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Abstract

We report the use of the cross-linking drug hexamethylphosphoramide (HMPA), which introduces
small deletions, as a mutagen suitable for reverse genetics in the model organism Drosophila
melanogaster. A compatible mutation-detection method based on resolution of PCR fragment-
length polymorphisms on standard DNA sequencers is implemented. As the spectrum of HMPA-
induced mutations is similar in a variety of organisms, it should be possible to transfer this
mutagenesis and detection procedure to other model systems.

Background

The fruitfly Drosophila melanogaster has been the prime
genetic model organism for almost a century. This success
story is mainly founded on countless so-called forward
genetic screens designed to elucidate gene functions on the
basis of their mutant phenotypes. Many of those screens
reached a scale that has been termed 'saturating' as they iden-
tify all nonredundant genes involved in a certain phenotypic
trait. However, forward genetic screens are limited in that
they are only capable of uncovering functions that are easily
measurable or visible. Furthermore, genes having a redun-
dant or nonessential role are less likely to be found by forward
genetics.

The reverse genetic approach to unravel gene function starts
with the DNA sequence. Mutations within the gene are
induced and identified by various techniques and only subse-
quently is the mutant phenotype analyzed [1]. Reverse genet-
ics may be undirected or directed, the undirected approach

involving random mutagenesis, commonly by transposable
elements or by chemicals, the establishment of mutant collec-
tions, and the identification of mutations in the gene of inter-
est [2-5]. In contrast, directed reverse genetics is based on
techniques that allow for specific inactivation of a gene. These
include specific knockdown of gene activities through RNA-
mediated interference (RNAi) [6,7] and targeted gene disrup-
tion [8,9].

Both undirected and directed reverse genetic techniques have
certain advantages and drawbacks. Transposon-based muta-
genesis tends to be nonrandom because of the occurrence of
hotspots for transposon integration. The use of transposable
elements of different origin, such as P-elements and piggy-
Bac, which exhibit a different insertion bias, can partly cir-
cumvent this problem. However despite large-scale efforts,
the ultimate goal of covering the whole Drosophila genome
by insertion mutagenesis is far from being achieved [10,11].
Moreover, while null mutants of P-element-tagged genes (P-
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elements have the tendency to integrate 5' to a gene) can eas-
ily be generated by imprecise excision, piggyBac transposons
only excise precisely [10].

RNAI and small interfering RNA (siRNA) screens provide a
powerful tool to dissect the function of genes at a genome-
wide scale [12-14], but the technique is most easily applied to
cell cultures and is thus limited to cell-biological problems.
Large-scale RNAi screens in multicellular organisms have
been done only in C. elegans [15] and for technical reasons a
similar approach in Drosophila is not feasible.

Targeted gene knockout in Drosophila allows for generation
of both null as well as hypomorphic mutations [16]. However,
the technique is time-consuming and technically challenging
and hence not applicable on a large scale.

Random mutagenesis in reverse genetics generally relies on
well-established techniques and commonly used mutagens,
such as ethylmethansulfonate (EMS) [5,17] and N-ethyl-N-
nitrosourea (ENU) [18]. Those chemicals primarily induce
single-nucleotide polymorphisms, which can most efficiently
be detected by sequencing [19], by denaturing high-pressure
liquid chromatography (DHPLC) [5,17], or by enzymatic
cleavage of heteroduplex DNA with single-strand-specific
endonucleases such as Cel-I [18,20-22]. Mismatch-cleavage
analysis and DHPLC require special machinery and DHPLC
is not very well suited for high-throughput analysis.

Fast neutrons have also been used to introduce small DNA
lesions, which can simply be resolved by agarose electro-
phoresis after PCR amplification [23]. This kind of mutagen-
esis may be limited to seeds or to labs in the vicinity of a
reactor.

We reasoned that it would be worthwhile to establish a gener-
ally applicable reverse genetic technique based on an unbi-
ased and practicable random mutagenesis and an efficient
mutation-detection performed on standard laboratory equip-
ment. Here we introduce a novel mutagenesis protocol utiliz-
ing the cross-linking drug hexamethylphosphoramide
(HMPA) [24], streamlined fly genetics and high-throughput
fragment analysis on sequencers to demonstrate the feasibil-
ity of our reverse genetics approach.

