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Abstract

In major depressive disorder, women exhibit higher lifetime prevalence and different
antidepressant response rates than men, which illustrates the importance of examining individual
differences in the pathophysiology of depression and therapeutic response. In recent years, the
consideration of sex in related preclinical research has thus gained interest—particularly in light of
novel evidence for rapid-acting antidepressants. Notably, the literature recently revealed a higher
sensitivity of females to the antidepressant effects of the N-methyl-D-aspartate receptor antagonist
ketamine, in both baseline and preclinical conditions. Combined with its fast-acting and relatively
sustained properties, this evidence highlights ketamine as a particularly interesting therapeutic
alternative for this sensitive population, and supports the value in considering sex as a critical
factor for improved individualized therapeutic strategies.

Introduction

As the global burden of depression continues its rise as the leading cause of disability
worldwide [1], the urgent need for more effective treatments is dire. A new wave of
excitement, however, has been generated by recent discovery that the N-methyl d-aspartate
receptor (NMDAR) antagonist, ketamine, rapidly relieves depressive symptoms and suicidal
ideation, particularly amongst those with treatment-resistant depression [2]. Since then, a
significant amount of effort has gone into understanding the underlying mechanisms by both
preclinical and clinical researchers alike, with the hope of developing novel rapid-acting
treatments effective in a broader range of patients [2].

In the era of personalized medicing, a greater focus on identifying biomarkers or predictors
of rapid antidepressant response to ketamine has emerged [3], but despite the well-
established female preponderance in depressive disorders [1] and sex differences in
antidepressant efficacy [4], sex has yet to be investigated as a potential moderating variable.
Much like genetic and environmental factors, sex is a naturally-occurring disease and
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treatment modifier [4,5], such that factors either protecting against disease or enhancing
treatment response in one sex may indicate prevention or treatment strategies in the other sex
[6]. This review will highlight recent preclinical evidence demonstrating sex differences in
the rapid antidepressant-like response to acute low-dose ketamine, and discuss how a variety
of factors including stress, hormonal state, context, and the presence of baseline sex
differences, significantly contribute to behavioral or molecular readout following ketamine
treatment. This new evidence encourages that sex be seen as an important factor influencing
the individual’s response to antidepressant treatment rather than a phenotypic dichotomy.

Sex differences in effects of ketamine under baseline conditions

Sex differences in the rapid antidepressant-like effects of ketamine were first reported only a
few years ago by work from our lab revealing the heightened sensitivity of female rats to
these effects compared to males. These conclusions were demonstrated by the lower dose
(2.5 mg/kg) required to rapidly reduce immobility in the forced swim test (FST) and latency
to feed in the novelty-suppressed feeding test (NSFT) in naturally-cycling female rats
compared to their male counterparts [7]. This finding, using FST measures as a behavioral
readout, has since been replicated by our lab in rats [8], and corroborated in mice [9,10].

While studies conducted in mice to date have focused solely on intact females, our work in
rats demonstrated that this heightened female sensitivity required cyclic fluctuations of both
gonadal estradiol and progesterone in female rats [7,11]. This finding has significance, as we
recently reported that cyclic progesterone administration to males was sufficient to
significantly enhance their sucrose preference following the same acute low-dose of
ketamine to which they have repeatedly been non-responsive [7,8,11]—providing an
important example of how one facilitator of treatment response in females may enhance
response in males. Conversely, testosterone does not influence male sensitivity to low-dose
ketamine in rats in measures of hedonic behavior, but blocks hedonic response of naturally-
cycling female rats to low-dose ketamine, likely via disruption of normal cyclic hormonal
fluctuations [11].

The higher sensitivity of females to low-dose ketamine interestingly does not simply
translate to greater activation of known molecular mediators mammalian target of rapamycin
(mTOR) in the medial prefrontal cortex (mPFC), and eukaryotic elongation factor 2 in the
hippocampus [7], suggesting that behavioral sex differences in response to ketamine extend
beyond differential sensitivity at the molecular level, but rather involve distinct mechanisms
in a dose-dependent manner.

