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Abstract: Renal cell carcinoma (RCC) is a heterogeneous cancer often showing late symptoms.
Until now, some candidate protein markers have been proposed for its diagnosis. Metabolomics
approaches have been applied, predominantly using Mass Spectrometry (MS), while Nuclear
Magnetic Resonance (NMR)-based studies remain limited. There is no study about RCC integrating
NMR-based metabolomics with transcriptomics. In this work, 1H-NMR spectroscopy combined with
multivariate statistics was applied on urine samples, collected from 40 patients with clear cell RCC
(ccRCC) before nephrectomy and 29 healthy controls; nine out of 40 patients also provided samples
one-month after nephrectomy. We observed increases of creatine, alanine, lactate and pyruvate, and
decreases of hippurate, citrate, and betaine in all ccRCC patients. A network analysis connected
most of these metabolites with glomerular injury, renal inflammation and renal necrosis/cell death.
Interestingly, intersecting metabolites with transcriptomic data from CD133+/CD24+ tumoral renal
stem cells isolated from ccRCC patients, we found that both genes and metabolites differentially
regulated in ccRCC patients belonged to HIF-α signaling, methionine and choline degradation, and
acetyl-CoA biosynthesis. Moreover, when comparing urinary metabolome of ccRCC patients after
nephrectomy, some processes, such as the glomerular injury, renal hypertrophy, renal necrosis/cell
death and renal proliferation, were no more represented.
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1. Introduction

Kidney cancer is among the 10 most frequently occurring cancers in Western communities
(approximately 273,000 new cases each year diagnosed worldwide, of which 102,000 in Europe).
Approximately 90% of all kidney cancers are renal cell carcinomas (RCC). Smoking, overweight,
obesity and germline mutations in specific genes are established risk factors for RCC. Hypertension
and advanced kidney disease, which makes dialysis necessary, also increase RCC risk [1].

This tumor is morphologically and genetically heterogeneous and symptoms often occur relatively
late in the disease progression. The prognosis is also variable; metastatic or recurrent RCC usually
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indicate poor prognosis with rare long-term survival [2–4]. Thus, there is a huge interest in identifying
RCC specific biomarkers, early and easily detectable or able to assess the response to the therapy
strategies [5].

The “-omics” technologies, genomics, proteomics, and metabolomics, have a great potential to
extensively and deeply describe the response of living systems to intrinsic or extrinsic perturbations
at levels of genes, proteins and metabolites [6]. Some studies have investigated RCC using omics
technologies as gene expression, copy number and/or methylation analyses [7–11]. An extensive
integrative analysis using these technologies has also been performed recently on RCC [12]. These
omics studies led to the identification of pathways and biological processes involved in the RCC, such
as PI3K-AKT-mTOR signaling, the p53-related pathways and mRNA processing. Moreover, various
studies have been undertaken to search for candidate protein markers in RCC [13,14].

Metabolomics based on Nuclear Magnetic Resonance spectroscopy (NMR) of biofluids allows the
simultaneous measurement of endogenous metabolites, reflecting the biochemical fingerprint of the
organism. Multivariate statistical analyses applied on spectroscopic data aid to point out metabolic
signatures of a specific status (pathology or treatment), helping to find appropriate biomarkers. Urine
represents the ideal biofluid for investigating kidney dysfunctions; it can be collected frequently, easily,
and noninvasively, and requires minimal sample preparation [15–18].

RCC diagnosis has been already approached using metabolic profiling of tissue, serum, and urine
samples, predominantly through Mass Spectrometry (MS) measurements.

RCC metabolic signature is characterized by alterations in metabolites related to energy metabolic
pathways, particularly glycolysis, amino acid and fatty acid catabolism that are important for cell
proliferation [16,19–21]. However, NMR-based studies remain limited. To our knowledge, there are
no studies that integrate NMR-based metabolomic data with transcriptomic data obtained from clear
cell RCC (ccRCC) patients. In the present study, 1H-NMR spectroscopy was used to examine the
metabolome profile of urine samples in order to search alterations specific of patients with ccRCC
compared to healthy controls; samples from some patients one-month after nephrectomy were also
collected. Spectra were analyzed using multivariate statistical analysis techniques such as Principal
Component Analysis (PCA) and Orthogonal Partial Least Squares (OPLS-DA). Then, metabolomic data
were integrated with transcriptomic data obtained from CD133+/CD24+ cancer stem cell population of
ccRCC that shared some stem cell-like features, including in vitro self-maintenance and differentiating
capabilities. They can also regenerate tumor cells in vitro and induce angiogenesis in vivo [22].

2. Experimental Section

2.1. Sample Collection

Midstream sample of the second morning urine samples were collected from 40 ccRCC patients
before partial nephrectomy (ccRCC-BN), 9 RCC patients after nephrectomy (ccRCC-AN) and 29 healthy
controls (HC). Patients and controls were in the age range of 62 ˘ 11.6 and 56 ˘ 5.8 years, respectively,
at the time of the study (Table 1). Of the 40 patients, 18 had a histological renal grading of G1, 11 had
a grading of G2 and 11 of G3, according to the Fuhrman grade classification. Healthy subjects (HC)
were males and females (21 and 8, respectively, at the time of the study) with no declared pathological
condition and negative urine analysis.