Results and discussion

Fly genetics

There are two ways to handle mutagenized progeny. Either
large collections are established and maintained, which then
are systematically and continuously screened for mutations
of interest, or mutagenized progeny are screened directly and
only animals exhibiting a desired trait are kept. The first
method is in practice an F3 screen, which requires balancing
of mutagenized chromosomes and maintenance of many
stocks. This approach is far more labor-intensive than a
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simple F1 screen of progeny and thus is more suited to stock
centers. Moreover, balancer chromosomes have many DNA
sequence polymorphisms to wild-type chromosomes (our
unpublished data), which will interfere with detection of
mutagen-induced sequence polymorphisms.

To circumvent the inherent problems with balancers, we
devised an alternative genetic strategy, which had to fulfill the
following criteria. First, mutagenized chromosomes have to
be passed on in an unrecombined form such that mutations
cannot be lost. Second, the mutagenized chromosomes
should be brought into an isogenic background for mutation
detection. Third, for economic reasons stock-keeping should
be kept at an absolute minimum.

We generated a fly strain (KNF306) isogenic to our yw wild-
type laboratory strain but containing the same dominant
marker on the two major autosomes. Both chromosome 2 and
chromosome 3 are carrying white* marked P-element inser-
tions, which were chosen because whitet expression is
restricted to different subregions of the eye (Figure 1a). Chro-
mosome 2 is marked by an insertion in the CG31666 locus,
which results in white* expression only in the posterior part
of the eye. Chromosome 3 harbors an insertion in the pro-
moter of CG32111, and this transgene causes dorsal white*
expression. The combined expression patterns of both show a
'pie-slice' eye-color appearance (Figure 1a). Thus, the same
marker permits us to distinguish between linkage on chromo-
somes 2 or 3. Neither of the transgenes affects viability, and
the line can be kept as a homozygous stock.

Mutagenized chromosomes of strain KNF306 were passaged
only via males, which were mated to the parental yw strain
background. Thus, the marked autosomes remained unre-
combined and could be unambiguously assigned because of
the dominant character of the white* transgenes (Figure 1b).
Mutagen-fed Fo males were mass-mated and F1 males were
mated in single crosses (see Materials and methods). After 4
to 5 days, nonsterile F1 males were recovered, pooled in
groups of five, and their DNA extracted and analyzed. If a pool
gave a positive signal, the crosses were traced back and F2
progeny carrying the mutant chromosome (as judged by the
eye-color pattern) of each of the five crosses were individually
re-tested. If this re-test was positive, a single F2 male of the
respective cross was taken to establish a balanced stock. Non-
positive crosses were discarded.

Like any other genomic locus, the white* coding regions of
both transgenes constitute targets for mutagenesis, and
mutagenic events can be easily scored in the F1 progeny as a
loss of the characteristic expression pattern. As discussed
later, effectiveness of mutagenesis can be assessed from the
occurrence of white progeny, and as an internal control
mutation rates at the two loci should be comparable.

Genome Biology 2004, 5:R83
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Fly genetics. (@) The fly strain used in this study is isogenic to a yw standard lab strain, but carries neutral white* transgene insertions on the two major
autosomes. The P-element insertion on chromosome 2 localizes to the promoter of CG3/666 and the other transposon is situated 5' to CG32/// on
chromosome 3. The white* expression domains are restricted to the anterior and dorsal parts of the eye in the respective strains, and the patterns overlap
such that the genotypes can be unambiguously assessed from eye appearance. (b) The genetic scheme ensures that mutagenized FO chromosomes are
passed unrecombined, because they are transmitted via males only, and that flies carrying a mutation can easily be singled out on the basis of the eye
phenotype. The mutagenized flies are always crossed back to the parental wild type, and only chromosomes from F2 progeny carrying a confirmed
mutation are balanced.
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Table |
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Mutation rates induced by HMPA treatment as assessed from white- mutations at the transgene insertions on chromosomes 2 and 3

white* loci Brood Mutation rate (x 10-4) Mosaicism at white* loci
Both loci 2A + 2B and 3A 2.25

On chromosome 2 2A + 2B and 3A 2.68 1714

On chromosome 3 2A + 2B and 3A 2.0 1710

Both loci 2A + 2B 2.35

Both loci 3A 2.33

Numbers are based on |9 mutations recovered after screening of brood | has ceased. Two out of a total of 24 white- mutants (five mutants were
recovered while brood | was screened) were mosaic for the mutation. Mutations on chromosome 2 were slightly more common than mutations on
chromosome 3; brood-2- and brood-3-derived mutations were equally frequent.