Interestingly, daily injections of 10 mg/kg ketamine in mice for 21 days induce anti- or pro-
depressant-like effects in males or females, respectively [12], which, while still potentially
linked to the females’ higher sensitivity to ketamine, highlights the importance of
administration paradigm in preclinical studies and warrants further investigations into the
interaction between the treatment regimen and ketamine’s sex-dependent behavioral
outcome.
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Sex differences in antidepressant response under stress

Although substantial data on brain dysregulations in human depressed subjects are now
available, preclinical studies have brought a detailed understanding of their underlying
molecular mechanisms and response to therapeutic interventions. In this context, repeated
exposures to stress triggers behavioral, molecular, and functional alterations resembling
depressive symptoms observed in humans [13]. Notably, because several key mediators of
the antidepressant response are sexually biased at baseline or following stress itself, it is
critical to first investigate their regulation under chronic stress to better understand how
males and females differ in response to antidepressants under pathological conditions.

Sex differences in response to chronic stress

Stress triggers a fast endocrine response characterized by the release of glucocorticoids,
which, in the brain, directly control neurotransmission at multiple levels [14]. In addition to
being highly dependent on the nature and intensity of the stressor, the consequences of this
regulation are affected by both sex and hormonal fluctuations. In male rodents, prolonged
exposure to stress or glucocorticoids impairs learning and memory, cognitive performances,
and induces anxiety and depressive-like behaviors [13-15], whereas in females, the effects
of chronic stress differ in a stress-specific manner [16,17]. For instance, chronic social
defeat, restraint, isolation, or unpredictable stress, provoke learning and memory
impairments as well as anxiety and depressive-like behaviors in male rats and mice [13],
whereas chronic restraint stress induces memory deficits in male but not female rats [18,19].
Similarly, males generally appear more sensitive to the development of anhedonia following
chronic mild or isolation stress [8,18,20], whereas females are more sensitive to induction of
depressive-like symptoms by subchronic variable stress [21].

These behavioral sex differences are paralleled by coherent adaptations in neuronal activity
underlined by dendritic and spine plasticity in key structures such as the hippocampus and
mPFC. In these structures, chronic stress generally results in spine loss in both rats and mice
[8,22], with concomitant down-regulation of synaptic proteins including synapsin I, PSD-95,
and GIuR1 [8,23,24], and reduced synaptic function and depressive-like behaviors, as
observed in human depressed patients [25]. These effects are specific to males, however, as
females show greater spine density in hippocampal CA1 [26,27] and infralimbic neurons
projecting to the basolateral amygdala [28]. Notably, we recently found that chronic
isolation stress down-regulates spine density and synaptic proteins in the mPFC of both male
and female rats [8], indicating that sex differences in stress-induced spinogenesis in the
mPFC are stress-specific. Furthermore, these sex differences are also species-specific as
while observed in rats, both male and female mice exhibit hippocampal spine loss following
chronic restraint stress [22], requiring further consideration when investigating sex-
differences in the effects of ketamine on hippocampal spinogenesis.

Despite the lack of data in females, glutamatergic neurotransmission is critically involved in
these events, as chronic stress-induced dendritic atrophy is prevented by NMDAR
antagonists in males [29-31]. Importantly, stress-induced spine alterations can recover
following interruption of the stress [32], in addition to illustrating the highly dynamic nature
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of neuronal and synaptic plasticity, opens the way for novel therapeutic intervention, and
warrants targeting the glutamatergic neurotransmission for antidepressant treatment.

Sex differences in antidepressant response following chronic stress

Since the original detailed description of ketamine’s antidepressant effect in a preclinical
model [23], the study of its underlying molecular mechanisms led to the development of a
model whereby acute ketamine—through NMDAR inhibition on GABAergic interneurons—
increases synaptic strength and subsequent activation of postsynaptic neuroplasticity-
promoting pathways such as mTOR and brain-derived neurotrophic factor (BDNF), which,
when coupled with extrasynaptic NMDAR inhibition, enhances synaptogenesis [2]. This
model, however, originates from studies conducted solely in males. In light of the
aforementioned sex differences in synaptic plasticity following chronic stress, and the higher
sensitivity of stress-naive females to ketamine’s antidepressant-like effects when compared
to males, it is difficult to directly extrapolate these findings to both sexes.

