 

individual’s susceptibility to alcoholism, their role in the progression of ALD remains 

controversial8.

Also, recent studies indicate that variations in the patatin-like phospholipase domain-

containing protein 3 (PNPLA3) strongly influence the development of cirrhosis in alcoholic 

Caucasians and Mexicans. PNPLA3 polymorphisms can be considered as the only 

confirmed and replicated genetic risk factor for ALD. However deletion of the PNPLA3 

gene did not affect obesity-associated fatty liver or liver enzyme elevation in animal 

studies9–11.

Polymorphisms in genes that encode pro-inflammatory cytokines like TNF, IRAK-M, 

interleukin-1β, IL-1 receptor antagonists, IL-2, IL-6 and IL-10, involved in the pathogenesis 

Arsene et al. Page 2

Hepatol Int. Author manuscript; available in PMC 2017 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of ALD, have also been examined12. Moreover, studies have also investigated the role of 

genetic variation in factors involved in lipopolysaccharide induced intracellular pathways, 

including CD14 and toll-like receptor 4 (TLR4), as potential risk factors for ALD13.

Despite the large number of studies that have assessed the role of genetic variation in 

susceptibility to ALD, a large-scale, well-designed, genome-wide association study of 

factors linked to the development of ALD remains to be performed. Consequently, a genetic 

test capable of identifying which patients are susceptible to advanced ALD is yet to be 

developed. Such a test could be useful in clinical settings, as it would help to identify the 

main genetic determinants of ALD, which could potentially assist in the development of 

future therapies14.

3. Current treatment in management of alcoholic hepatitis

Patients that develop severe AH usually require hospitalization for initial management, a 

summary of current interventions is listed in Table 1. Primary prevention is aimed at alcohol 

abstinence; active management of alcohol use disorders is critical to achieving continued 

abstinence. For the successful management of these patients, a multidisciplinary team 

composed of hepatologists, psychologists, psychiatrists and social workers is highly 

recommended15. Significant protein calorie malnutrition is a common finding in alcoholics, 

as are deficiencies in a number of vitamins and trace minerals, including vitamin A, vitamin 

D, thiamine, folate, pyridoxine, and zinc1,16, 17. Nutritional support improves liver function 

and short-term follow-up studies suggest that improved nutrition might improve survival 

times and histological findings in patients with AH18. Most patients improve spontaneously 

with abstinence and supportive care. Medical treatment is considered for patients who 

present with a very severe clinical picture or continue to deteriorate (Figure 2).

Several clinical scoring models have been developed to help predict outcomes of patients 

with AH and to guide therapy, including the Maddrey Discriminant Function (DF); Glasgow 

Alcoholic Hepatitis Score (GAHS); Mayo End-stage Liver Disease (MELD); Age, Bilirubin, 

INR, Creatinine (ABIC); MELD-Na, UK End-stage Liver Disease (UKELD), and three 

scores of corticosteroid response at 1 week: an Early Change in Bilirubin Levels (ECBL), a 

25% fall in bilirubin, and the Lille score. The MELD, DF, GAHS, ABIC and scores of 

corticosteroid response prove to be valid in an independent cohort of biopsy-proven 

alcoholic hepatitis19. Combining features of various scoring models, for example, from the 

DF, ABIC, MELD and Lille, may prove to be a better prognosis indicator20.

Corticosteroids have been used in the treatment of AH for more than 40 years. Prednisolone 

is widely considered the first line therapy for severe AH. Both the AASLD and EASL 

practice guidelines recommend the use of corticosteroids (i.e. prednisolone 40 mg daily for 4 

weeks) for patients with severe AH, defined by Maddrey’s discriminant function >32 or the 

presence of hepatic encephalopathy 1,21. Clinical trials conducted, to determine efficacy of 

steroid administration, so far suffer from heterogeneity and a high risk of bias. A recent 

meta-analysis from individual data however showed improved survival in patients with a 

high DF. In this study patients were categorized as complete responders, partial responders, 

or null responders and was able to predict the 6-month survival of each group using 2 new 
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cut-offs of the Lille score 22. In another study, the response to prednisolone was assessed 

based on the change in bilirubin after one week of therapy and quantified using the Lille 

score. The Lille score was calculated after 7 days of initiation of therapy and it was 

determined that corticosteroids can be discontinued in non-responders, defined by a Lille 

score >0.4520. A Lille score greater than 0.45 predicts a 6-month survival rate of less than 

25% 23. Clinical practice guidelines recommend stopping corticosteroids after one week in 

those with an unfavorable Lille score, as the risks of continued therapy likely outweigh the 

benefits. The contraindications for the use of corticosteroids are not well defined. When 

considering treatment with corticosteroids, patients require careful monitoring for evidence 

of present or developing infections and/or active GI bleeding.

Pentoxifylline is a phosphodiesterase inhibitor that inhibits the synthesis of tumor necrosis 

factor, which is increased in patients with AH. In practice, pentoxifylline is typically 

reserved as a second-line agent for patients with contraindications to corticosteroid therapy. 