The crossing scheme and analysis procedure illustrated was
optimized for autosomal genetics. We have generated another
strain, KNF307, which in addition carries X chromosomes
marked by a characteristic enhancer trap insertion at the omb
locus (data not shown). However, analysis of X-chromosomal
loci would require additional handling of F1 females or muta-
genesis of Fo females and hence we did not carry out X-chro-
mosomal screens.

Mutagenesis

EMS has been used as a deletion-inducing chemical in large-
scale screens [25], but unbiased evaluation of its properties
suggests that EMS-induced deletions are exceptional [26]. On
the other hand, the deletions found by Liu et al. [25] ranged
in size between 545 base-pairs (bp) and 1,902 bp and would
not have been detected by Greene et al. [26]. The cross-link-
ing carcinogen hexamethylphosphoramide (HMPA) has been
shown to predominately induce deletions that were either in
the range 2-315 bp or reached cytologically visible dimensions
[24]. As our analysis method restricted the size of PCR frag-
ments to about 800 bp, we chose HMPA as a mutagen,
because EMS-induced deletions are likely to affect at least one
of the primer-binding sites and would hence be undetectable.

We modified the original HMPA mutagenesis protocol to
administer a shorter, but more intense pulse of HMPA ([24],
see also Materials and methods). A dose was applied that
causes a similar rate of X-linked recessive lethals as standard
EMS treatment, but only moderate male sterility (Table 1 and
data not shown). We also did not add N,N-dimethylben-
zylamine, which in our hands potentiated the sterilizing activ-
ity of HMPA.

It has been reported that F1 progeny may exhibit mosaicism
for mutagenized tissue [27]. Mosaic flies could generate a pri-
mary positive signal, but might not transmit the mutated
gene. We have seen mosaicism at the white*loci and we have
found positive F1 pools that did not yield mutant F2 progeny
(Table 1 and data not shown). However, we were unable to

determine whether some of the primary positives were due to
mosaicism or to PCR artifacts.

Mutation detection

DNA from pools was prepared by a novel high-throughput
extraction protocol allowing for up to 2,000 PCRs per pool
(see Materials and methods). As HMPA is reported to induce
deletions as small as 2 bp and as a mutated allele is diluted 10-
fold as a result of our pooling of five flies, we decided to ana-
lyze PCR fragments on a sequencer offering maximal resolu-
tion and high sensitivity. We have also evaluated the "poison-
primer technique' which is reported to preferentially amplify
alleles with a deletion at the poison-primer binding site from
large pools [28]. However, the small deletion alleles we have
tested did not outperform the amplification of the wild-type
allele to the extent previously reported, implicating that the
technique is more suited to large deletions and not generally
applicable (data not shown).

PCR products were analyzed on either a gel-based or a capil-
lary sequencer (see Materials and methods). To increase effi-
ciency of mutation detection on gels, we pooled up to three
PCR products. These were labeled with different fluorescent
tags, partly because they were of similar size (Figure 2a).

Screening

The efficiency of HMPA mutagenesis could be assessed from
the rate of white- mutations at the transgenes on chromo-
somes 2 and 3. Overall, we found 24 mutations in about
62,700 male and female flies. Two flies were mosaic for the
mutations. Given that mosaicism can only be scored in eyes
and there only in nonoverlapping expression domains, the
mutation rates discussed below may be slightly underesti-
mated (Table 1). Male sterility was 25.4 %.