Accordingly, while acute ketamine can reverse chronic stress-induced depressive-like
behaviors in male rats and mice, its effects differ in females (Table 1). For instance, although
10 mg/kg ketamine reduces chronic mild stress-induced behavioral despair in the FST 24
hours after acute treatment in both male and female mice, this effect is more pronounced in
females but lasts longer in males [9], suggesting that the mechanisms underlying
maintenance of ketamine’s lasting antidepressant-like effects in chronically stressed animals
may be sexually biased. Alternatively, this sex discrepancy could result from the activation
of sexually-distinct molecular mechanisms. Accordingly, we recently analyzed the dose-
dependent effects of acute ketamine on spine density on apical dendrites of prelimbic
pyramidal neurons of the socially-isolated male and female rat mPFC [8]. Similar to
unstressed rats, a single dose of ketamine at 5 but not 2.5 mg/kg reversed isolation-induced
behavioral despair in males, whereas both doses were effective in females [8]—findings
coherent with the higher female sensitivity to ketamine’s antidepressant-like effects [7,11].
Consistent with the current model for ketamine’s effects on spinogenesis, ketamine reversed
the stress-induced spine loss in the male mPFC only at the 5 mg/kg dose, associated with
increases in synapsin I, PSD-95, and GIuR1. In females, however, neither dose affected
synaptic proteins expression or spine density within the mPFC, despite behavioral
antidepressant-like effects [8]. Although pharmacokinetic differences or stress-specificity
cannot be ruled out, these findings indicate that the molecular mechanisms underlying the
reversal of stress-induced depressive-like behaviors differ between sexes.

We do possess several elements of interest for such alternative mechanisms, originating from
the dependence of females’ higher sensitivity to ketamine on estrogen, progesterone, and
hippocampal BDNF [11]. First, hippocampal spinogenesis is markedly influenced by
ovarian hormones, and as such varies across the estrous cycle [33]. Second, BDNF is a
critical regulator of the antidepressant and spinogenesis-enhancing effects of ketamine in the
mPFC [34]. Interestingly, although controversial, multiple studies report differential stress-
induced hippocampal BDNF regulation between male and female rodents [35-37], which
places hippocampal BDNF as a potential critical mediator of sex differences in sensitivity to
both the induction of a depressive-like state, as well as response to ketamine.

Curr Opin Behav Sci. Author manuscript; available in PMC 2018 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Saland et al.

Page 5

While behavioral responses to low-dose ketamine discussed thus far are generally consistent
between rats and mice, they can vary between strains. In mice, for example, while
ketamine’s antidepressant-like effects can be observed for up to 2 weeks [38], they dissipate
by 7 days post-treatment in the male CD-1 strain [39]. Similarly, both male and female ICR
mice exhibit an antidepressant-like response to acute 10 mg/kg ketamine, but not 5 mg/kg
[40], a dose effective in C57BL6/J mice (Table 1). Moreover, ketamine dose-dependently
reduces immobility in the FST in Wistar-Kyoto female rats but not in their relative control
Wistar strain [41]. Although the non-response of Wistar rats could result from a flooring
effect, these studies illustrate the need for an appropriate selection of strain based on study
design. The Wistar-Kyoto strain, for instance, meets several criteria for modeling treatment-
resistant depression [42], and given the interest in ketamine’s efficacy in treatment-resistant
patients [43], represents an interesting choice for deciphering ketamine’s potential in this
population.