A large trial, STOPAH, comparing prednisolone and pentoxifylline is underway and should 

prove to be a definitive study for assessing the efficacy of these drugs for AH24. Current 

consensus regarding Pentoxifylline is that it is not effective rescue therapy in patients who 

do not respond to corticosteroids25.

Infliximab and etanercept, anti-TNF agents, were also investigated as potential therapies for 

patients with AH. Rationale for their use was similar to pentoxifylline; TNF-α was 

implicated as a key culprit in the potentiation of hepatocyte inflammation. The use of these 

agents should theoretically benefit patients hospitalized with AH. However translational 

studies did not support the hypothesis26,27. Other larger studies resulted in adverse side 

effects such as increased rates of infection and increased mortality. Presently anti-TNF-α 
agents are not recommended for treatment of AH28.

N-acetylcysteine is known to replenish glutathione in damaged hepatocytes and prevent cell 

death in ALD. A recent randomized trial showed that the combination of N-acetylcysteine 

with prednisolone showed a clear trend to improve survival, by reducing 1-month mortality 

(8% vs. 24%) and reduce incidence of hepatorenal syndrome and infection, although the 

study was underpowered to reach statistical significance. In addition, it was found to have no 

effect on six-month survival29. The favorable safety profile of N-acetylcysteine makes it a 

potential option, in combination with corticosteroids, for patients with severe disease.

4. Role of transplantation in Alcoholic Hepatitis

ALD is the second most common indication for liver transplantation (LT) for chronic liver 

disease after HCV cirrhosis. Despite this, it is estimated that as many as 95% of patients 

with end-stage liver disease related to alcohol are never formally evaluated for candidacy for 

liver transplantation.

An important issue that is still unresolved is the role of LT in patients with alcoholic 

hepatitis, who are generally excluded from transplant. Patients with severe AH who do not 

respond to medical are unlikely to survive the “mandatory” 6-month abstinence period as 

their risk of mortality is quite high30,31. However post-transplant outcomes appear to be 
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good for highly selected patients with severe AH unresponsive to medical therapy with low 

rates of alcohol relapse32,33. Salvage liver transplantation in highly selected patients has 

been shown to improve survival significantly, but is not available in the vast majority of 

transplant centers32. The availability of living donor transplantation and extended criteria 

donor liver transplantation are likely to heighten the debate on this issue.

5. Translation research in ALD: integrating animal and human studies

While animal models serve as the cornerstone of many research studies, their use in 

exploring potential novel targets for the treatment of alcoholic liver disease, particularly 

alcoholic hepatitis, is limited. Many rodent models produce some features of chronic 

alcoholic liver disease, but it is difficult to mimic acute-on-chronic liver injury as seen in 

patients with alcoholic hepatitis, though improved models are emerging.

While many models exist to mimic mild to moderate levels of hepatocyte damage, a better 

model of alcoholic hepatitis, is the chronic-plus-binge feeding model. As the name implies, 

it models the chronic drinking behaviors with intermittent binges seen as in patients 

presenting with alcoholic hepatitis. This model causes hepatocyte damage, disruption of 

mitochondrial function, and oxidative stress, resulting in moderate rises in AST and ALT, 

but in addition to mimicking steatosis, liver injury, and early fibrogenic response, it was also 

able to demonstrate hepatic neutrophil infiltration as seen in early stages of alcoholic 

hepatitis34, though the hepatocellular damage and inflammation were noted to be transient. 

Given the prevalence of obesity, rodent models have been developed to encompass both non-

alcoholic steatohepatitis and alcoholic liver disease. The hybrid model with high-fat and 

high cholesterol plus chronic and binge ethanol feeding involves a high-fat and high 

cholesterol diet comprising 40% of the caloric intake, while chronic intragastric ethanol 

feeding comprised 60% of the caloric intake of these mice, and was supplemented by 

weekly binges of ethanol. This model represents moderate to severe alcoholic hepatitis, 

causing significant liver inflammation, by reproducing chronic alcoholic steatohepatitis 

characterized by balloon cell degeneration, macrophage activation and infiltration, and 

progression of liver fibrosis. It closely mimics alcoholic hepatitis histologically, with 

findings of neutrophil infiltration, but also clinically represents this acute entity as mice 

develop splenomegaly, hypoalbuminemia, and hyperbilirubinemia35. Models to show 

advanced fibrosis and cholestasis, as observed in alcoholic hepatitis, do not yet exist. 

“Second-hit” or “Multiple-hit” models exist in which use chronic ethanol feeding to induce 

hepatic susceptibility to other agents including nutritional modification or pharmacologic 

agents to achieve the acute on chronic disease state have shown some promising pathologic 

similarities to human alcoholic hepatitis including coagulative necrosis and inflammation 36, 

but often as a consequence of the second agent used, and thus calls into question their 

clinical relevance.