Aguirrezabalaga et al. [24] reported a mutation rate of 2.8 x
10-4at the vermilion locus scoring early and late progeny. The
rate reached 3.7 x 104 when only late progeny was regarded.
After a few rounds of screening we have stopped screening
early progeny (brood 1 flies, see Materials and methods),

Genome Biology 2004, 5:R83
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because we did not recover any white- mutation. As sperm
development takes up to 10 days [27], we also consider it
unlikely that brood 1 from our crossing scheme will yield
appreciable efficiency. Disregarding brood 1, we obtained an
average rate of 2.25 x 104 mutations at the white*loci, which
are about twice as large as the vermilion locus. Our mutagen-
esis procedure involving an overnight incubation with HMPA
rather than a 3-day incubation with HMPA and N,N-dimeth-
ylbenzylamine is therefore not much less efficient than the
original protocol.

There was no difference in the frequency of induced white-
mutations between brood 2 and brood 3 (Table 1). The small
difference between mutation frequency on the identical mini-
white genes located on chromosomes 2 and 3 may be attrib-
uted to statistical variance, to position effects, to different size
of the enhancers driving white* expression or to systemic
errors due to the smaller expression domain of the insertion
on chromosome 3.

The following additional parameters can be utilized to esti-
mate mutant recovery. The white gene for which the mutation
rate has been assessed encodes a protein of 688 amino acids
from an open reading frame (ORF) of 2,064 bp. We assume
that any deletion within the ORF would generate a null phe-
notype. Only 14 out of 31 HMPA-induced deletions selected at
the vermilion locus would have been scoreable by our PCR
approach, because the remaining 17 mutations were caused
by large deletions affecting both primer-binding sites [24].

We designed PCR primers for each gene to be scored such
that they encompass the first coding exon and the PCR prod-
ucts are between 450 and 807 bp in size. The average
weighted length of our PCR fragments was 710 bp (including
two primers of 20 nucleotides each). We thus expect one
mutation in 30,317 flies (1/(2.25 x 104 x 14/31 x (710 - 2 x
20)/2,064)) or one mutation in 6,063 pools, respectively.
Taking into account the fact that two mosaic flies may not
have transmitted (reducing the mutation rate to 2.0 x 104),
the estimate would be one mutation in 33,883 flies or one in
6,777 pools.

We have scored 16,902 F1 males at two to 11 loci and recov-
ered two transmitting mutations from about 20,900 analyzed
PCR reactions (see Additional data file 2). According to the
estimate we would have expected three.

The first mutation detected was a 41-bp deletion in the first
exon of CG15000, which during the course of this study
turned out to be the second exon of the dNAB locus (Figure
2¢, and see [29]). The deletion causes a frameshift and very
probably constitutes a null mutation. As shown in Figure
2a,b, the mutation was identified on a gel-based sequencer in
a pool of PCR products labeled with the fluorophore NED
(Applied Biosystems) and propagated in one of the five F2
crosses. The mutant chromosome is currently purified by

Genome Biology 2004,  Volume 5, Issue 10, Article R83

separating the CG15000/dNAB allele - easily traceable by a
restriction-fragment length polymorphism - from the white*
marker (P. Geuking and K.B., unpublished work).

Second, we detected a mutation in CG17367 on the capillary
sequencer (Figure 3a,b). The net 11-bp deletion (19-bp dele-
tion, 8-bp insertion) is situated in the first intron and 5' to the
start codon. The allele is viable over a deficiency uncovering
the CG17367 locus.

This study focused on implementing HMPA mutagenesis for
reverse genetics. As discussed above, HMPA efficacy has been
assessed from mutations at the white* loci, which have been
selected on the basis of phenotype rather than sequence.
Thus, our modified HMPA protocol may also prove to be val-
uable for forward genetic approaches. At the molecular level
we could also identify deletions in the white* genes (data not
shown), but we have not systematically investigated all of the
white- mutations.

Conclusions

While the analysis of PCR fragment-length polymorphisms
on our sequencers was very efficient, HMPA mutagenesis
turned out to be the limiting parameter. It is about 28-fold
less efficient than EMS mutagenesis when it is assumed that
all HMPA hits are deleterious (3.2 x 10-3 nucleotide substitu-
tions at the 1 kb awd locus [5] for EMS compared to 2.25 x 10
4 deletions per 2 kb white+ locus for HMPA), but mutagen
dose cannot be increased further because of the concomitant
increase in male sterility.