Pharmacokinetic considerations and relevance to clinical populations

Once administered, ketamine is predominantly N-demethylated into norketamine (NK),
which is further transformed into dehydronorketamine (DHNK) and six diastereomeric
hydroxynorketamine (HNK) metabolites [44]. As a highly lipophilic, weak base, ketamine is
rapidly distributed to the brain where it readily penetrates the blood-brain barrier via passive
diffusion, along with its pharmacologically active metabolites—albeit to a slightly lesser
extent as a result of greater hydrophilicity (SK Saland et a/., unpublished; [10,45]). As a
prerequisite, ketamine’s therapeutic efficacy in a given individual is limited by the
availability of unbound drug (and/or metabolites) present at its relevant site(s) of action
within the brain, making pharmacokinetic processes fundamental in understanding the
heterogeneity in treatment response within and between sexes. Importantly, sex is a variable
that influences nearly all pharmacokinetic processes—absorption, distribution, metabolism,
and elimination—which may or may not ultimately influence treatment response [6].

Preclinical sex differences in ketamine pharmacokinetics

To this point, recent preclinical work has found that higher HNK, but not ketamine or NK,
levels are observed in the brain of female mice following acute administration of 10 mg/kg
ketamine (7.p.), in addition to greater female behavioral sensitivity to ketamine’s
antidepressant-like effects when compared to males [10]. Excitingly, further experiments
showed that systemically administered HNK is able to cross the blood-brain barrier and
elicit antidepressant-like activity in mice without inducing ketamine-like side effects.
However, sex differences were not examined in this case, so it is unclear whether behavioral
sensitivity to HNK differs between males and females. Here, it should be noted that females,
but not males, exhibited an antidepressant-like response to 3 mg/kg ketamine, whereas both
sexes responded to the 10 mg/kg dose used for pharmacokinetic analysis. Therefore, a direct
association between greater HNK levels and enhanced female antidepressant-like response
to ketamine cannot be conclusively inferred. Interestingly, new findings from our lab
demonstrated greater ketamine and NK exposure in the plasma and brain of cycling female
versus male rats following 2.5 mg/kg ketamine—a dose behaviorally effective in females but
not males—with regional differences observed when the mPFC and hippocampus were
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examined independently (SK Saland et a/., unpublished). These findings further suggest
species differences in not only behavioral, but also pharmacokinetic parameters following
low-dose ketamine exposure, and highlight the need for pharmacokinetic analysis across
multiple behaviorally-relevant doses across species in both sexes.

Human sex differences in ketamine pharmacokinetics and relationship to clinical response

Surprisingly, very little evidence exists regarding sex differences in ketamine
pharmacokinetics in humans, primarily owing to a lack of studies investigating such effects.
However, Zarate and colleagues (2012) recently identified modest sex differences in
metabolism of low-dose ketamine in MDD and bipolar patients, where females displayed
greater plasma levels of DHNK and HNK4a/c metabolites compared to males—however,
these differences had no association with treatment response, and no sex differences in
antidepressant response were observed. In fact, HNK was negatively associated with
treatment response in bipolar depression patients (independent of sex) [46], suggesting that
pharmacokinetic sex differences may not actually impact treatment response in clinical
depression. Of note, hormone levels were not controlled for in these studies, which may
have obscured potential differences in clinical response between sexes. These observations
are likely dose-dependent, however, as 20% greater ketamine and NK clearance and lower
drug/metabolite concentrations are observed in women than men following ketamine
infusion at a higher dose [47]. These sex differences were also reflected at the behavioral
level in healthy men and women, with greater effects on cardiac output and heat pain-related
indices in men compared to women [48]. Together, the limited clinical data available do not
currently support sex differences in rapid antidepressant-response to acute low-dose
ketamine; however, preclinical evidence discussed herein may warrant further investigation
through the use of proper experimental design and controls for within- and between-sex
differences in hormone levels.