The traditional approach of identifying molecular drivers in animal models and translating 

this work to human disease poses many challenges. In addition, the the challenges of finding 

appropriate models to mimic histologic findings in human alcoholic liver disease and 

incorporate co-morbidities faced by patients with alcoholic liver disease and those 

presenting with alcoholic hepatitis, remains difficult to do.
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A systematic rational approach to designing translational studies to examine alcoholic 

hepatitis begins by first determining the phenotype of the patient, disease severity and 

comorbidities that contribute to the acute disease state, with careful consideration given to 

related overlapping syndromes. Disease severity and patient prognosis can be computed 

using a variety of scoring systems as discussed previously. The second step involves 

obtaining anthropometrical, clinical, and histological data, though liver biopsy, and 

collection of ancillary biospecimens including suprahepatic and peripheral blood, PMNs, 

and stool for genomic, proteomic, and metabolomic studies. The third step involves the 

correlation of gene and protein expression in biospecimens obtained with clinical or 

histological features observed in patients to identify potential molecular drivers of disease. 

Finally, the fourth step involves testing hypothetical relations in in vitro and in vivo models 

in carefully designed animal studies, with the eventual goal in mind of identifying druggable 

molecular targets to reverse or abort progression of this disease (Figure 3).

6. Molecular pathogenesis of Alcoholic Liver Disease and potential targets 

for intervention

An understanding of the spectrum of disease states comprising ALD and the pathogenic 

mechanisms at work is imperative to our understanding of the development of alcoholic 

hepatitis as an acute on chronic state, and provides ample opportunity to halt progression in 

early disease stages. Table 2 summarizes some of the key molecular and cellular markers 

that are potential new targets for therapeutic intervention. Chronic alcohol ingestion leads to 

steatosis, an asymptomatic state reversible on cessation of alcohol consumption. Prolonged 

alcohol consumption can lead to alcoholic steatohepatitis, and inflammatory stated marked 

my neutrophil infiltration and hepatocellular damage. Histological evaluation demonstrates 

fat accumulation, hepatocyte ballooning, neutrophil infiltration, and even early signs of 

pericellular and sinusoidal fibrosis. Fibrosis can then progress to cirrhosis complicated by 

poor synthetic function portal hypertension and its associated complications. Alcoholic 

hepatitis, as previously mentioned, is an acute on chronic disease state, in which the majority 

of patients have underlying advanced fibrosis, and in addition to a marked inflammatory 

response, histologically, canalicular and lobular bilirubinostasis may be present37. The 

interplay of molecular and cellular markers contributing to disease is complex (Figure 4) and 

is discussed in detail below.

Steatosis as a result of decreased fatty acid oxidation

Steatosis evolves from the intrahepatic accumulation of fats, mainly triglycerides, 

phospholipids, and cholesterol esters, which is aggravated by excessive alcohol intake 

through disruption of fatty acid oxidation, and increase of fatty acid and triglyceride 

synthesis and uptake. Alcohol intake increases the NADH/NAD+ ratio in hepatocytes, which 

disrupts mitochondrial β-oxidation of fatty acids resulting in accumulation and steatosis38. 

Excessive alcohol consumption is also responsible for decreasing β-oxidation of fatty acids 

through it’s metabolite, acetaldehyde, which directly inhibits the DNA-binding ability and 

transcriptional activation ability of peroxisome proliferator-activated receptor-α (PPAR-

α)38, a nuclear hormone receptor that regulates transcription of many genes involved in free 

fatty acid transport and oxidation39,40. Ethanol can also indirectly inhibit the function of 
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PPAR-α through various mechanisms. The first is by up-regulating cytochrome P450 2E1 

(CYP2E1) and hepatic oxidative stress, which in turn inhibits oxidation of fatty acids by 

preventing up-regulation of PPAR-α as demonstrated in wild-type mice as compared to 

CYP2E1 knock-out mice41. The second and third include down regulation of adiponectin, 

and zinc, both of which have been demonstrated to down-regulate PPAR-α42,43.

Steatosis as a result of increased fatty acid uptake and synthesis

It is well known that alcohol consumption increases hepatic influx of free fatty acids from 

adipose tissue and chylomicrons from the intestinal mucosa38. Fatty acid synthesis is 

increased through up-regulation of lipogenic enzymes. This is mainly accomplished directly 

through up-regulation of sterol regulatory element-binding protein-1c (SREBP-1c), a master 

transcription factor that up-regulates the expression of genes encoding lipogenic enzymes, or 

indirectly through inhibition of factors that inhibit SREBP-1c. Acetaldehyde promotes 

transcription of SREBP-1c, which in turn up-regulates expression of lipogenic enzyme 

genes, contributing to increased fatty acid synthesis44. SREBP-1c is also up-regulated 

through multiple other processes including ethanol-induced hepatocyte ER stress45, 

production and binding of adenosine to A1 receptors46, and through endocannnabinoids47. 

Endocannabimoids mediate alcoholic liver injury through signaling through either of two 

cannabinoid receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2)48. 