The new techniques that we have introduced increase the
diversity of the toolkit available to laboratories interested in
conducting reverse genetic screens. The pros and cons of the
critical parameters are next considered individually.

EMS or ENU versus HMPA as mutagen

HMPA-induced deletions are very likely to induce null muta-
tions when hitting an exon. EMS, on the other hand, prima-
rily induces GC-to-AT transitions, but is not well suited for
introducing small deletions. A considerable fraction of the
transitions will not affect protein function. In Arabidopsis,
about 44% of the mutations after EMS mutagenesis were
silent, 51% were missense mutations and 5% were nonsense
mutations [26]. Similarly, in a zebrafish ENU screen, only 15
out of 270 mutants (5.5%) were truncation mutants [18,19].
Recently, Guo et al. [30] determined the tolerance of a pro-
tein to random amino-acid changes and determined that
about two thirds of amino-acid substitutions were neutral
and only 34% were disruptive. Assuming that all truncation
mutations are deleterious, it can be concluded that about 22%
(34% of 51% plus 5%) of EMS-induced mutations negatively
influence protein function. Of those amino-acid substitutions
an unknown fraction will retain partial function. Thus, allelic
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(a) HEX NED FAM

T ——— Cﬁ\bAE;

. — i ——

Deletion R6H8

L -

WT ATGGGCGGTGATGATGTGCAGCAGTTGTACGACGCCGGCGAGGAGGAGTTCCTCGAGATC
R6HS8 ATGGGCGGTGATGATGTGCAGCAGTTGTACGACGCCGGCGAGGAGGAGTTCCTCGAGATC
WT ATGGCCCTGGTCGGCATGGCTTCCAAGCCACTTCACGTCCGCCGGCTGCAGAAGGCGCTG
R6H8 ATGGCCCTGGTCGGC - =~ === === - - - - - o - - oo m oo oo m oo oo — o GCTG
WT CACGAGTGGGCCAACAATCCGGGTCTCTTCCAGGGACCCATGATGCCGCATCTGG
R6HS8 CACGAGTGGGCCAACAATCCGGGTCTCTTCCAGGGACCCATGATGCCGCATCTGG

Figure 2

Isolation of a CGI15000/dNAB null allele. (a) Three differently labeled PCR reactions were pooled and concomitantly analyzed on an ABI 377 sequencer.
Green, HEX-labeled white fragment (control reaction); yellow, NED-labeled CG/5000 products; blue, FAM-labeled CG33273/DILP5 fragment. Color
channels are not completely tight and strong products exhibit translucence. Arrows at the screenshot and the magnified inset mark a shorter product
specific for one reaction. (b) One F2 fly from each cross (| to 5) of the primary positive pool (P) was analyzed in the context of further Fl screening.
Number 5 harbors the deletion allele identified in the pool. The larger, but also specific, fragment in the pool might represent a PCR artifact. The specific
band marked by an asterisk turned out to be a PCR artifact as well. (c) Genomic organization of wild-type (WT) and mutant dNAB/CG/5000. Exons are
depicted and coding region is symbolized by filled rectangles. Small half arrows indicate primer-binding sites of the PCR-amplified region. The deleted
region is filled yellow and the sequence of the wild-type and the mutant alleles starting at an ATG originally annotated as the first codon in the CG/5000
OREF are aligned below.
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WT AGATCGTTGCACATCGGCCCAATATATAATACATATAACAACTAAACGATCAAAACGATC
R32F3 AGATCGTTGCACATCGGCCCAATATATAATACATATAACAACTAAACGATCAAAACGATC
WT AGCAATGAGGCTGTTTTTGCGAAGTAACTCGAC-------- TAAACCGCGATCGCATTGT
R32F3 AGCAATGAGGCTGTTTTTGCGAAGTAACTCGACCGAGTAAC- -~~~ =~ ~=--~~--- -~
WT TTGCCTAACATTTCAG
R32F3 TTGCCTAACATTTCAG