Possible explanations for sex- and species-specific pharmacokinetic
differences—While underlying factors responsible for these varying differences in
ketamine metabolism observed between males and females remain unknown, sex differences
in hepatic expression and activity of ketamine-metabolizing cytochrome P450 enzymes are
well-known [49]—and subject to hormonal regulation by estrogen, progesterone and
testosterone, which also happen to be substrates of several P450 enzymes responsible for
ketamine metabolism [6,49]. As well, physiological differences influencing xenobiotic
distribution, metabolism and clearance (i.e., body weight, adipose tissue levels and
distribution) are present between males and females of a variety of species [6]. Ultimately,
whether sex-dependent pharmacokinetic processes contribute to differences between males
and females in ketamine’s antidepressant response is unclear, but the evidence strongly
supports their consideration both preclinically and clinically. Likewise, non-negligible
pharmacokinetic-related species differences have been highlighted herein, encouraging
further examination to better translate findings between rodents and humans—an
appreciable barrier currently hindering translational neuroscience.
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Conclusions

In this review, we discussed the recent advances on sex differences in antidepressant
response, while focusing on the novel fast-acting drug ketamine. The increasing inclusion of
females in animal models of depression and antidepressant response in the recent years
revealed sex-specificities reflected in the case of ketamine by an overall higher sensitivity of
females to its antidepressant properties. These observations, however, aren’t consistent, but
rather depend on a variety of additional factors including hormonal state, context, and most
importantly the presence of baseline sex differences likely to interfere with the behavioral or
molecular readout following ketamine treatment. It becomes important to investigate the
multiple factors influencing one’s behavior together, revealing the advantage of an
individualized approach over a group-based strategy (Figure 1). Indeed, the integration of
sex as covariate among other factors would bring preclinical experimental designs closer to
the reality of the clinical population’s heterogeneity. Leveraging this heterogeneity in
preclinical studies would thus help improve the translatability from preclinical to clinical,
and ultimately promote our understanding of sex and individual differences in antidepressant
response.
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Highlights
Ketamine’s antidepressant effects in preclinical models are sexually different
The higher sensitivity of females to ketamine is modulated by hormonal fluctuations
Ketamine response is controlled by interactions between sex, hormones, and context
Sparse clinical consideration of sex differences limits translation from preclinical

Greater consideration of sex would help improve individualized therapeutic approaches
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Conceptual framework for an individualized multi-domain analysis of antidepressant
response, applied to sex differences in anti-anhedonic effects of ketamine (as discussed
throughout this review). In this diagram, key findings on the current state of knowledge of
sex differences in ketamine’s effects on hedonic behaviors across three primary domains of
investigation (“Behavioral correlates”, “Molecular correlates”, and “Pharmacokinetics™) are
depicted at three main study levels (“Baseline”, “Preclinical”, and “Clinical”). Furthermore,
each level x domain combination is summarized with (black background) and without
(white background) ketamine treatment, thereby accounting for baseline sex differences
when analyzing the drug’s effect(s). Note that all changes in the “Ketamine” category refer
to comparisons with vehicle-treated controls (“Vehicle” category of the same “level”).
Despite a previous sparsity in experimental evidence, growing preclinical research further
characterizes the similarities and inconsistencies in sex differences in the effects of ketamine
between rodents and humans across the three study levels defined (baseline, preclinical, and
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clinical). In this example, for instance, a parallel comparison reveals a consistent sex
difference in ketamine-induced spinogenesis in rats between baseline and a preclinical
model, whereas such a comparison can be limited either by the presence of a sex difference
in the preclinical model itself (as seen for the development of anhedonia in males but not
females, “Behavioral correlates” domain), or by the absence of data on eventual sex
differences (as seen in the “Pharmacokinetics” domain). Moreover, this example also
illustrates the missing consideration of sex differences in clinical populations—both in
vehicle- and drug-treated groups—that further limits the translation from the preclinical to
clinical level and thus represents a significant barrier to progress in individualized treatment
approaches. For each description, corresponding references are listed in the lower right
corner. CI/F: oral clearance, DHNK: dehydronorketamine, HNK: hydroxynorketamine,
HPC: hippocampus, K: ketamine, MDD: major depressive disorder, mPFC: medial
prefrontal cortex, NK: norketamine.
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