Mouse studies have demonstrated that signaling through the CB1 cannabinoid receptor 

worsens alcoholic liver injury while signaling through the CB2 confers a protective role in 

the development of steatosis and alcoholic liver injury47. This suggests that CB1 receptor 

antagonists and CB2 receptor agonists could serve as potential therapeutic agents in 

preventing steatosis and alcoholic liver disease. CB1 receptor antagonists have their 

limitations, due to their neuropsychiatric side effects, however, peripherally acting CB1 

antagonists are currently being explored48. SREBP-1c is upregulated indirectly though 

down-regulation of various factors that reduce its expression, such as ethanol-mediated 

AMP-activated protein kinase (AMPK) inhibition49. Studies in rat hepatoma cells 

demonstrated that activation of SREBP-1c by ethanol is also mediated by mammalian sirtuin 

1 (SIRT1), a NAD(+)-dependent class III protein deacetylase; ethanol exposure induced 

SREBP-1c lysine acetylation and SREBP-1c transcriptional activity, which was reversed by 

adding a SIRT1, suggesting that ethanol must have an inhibitory effect on SIRT1, inhibiting 

its inhibitory effect on SREBP-1c50. This finding suggests that SIRT1 agonists could be 

potentially be used to curtail the effects of ethanol on steatosis. To extend this further, it has 

been shown that adiponectin confers protection against alcoholic fatty liver via modulation 

of complex hepatic signaling pathways through central regulatory system, SIRT1-AMPK 

axis 51.

Direct effects of ethanol on enzymes involved in fatty acid metabolism

In addition to regulating transcription factors involved in the regulation of genes involved in 

fatty acid metabolism, ethanol can also directly affect the activities of these enzymes 

through it’s inhibition of AMPK, a serine-threonine kinase. This was demonstrated through 

animal models of concomitant obesity and alcohol consumption, in which these mice 

demonstrated defective adiponectin-AMPK signaling even in the presence of increased 

adiponectin downstream of p-AMPK, suggesting a role for AMPK in steatosis52. AMPK 
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functions to inactivate the rate-limiting enzyme acetyl-CoA carboxylase (ACC) in fatty acid 

synthesis. In turn, inactivation of ACC leads to a reduction in the levels of malonyl Co-A, a 

precursor in fatty acid synthesis, and an inhibitor of the rate-limiting enzyme carnitine 

palmitoyltransferase 1 (CPT1), in fatty acid oxidation, resulting in less fatty acid synthesis 

and increased oxidation53.

In addition, AMPK directly phosphorylates and inhibits SREBP activity in hepatocytes, 

thereby attenuating steatosis. In this manner, AMPK inhibits fatty acid synthesis but 

promotes fatty acid oxidation via the inactivation of ACC enzyme activity54. Alcohol 

consumption inhibits AMPK activity in the liver, leading to increased activity of ACC and 

decreased activity of CPT1 contributing to hepatic fatty acid accumulation and progression 

to steatosis49.

6. Cellular pathogenesis of alcoholic liver disease

The role of autophagy in steatosis

Autophagy removes lipid droplets from hepatocytes55. The role of alcohol intake on the 

autophagic process depends greatly on the chronicity or acuity of intake. Chronic alcohol 

consumption inhibits autophagy, and thus leads to fat accumulation and steatosis56,57. 

Mouse studies have demonstrated that acute ethanol consumption conversely activates 

autophagy through the production of reactive oxygen species (ROS) and inhibition of the 

mammalian target of rapamycin (mTOR) signaling pathway, inhibiting progression to 

steatosis58.

The role of the innate immune system in development of steatohepatitis

The innate immune system plays a large role in propagation of inflammation in 

steatohepatitis and the development of fibrosis. Excessive alcohol intake results in the mass 

production of ROS, which react with nucleic acids, fatty acids, proteins, and structural cell 

components to form adducts. These adducts are known to be potent activators of the innate 

immune system59.

The contribution of bacterial-immune system interplay has received more attention in many 

gastrointestinal disorders. Kupffer cells, the livers native phagocytes, serve as the first line of 

innate immune system defense. It is known that alcohol increases gut permeability resulting 

in translocation of bacterial products such as LPS into portal circulation. This results in 

activation of Kupffer cells through TLR4 signaling through MyD88-dependent and 

independent (TRIF/IRF-3) pathways60 leading to production and release of pro-

inflammatory cytokines, including TNF-α 61–63. TLR antagonists have been proposed as 

potential therapeutic agents for the management of alcoholic liver disease. Kupffer cells are 

also activated through binding of complement proteins, C3 and C5, induced through ethanol 

activation of the complement cascade64,65.

While the innate inflammatory response is generally believed to propagate liver injury, 

Kupffer cells also have mechanisms in place to slow down and halt progression of 

inflammation through secretion of anti-inflammatory cytokines including IL-6 and IL-10. 
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Through activation of STAT3, these cytokines curb inflammation and slow progression of 

liver injury67, 68.

Neutrophil infiltration is cytokine-mediated, through IL-17; IL-17 also stimulates hepatic 

stellate cells (HSCs) to produce IL-8 and CXCL1, these chemokines in turn, recruit more 

neutrophils, completing the cycle. Additional mediators that assist with neutrophil 

recruitment include IL-1, osteopontin, CXCL4, CXCL5, and CXCL6; these also activate 

macrophages during liver injury68,69.