Figure 3

Identification of an HMPA-induced deletion at the CG17367 locus. (@) Electropherograms of the primary positive pool (top), of one of the four wild-type
F2 flies (center), and of a mutant F2 fly (bottom) are shown. The x-axis shows fragment size in bp; the y-axis, arbitrary intensity units. For unknown reasons
the deletion allele runs faster when amplified from pool DNA than from a heterozygous fly. (b) Genomic organization of CG/7367/LNK. Coding (filled
rectangles) and noncoding (open) exons are shown and primer-binding sites are indicated by the half arrows. The deletion/insertion is situated 16 bp 5' to
a splice site of the first intron, as can be ascertained from the sequence alignment.
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series can be generated through EMS [22] and the generation
of partial loss-of-function alleles may be a potential asset of
EMS mutagenesis. Overall, HMPA is maximally sixfold less
effective at inducing loss-of-function mutations (22% of 28%)
than a high dose of EMS, but this disadvantage is compen-
sated for by a more straightforward mutant analysis.

Mutant analysis

Mutant analysis depends critically on the mutagen and vice
versa. Currently, the most effective way to screen for EMS-
induced polymorphisms is the TILLING approach, which,
however, requires a second round of PCR, specialized chem-
istry of the secondary primers, and an enzymatic reaction on
the secondary product. TILLING cannot easily be performed
on standard sequencers: we have tried to analyze Cel-I
cleaved fluorescent heteroduplex DNA on an ABI 3730
sequencer, but did not obtain satisfactory sensitivity (data not
shown). HMPA induced mutations can be detected by frag-
ment-length analysis of primary PCR products on standard
sequencers. Hence, screening for small deletions reduces
PCR costs by a factor of 2 and spares the effort of secondary
assays.

Mutant handling

Mutant handling is independent of the mutagenesis protocol
and may be combined with either EMS or HMPA mutagene-
sis. For example, TILLING can be performed both on large
mutant collections and on a continuous supply of freshly gen-
erated mutants.

Finally, given the genotoxic properties of HMPA in both
prokaryotes and higher eukaryotes [31,32], both the muta-
genesis and the mutation-detection procedures described in
this study may be directly transferred to other model
organisms.

Materials and methods

HMPA mutagenesis

About 150 1-3-day-old Fo KNF306 (y, w; CG31666-white*;
CG32111-white*) males were starved for 4 to 6 hours in a plas-
tic bottle containing three layers of water-soaked LS14 filter
papers (Schleicher & Schiill). A 1.1 ml sample of HMPA solu-
tion (5% sucrose, 0.1 M NaPO,, 25 mM HMPA, optional
0.05% bromophenol blue) was carefully applied to the filters
using a syringe with along needle (21G2) inserted through the
foam stopper. The starved males were exposed to the HMPA
solution overnight. Bromophenol blue does not affect muta-
genicity detectably, but stains the guts of the flies blue and
thus enables mutagen uptake to be monitored and controlled.
Freshly eclosed flies do not ingest enough mutagen. HMPA-
contaminated plasticware must be disposed of by thermal
waste treatment.

http://genomebiology.com/2004/5/10/R83

Fly work and crossing procedure

In six bottles containing standard corn medium, each 25
mutagenized KNF306 Fo males (Figure 1a) were allowed to
mate to 15 to 20 virgin yw females (brood 1). After 2 days
males were taken out and crossed to yw virgins in new bottles
(brood 2A) and this cross was transferred after 3 days (brood
2B). After another 2 days Fo males were recovered and mated
to fresh yw virgins (brood 3A). F1 males of broods 2A, 2B and
3A were collected and mated individually to three yw virgins
in about 650 separate crosses per week. Five hundred non-
sterile males were removed after 4 to 5 days and five males
were pooled for DNA extraction. Fertilized females were
returned, and unsuccessful crosses were discarded. If analysis
of PCR fragments indicated a primary positive pool, crosses
were traced back and kept for further analysis; the other
crosses were discarded. From each of the five crosses of pri-
mary positive pools a single F2 male or female containing the
chromosome of interest as manifested by the typical eye-color
pattern was collected for DNA extraction. If PCR analysis
yielded a secondary positive result in one of the five F2 flies, a
single F2 male containing the chromosome of interest was
taken out from the respective cross for balancing (Figure 1b).

The whole crossing scheme requires 6 weeks and was organ-
ized such that a mutagenesis was performed every second
week (see Additional data file 1).