The role of the innate immune system in development of fibrosis

Hepatic fibrosis is characterized by the excessive accumulation of collagen and other 

extracellular matrix proteins. The extensive hepatocellular damage that occurs at this stage 

of liver injury, results in the production of cytokines, neuroendocrine factors, and angiogenic 

factors, leading to activations HSCs. Portal and bone marrow-derived fibroblasts also 

contribute to fibrosis70,71.

The ethanol metabolite, acetaldehyde plays an important role in the instigation and 

maintenance of fibrosis, through HSC activation and maintenance of the activated 

phenotype. Through its rapid reaction with cellular components to form adducts, 

acetaldehyde and its adducts, malondialdehyde, 4-hydroxynonenal, and malondialdehyde-

acetaldehyde, act upon HSCs to keep them in the perpetually activated “on” state72.

In a similar manner, ROS can cause activation of HSCs. ROS also directly stimulate fibrosis 

through stimulating production of collagen though stimulation of pro-fibrogenic signaling 

pathways in HSCs including ERK1, ERK2, phosphinositide 3 kinase-Akt and JNK73. ROS 

also propagate collagen accumulation by preventing collagen degradation, first through 

direct inhibition of metalloproteinases which degrade collagen, and the secondly, through 

upregulation of the tissue inhibitor of metalloproteinases73.

Extrinsic propagators of fibrosis include transluminal translocation of bacterial LPS. LPS 

activates the TLR4 on HSCs directly inducing HSC activation74, it activates TLR4 signaling 

pathways on hepatic sinusoidal endothelial cells promoting angiogenesis and subsequent 

fibrosis75. Finally, TLR4 indirectly stimulates fibrosis through activation of Kupffer cells, 

which in exchange, release ROS and other pro-fibrogenic cytokines, causing activation of 

HSCs76,77.

7. Cellular targets for therapeutic management of alcoholic hepatitis

Cell death via apoptosis

Massive hepatocyte cell death is a prominent feature of alcoholic hepatitis, and as previously 

discussed, apoptosis is a prominent feature of many of the preceding stages of alcoholic liver 

disease. Since caspase inhibitors are known to inhibit apoptosis, animal studies have been 

done in models of chronic liver injury from viral hepatitis secondary to hepatitis C infection, 

and non-alcoholic steatohepatitis, and caspase inhibitors have shown promising results in 

ameliorating liver injury and impeding progression to fibrosis78–80. It is reasonable to think 

such an approach would work in alcoholic liver disease, in particular in alcoholic hepatitis.
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Role of Innate Immune System

Studies from other models of liver disease suggest that following activation, neutrophils 

undergo transmigration into the liver parenchyma where they destroy damaged hepatocytes 

through the release of ROS and proteases, supporting their prominent role in ALD81. IL-17 

is increased in patients with alcoholic hepatitis and directly induces neutrophil recruitment, 

but also indirectly promotes neutrophil recruitment by stimulating HSCs to secrete IL-8 and 

CXCL182,83. This suggests that the modification of these chemokines, or their precursors or 

activators, may mediate neutrophil infiltration and perhaps attenuate alcoholic hepatitis. 

Translational studies have examined the role of the CXCL family of chemokines, and found 

elevated levels correlate with severity of disease, degree of portal hypertension, and patient 

survival84,85. Given these promising findings, therapeutic agents that target CXCL 

chemokines may be considered in the treatment of AH. Osteopontin is an extracellular 

matrix protein that is markedly upregulated in alcoholic hepatitis, similar to other CXCL 

chemokines86. Agents that inhibit osteopontin, therefore, are also attractive in considering 

new therapeutic agents. The redundancy of chemokines and their receptors makes the 

development of targeted therapeutics challenging.

Instigators of inflammation are also thought to play an important role. Sources of 

inflammatory mediators can be classified as sterile, originating from intracellular sources, or 

microbiological, from bacterial translocation in the gut. Damage-associated molecular 

patterns (DAMPs) are intracellular molecules released by dying cells that trigger the innate 

immune system87. Among the DAMPs, high mobility group box-1 (HMGB-1) has been 

implicated in the development of alcoholic steatohepatitis88, and likely also has a role in 

alcoholic hepatitis. Gut-derived bacterial products belong to the class of pathogen-associated 

molecular patterns (PAMPs). These PAMPs circulate trough the portal circulation and 

induce an inflammatory response through activation of HSCs and Kupffer cells88,89. 

Inhibition of gut leakage could be a potential target for therapy aimed at preventing the 

initiation of the innate immune response in alcoholic hepatitis.

Role of the Adaptive Immune System

While the role of the innate immune system has been widely explored, the role of the 

adaptive immune system in hepatocellular injury and propagation of alcoholic hepatitis 

leaves many questions unanswered. It is well-known that the adaptive immune system 

responds to oxidative stress and peroxidation adducts, but it’s role in hepatocellular damage 

and inflammation in alcoholic hepatitis remains unknown. As previously described, 

increased alcohol consumption generates ROS through multiple mechanisms and leads to 

adduct formation; protein adducts have altered conformation and function, and are relatively 

immunogenic. Patients with alcoholic hepatitis have been found to have circulating T cells 

with antibodies to these adducts, enforcing that the adaptive immune response likely plays a 

large, yet undiscovered role in AH 90–93.

Targeting dysbiosis

Alterations in the gut microbiome has unique implications on the development of alcoholic 

hepatitis, this was first suggested in the intragastric mouse feeding model in which elevated 

serum ethanol levels were maintained, treated mouse populations were observed to have 
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both microbial translocation and dysbiosis94. In studies involving patients with chronic 

alcoholic liver disease, administration of probiotics appeared to improve liver function in 

this patient group, further supporting that the intestinal bacterial milieu is of great 

importance95. Work examining the applicability of probiotics in patients with alcoholic 

hepatitis is still underway. Other studies which included genomic and metabolomic analyses 

of intestinal bacteria revealed low levels of lactobacilli and reduced production of saturated 

long chain fatty acids (LCFA). In this model, supplementation with LCFA restored eubiosis, 

intestinal barrier function, and reduced liver injury in mice96, suggesting a role for potential 

supplementation of LCFA in this patient group.

The role of hepatocyte proliferation and regeneration

Hepatic regeneration in the healthy liver results from expansion of the remaining healthy 

hepatocytes. In the diseased state, in which hepatocyte proliferation is inhibited, pluripotent 

liver progenitor cells, also referred to as oval cells, or ductal hepatocytes, proliferate and 

differentiate to repopulate hepatocytes or biliary epithelial cells99. In the rodent model, 

alcohol attenuates regeneration of hepatocytes following partial surgical hepatectomy100, so 

though human studies lack, it is reasonable to hypothesize that alcohol not only causes 

hepatocellular injury and death, but also prevents regeneration. While histologically, the 

presence of bilirubinostasis and severe fibrosis are associated with a poorer prognosis in 

alcoholic hepatitis, the presence of proliferating hepatocytes is associated with better 

prognosis101. In addition, intense neutrophilic infiltrate was also associated with better 

prognosis99, suggesting that cytokines released by neutrophils likely play a role in hepatic 

regeneration following cessation of alcohol, and that resolving inflammation may actually 

have a beneficial, rather than detrimental role in alcoholic liver disease, contributing to 

hepatic regeneration. Severe alcoholic hepatitis is marked by a failure of liver progenitor 

cells to progress past massive proliferation to maturation into mature hepatocytes102, the 

mechanism for this remains to be elucidated. Potential therapeutic agents to promote hepatic 

regeneration are being explored.

8. Conclusion

ALD is a leading cause of liver related morbidity and mortality, encompassing a spectrum of 

disorders ranging from asymptomatic steatosis, steatohepatitis, fibrosis, cirrhosis and its 

related complications, as well as the the acute on chronic state of AH. While 

multidisciplinary efforts continue to be aimed at curbing progression of this spectrum of 

disorders, there is an urgent need for effective therapeutic interventions for AH given it’s 

high mortality rate and limitations of current treatment regimens. Corticosteroids and 

pentoxyfylline, though used extensively, offer only a modest survival benefit. Anti-TNF 

agents, including infliximab and etanercept, did not prove to be safe or effective, due to their 

increased rates of infection and increased mortality observed in larger studies. Adjunctive 

therapies, such as N-acetylcysteine, which is known to replenish glutathione in damaged 

hepatocytes and prevent cell death in ALD, was also found to have no effect on six-month 

survival. Liver transplantation continues to be limited for patients with ALD, and though 

risk of associated complications is not higher among this group, there remains a hesitancy 

and concern among providers, and it is estimated that as many as 95% of patients with end-
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stage liver disease related to alcohol are never formally evaluated for candidacy for LT. This 

drives our need to find better therapeutic targets for ALD with focus on AH. While our 

understanding of the molecular and cellular mechanisms of disease stems from animal 

models, there remains a dire need for translational research in this field to aid in bridging our 

gaps in understanding. Recent work in discovering the molecular and cellular basis of 

disease progression in ALD has helped uncover potential new targets for therapeutic 

intervention. In early stages of ALD, particularly in steatosis, many molecular targets 

involved in modifying transcription of genes responsible in fatty acid synthesis and 

accumulation have been explored as potential targets of therapeutic intervention including 

SREBP-1c, and the cannabinoid receptors CB1, and CB2. Similar pathways, including 

activation of the receptor PPAR-α have been explored in their role in fatty acid oxidation as 

it relates to progression to steatosis. The role of various inflammatory pathways in 

progression to steatohepatitis have been explored as potential targets including inhibition of 

translocation of bacterial products, such as LPS, which are known to trigger an 

inflammatory response, inhibition of TLR signaling pathways, and release of pro-

inflammatory cytokines including IL-6, IL-10. Inhibition of profibrogenic pathways in 