Large-scale DNA extraction, PCR and fragment
analysis

DNA was extracted in bulk by squishing pools of each five flies
through mechanic force in a vibration mill (Retsch MM30)
programmed to shake for 20 sec at 20 strokes per second.
Flies were placed into wells of a 96-well deep-well plate. Each
well was then filled with 500 pl squishing buffer (10 mM Tris-
ClpH 8.2, 1 mM EDTA, 0.2% Triton X-100, 25 mM NacCl, 200
ug/ml freshly added proteinase K) and one tungsten carbide
bead (Qiagen). The deep-well plate was then sealed with a
rubber mat (Eppendorf) and clamped into the vibration mill.
(Tungsten carbide beads can be recycled: after an overnight
incubation in 0.1 M HCl and thorough washing in double-dis-
tilled water (ddH,0O) the beads were virtually free of contam-
inating DNA.) Debris was allowed to settle for about 5 min
and each 50 to 100 pl of supernatant were transferred into a
96-well PCR plate. The reactions were incubated in a thermo-
cycler for 30 min at 37°C, and finally for 5 min at 95°C to heat-
inactivate proteinase K.

A Tecan pipeting robot was used for PCR setup. To 5 pl of
template DNA, master-mix was added and PCR was per-
formed on an MJR thermocycler that was integrated into the
robot. The master-mix per reaction was composed of 20.48 pl
ddH,0, 0.6 ul MgCl, (25 mM), 0.6 pl ANTPs (10 mM), 0.1 pl
fluorescently labeled primer 1 (100 uM), 0.1 ul primer 2 (100
uM), 0.12 ul hot-start Taq polymerase (HotStar, Qiagen, 5 U/
ul), 3 ul 10x buffer containing MgCl, (Qiagen). Cycling
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conditions were 95°C 15 min, 35 x (95°C 20 sec, 60°C 30 sec,
72°C 1 min), 72°C 2 min, 4°C.

Three differently labeled PCR reactions (oligos were 5'
labeled with Applied Biosystems' fluorophors FAM, NED and
VIC, respectively) were then pooled. To facilitate sizing of
fragments we also added ROX1000 size marker (Applied Bio-
systems) to five DNA pools. Samples of 1.5 pl pooled DNA
were mixed with 1.5 ul loading buffer (consisting of one part
25 mM EDTA pH 8.0 with 50 mg/ml blue dextran and five
parts HiDi formamide (Applied Biosystems)). The reactions
were incubated for 3 min at 95°C, cooled down, and 1.5 pul
each were loaded onto a 96-lane ABI 377 sequencer. Run con-
ditions were as follows: 1 h pre-run at 1,000 V, 35 mA, 51°C
and 10 h run at 2,400 V, 50 mA, 51°C. Gel images recorded at
four different color channels by the GeneScan software were
analyzed visually.

Slight modifications to this protocol were introduced for anal-
ysis performed on an ABI 3730 capillary sequencer. First,
DNA was diluted 20-fold before PCR. Second, after PCR,
reactions were diluted 100-fold and 2 pl of diluted PCR prod-
ucts were added to each 15 pl HiDi formamide (Applied Bio-
systems). PCR product was diluted on a Tecan pipeting robot.
Diluted DNA was denatured for 2 min at 95°C before analysis.
Sample injection (10 sec) and analysis (12,000 scans) was
done according to standard protocols. Identification of dele-
tion fragments was then performed by visual inspection of
gel-images generated by the Data Collection Software (Array
Viewer option, Applied Biosystems). No internal size stand-
ard was used, as deletion fragments were identified relative to
wild-type PCR product.

Additional data files

The following additional files are available with the online
version of this paper. Additional data file 1 contains the time
schedule of mutagenesis, fly work, and screening. The whole
procedure takes six weeks and is organized such that one
mutagenesis has to be performed every second week to gener-
ate a continuous supply of mutagenized progeny. Additional
data file 2 contains information on the 10 other genes scored.
Gene names, fluorescent labels, fragment lengths and the
number of analyzed F1 flies are given. Labeled primers were
ordered from Applied Biosystems. Primer sequences are
available upon request.
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