HSCs, including ERK1, ERK2, phosphinositide 3 kinase-Akt and JNK, have also been 

explored and are attractive candidates for therapeutic intervention to prevent progression to 

fibrosis. Much work remains to elucidate the role of the cellular responses of the innate and 

adaptive immune systems in AH in uncovering potential targets for intervention. The role of 

IL-17 in inducing neutrophil recruitment by stimulating HSCs to secrete IL-8 and CXCL1 

has been explored, with the thought that modification of these chemokines may mediate 

neutrophil infiltration and attenuate alcoholic hepatitis. The role of osteopontin has also been 

explored as it contributes to neutrophillic recruitment in alcoholic hepatitis, but much work 

remains ahead. Similarly, the mechanisms have not yet been elucidated, but it is well known 

that the adaptive immune response plays an important role in progression to AH, as 

antibodies to adducts generated through free radical oxidation have been found on 

circulating T cells, though potential targets for therapeutic intervention remain to be 

discovered.
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AASLD American association for the Study of Liver Disease

ALD alcoholic liver disease

HCC hepatocellular carcinoma

ASH alcoholic steatohepatitis

AH alcoholic hepatitis
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ALDH acetaldehyde dehydrogenase

CYP2E1 Cytochrome P450 2E1

EASL European Association for the Study of the Liver

ER endoplasmic reticulum

IRAK-M Interleukin-1 receptor-associated kinase

MELD model for end-stage liver disease

DF Maddrey Discriminant Function

GAHS Glasgow Alcoholic Hepatitis Score

ABIC Age, Bilirubin, INR, Creatinine

UKELD UK End-stage Liver Disease

IL interleukin

LPS lipopolysaccharide

LT liver transplant

TLR toll-like receptor

SREBP-1c sterol regulatory element-binding protein 1c

TLR4 toll-like receptor 4

TNF tumor necrosis factor

AMPK AMP-activated protein kinase

PNPLA3 patatin-like phospholipase domain-containing protein 3

PPAR peroxisome proliferator-activated receptor

ROS ROS

HSC hepatic stellate cell

NK natural killer

IFN interferon

SAMe S-adenosylmethionine

NIAA National Institute of Alcohol Abuse and Alcoholism

PMN Polymorphonuclear leukocytes

WHO World Health Organization
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Figure 1. 
Natural progression along the spectrum of ALD, from steatosis, to the inflammatory state of 

steatohepatitis, to progressive fibrosis and cirrhosis, and finally, to decompensated cirrhosis 

and HCC. Exacerbations of AH occur at many of the later stages of disease. Predisposing 

risk factors to accelerated progression are listed.
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Figure 2. 
Clinical evaluation for a patient with high suspicion of AH involves ruling out precipitating 

factors of decompensated liver disease and confounding illnesses. Role of transjugular liver 

biopsy is dependent on the care provider’s confidence in the diagnosis. Initial treatment 

requires ongoing surveillance for improvement.
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Figure 3. 
Systematic approach to designing translational studies to evaluate important molecular 

markers and potential therapeutic targets in AH.
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Figure 4. 
Potential molecular and cellular targets for therapy for AH identified in translational studies 

including human samples.

Arsene et al. Page 22

Hepatol Int. Author manuscript; available in PMC 2017 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Arsene et al. Page 23

Table 1

Current therapeutic interventions for management of alcoholic hepatitis.

Intervention Class Examples, Indications and Limitations

Nutritional support Address protein calorie malnutrition (High calorie meals and supplements), and vitamin deficiency (Vitamin A, 
Vitamin D, Thiamine, Folate) through supplementation.

Alcohol Abstinence Most important component of therapy, often a multidisciplinary team recommended for successful management.

Corticosteroids

Prednisolone: first line therapy for severe AH (indicated with DF > 32 or HE)
AASLD/EASL recommendations: 40mg/day for 4 weeks
Assess response after a week: Lille score> 0.45, discontinue therapy
Rule out infection and GI bleeding before initiating therapy

Phosphodiesterase inhibitor:
Pentoxifylline: inhibits TNF
Second line agent.
Not an effective rescue therapy agent.

Anti-TNF agents
Infliximab/Etanercept
Large studies showed increased adverse effects: Infections, mortality
Currently not recommended for AH

N-acetylcysteine

Replenishes Glutathione in damaged hepatocytes and prevents cell death.
Used in Acute Hepatitis from other causes.
Studies on Prednisolone and NAC combination therapy have shown reduction in 1-month mortality rate, HRS 
incidence, and Infection incidence, but no effect on improving 6-month mortality.

DF: Maddrey’s discriminant function, HE: Hepatic encephalopathy, TNF: Tumor necrosis factor, HRS: Hepatorenal Syndrome
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Table 2

Potential novel therapeutic targets for intervention.

Pathologic Process Potential Therapeutic Targets Mechanism of Action

Steatosis
Decrease in fatty acid 
oxidation

CYP2E1 and PPAR-α Ethanol upregulates CYP2E1 production resulting in hepatic oxidative 
stress, which in turn prevents up-regulation of PPAR-α, a nuclear 
hormone receptor, that regulates transcription of many genes involved in 
free fatty acid transport and oxidation.

Steatosis
Increase in fatty acid uptake

SREBP-1c Acetaldehyde upregulates SREBP-1c, a master transcription factor that 
upregulates the expression of genes encoding lipogenic enzymes, 
resulting in increased fatty acid synthesis.

CB1, CB2 Endocannabimoids are also responsible for up-regulating SREBP-1c 
leading to increased fatty acid synthesis, but also mediate alcoholic liver 
injury through signaling through either of two cannabinoid receptors, 
CB1 and CB2. Signaling through CB1 worsens alcoholic liver injury 
while signaling through the CB2 confers a protective role in the 
development of steatosis.

SIRT1 SIRT1, a NAD(+)-dependent class III protein deacetylase, also inhibits 
SREBP-1c activation decreasing fatty acid synthesis. SIRT1 agonists 
could be potentially be used to curtail the effects of ethanol on steatosis.

Adiponectin, AMPK AMPK, a serine-threonine kinase, inactivates the rate-limiting enzyme 
ACC in fatty acid synthesis. Inactivation of ACC leads to a reduction in 
the levels of malonyl Co-A, a precursor in fatty acid synthesis and an 
inhibitor of the rate-limiting enzyme CPT1, in fatty acid oxidation, 
resulting in less fatty acid synthesis and increased oxidation. While 
ethanol inhibits this pathway, adiponectin can confer protection by 
modulating this pathway.

Steatosis
Autophagy

mTOR Chronic alcohol consumption inhibits autophagy, leading to fat 
accumulation and. Inhibition of the mTOR signaling pathway inhibits 
progression to steatosis.

Steatohepatitis
Bacterial translocation and 
the inflammatory cascade

LPS, TLR Ethanol increases gut permeability resulting in translocation of bacterial 
products, such as LPS, into portal circulation, resulting in activation of 
Kupffer cells through TLR4 leading to production and release of pro-
inflammatory cytokines. TLR antagonists have been proposed as 
potential therapeutic agents.

IL-6, IL-10, STAT3 Kupffer cells secrete anti-inflammatory cytokines, IL-6 and IL-10, which 
bind STAT3 to curb inflammation and slow progression of liver injury.

Steatohepatitis
Neutrophillic infiltration

IL-1, osteopontin, CXCL4, 
CXCL5, CXCL6

IL-1, osteopontin, CXCL4, CXCL5, and CXCL6 are chemokines that 
attract and activate macrophages.

Fibrosis
Promotion of fibrosis

ERK1, ERK2, phosphinositide 3 
kinase-Akt and JNK

ROS production stimulates collagen production though stimulation of 
pro-fibrogenic signaling pathways in HSCs including ERK1, ERK2, 
phosphinositide 3 kinase-Akt and JNK.

Fibrosis
Inhibition of collagen 
degradation

metalloproteinases ROS produced with heavy alcohol consumotion propagate collagen 
accumulation by preventing collagen degradation, through direct 
inhibition of metalloproteinases which degrade collagen.

Apoptosis and massive cell 
death

Caspase Caspase inhibitors are known to inhibit apoptosis.

Innate immune response
Neutrophil recruitment

IL-17, IL-8, CXCL1, ostepontin IL-17 induces neutrophil recruitment by stimulating HSCs to secrete 
IL-8 and CXCL1. The modification of these chemokines may mediate 
neutrophil infiltration and attenuate alcoholic hepatitis. Osteopontin, an 
extracellular matrix protein, also contributes to neutrophillic recruitment, 
and is markedly upregulated in alcoholic hepatitis, and is an attractive 
target in considering new therapeutic agents.

Adaptive immune response
T cells

Circulating T cells Patients with alcoholic hepatitis have been found to have circulating T 
cells with antibodies to free-radical adducts

Intestinal dysbiosis LCFA Genomic and metabolomic analyses of intestinal bacteria revealed low 
levels of lactobacilli and reduced production of LCFA in those with 
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Pathologic Process Potential Therapeutic Targets Mechanism of Action

alcoholic liver injury. Supplementation with LCFA restored eubiosis, 
intestinal barrier function, and reduced liver injury in mice.

Hepatic regeneration The mechanism remains to be elucidated, but severe alcoholic hepatitis is 
marked by a failure of liver progenitor cells to progress past massive 
proliferation to maturation into mature hepatocytes. Agents to promote 
hepatic regeneration are being explored.

CYP2E1, cytochrome P450 2E1, PPAR-α: proliferator-activated receptor-α, SREBP-1c: sterol regulatory element-binding protein-1c, CB1: 
cannabinoid receptor 1, CB2: cannabinoid receptor 2, SIRT1: sirtuin 1, AMPK: AMP-activated protein kinase, mTOR: mammalian target of 
rapamycin, LPS: lipoplysaccharide, TLR: toll-like receptor, IL-6: interleukin-6, IL-10: interleukin-10, IL-1: interleukin-1, IL-17: interleukin-17, 
IL-8: interleukin-8, LCFA: long-chain fatty acids
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