Urine samples were collected in a sterile pot. The pots were stored at 4 ˝C until transportation
to the laboratory for processing. Then, the samples were pre-treated by centrifugation at 6000ˆ g for
10 min; 1.5-mL aliquots were prepared and frozen in ´80 ˝C freezers within 5 h from urine collection.
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Table 1. Characteristics (number, sex, age, histological classification) of patients and healthy controls,
whose urine samples were provided. ccRCC-BN = patients with ccRCC before nephrectomy,
RCC-AN = ccRCC patients after nephrectomy, HC = healthy controls.

ccRCC-BN ccRCC-AN HC

Number 40 9 29
Male/Female 27/13 7/2 21/8
Age (years) 62.35 ˘ 11.65 64.11 ˘ 10.91 56 ˘ 5.81

Histological classification
18/40 G1 6/9 G1
11/40 G2 3/9 G2
11/40 G3 0/9 G3

2.2. Sample Preparation

Frozen samples were thawed at room temperature and shaken before use. Aliquots of each urine
sample (630 µL) were added to 70 µL of potassium phosphate buffer (1.5 M K2HPO4 in 100% 2H2O,
pH 7.4), to minimize variations in metabolite NMR chemical shifts arising from differences in urinary
pH, also containing 0.1% sodium 3-(trimethylsilyl)-(2,2,3,3-2H4)propionate (TSP) and 2 mM sodium
azide. Samples were centrifuged at 14,000ˆ g for 5 min at 4 ˝C to remove any solid debris. Then,
600 µL of the supernatant were placed in a 5 mm outer diameter NMR tube. All chemicals were from
Sigma (Sigma-Aldrich Corporation, St. Louis, MO, USA).

2.3. NMR Experiments

All measurements were performed on a Bruker Avance DRX NMR spectrometer (Bruker,
Karlsruhe, Germany) operating at 500.13 MHz for 1H observation, equipped with a TBI 500 MHz W2
5 mm xyz-gradient and with manual systems of tuning, matching, locking and shimming. A time
delay of 5 min was set between sample insertion and pre-acquisition calibrations to ensure complete
temperature equilibration (300 K).

For each sample, a one-dimensional Carr–Purcell–Meiboom–Gill spin-echo (CPMG) experiment
was recorded (number of scans = 128, 64 k data points, spectral width 10,000 Hz, acquisition time
3.28 s, total spin–spin relaxation delay 64 ms, solvent signal saturation during the relaxation delay).
This pulse sequence filters the macromolecules (such as proteins) that might be present in the sample,
avoiding broad signals and improving the quality of the NMR spectrum, due to a flat baseline and
reduced overlapping [23].

The free induction decays (FIDs) were multiplied by a line broadening of 0.3 Hz before Fourier
transformation, phasing, and baseline correction. All spectra were referenced to the TSP signal
(δ = 0.00 ppm). NMR data were processed using TopSpin 1.3 (Bruker) and visually inspected using
Amix 3.9.14 (Bruker).

2.4. Data Processing and Analysis

The region in the range 9.5–0.5 ppm of all CPMG spectra was segmented into rectangular intervals
(buckets) of fixed 0.04 ppm width, integrated and normalized to the total area (to minimize differences
in urine concentration between samples) using Amix 3.9.14 (Bruker). The 6.00–4.50 ppm region
comprising the signals of urea and water was excluded because of the variability in the suppression
of water signal and the fluctuations in the partial cross-solvent saturation of urea signal due to
solvent-exchanging protons. The bucket-table was scaled applying Pareto scaling.

2.5. Multivariate Statistical Analyses of 1H-NMR Data and Metabolite Identification

Firstly, the spectral dataset was subjected to an unsupervised (i.e., without any a priori assumption)
multivariate statistical analysis, Principal Component Analysis (PCA), to get an overview of the
metabolic profiles and to highlight possible outliers. Then, it was inspected using a supervised
multivariate statistical analysis, Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA).
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OPLS-DA divides the systematic variation in the X-block (an input dataset of variables) into two
model parts: a “predictive” part that models the co-variation between the measured data of X variable
(the bucket intensities) and the response of Y variable within the groups, and an “orthogonal” part
that captures systematic variation in X that is unrelated to Y. When considering a binary Y variable
(in our case, binary variables of disease status) and the same number of model components, OPLS-DA
performs like PLS-DA, but facilitates graphic visualization of differences and/or similarities between
groups. The quality of OPLS models was described by the goodness of fit (R2) and the predictability
based on the fraction correctly predicted in one-seventh cross-validation (Q2). In the seven-fold
cross-validation step, seven models were built with exactly one-seventh of the data excluded from
each model and each sample excluded a single time. The ability of the models to predict those samples
not involved in the modeling provided a measure of the overall predictive ability of the metabolite
profiling. Using these values (YPredCV), we generated a confusion matrix and calculated the specificity
(true negative rate), the sensitivity (true positive rate), the accuracy (correct prediction rate), and the
Cohen’s Kappa (a statistical measure of inter-rater agreement for qualitative/categorical items) at a
significance level of 0.05 [24]. PCA and OPLS-DA were carried out using Simca 13 software (Umetrics,
Umea, Sweden).

Metabolite identification was done using a free available database (NMR suite 8.1, Chenomx Inc.,
Edmonton, AB, Canada).

2.6. Metabolic Pathway Analysis

For the metabolic pathway analyses, we focused on unambiguously attributed metabolites having
values of pq (OPLS-DA loading vector of the predictive component) normalized to unit length >|0.01|
at default significance level of 0.05.

We obtained information about relative metabolite concentrations comparing the intensity of the
corresponding signals in the different samples: one selected peak for each metabolite was integrated
and normalized to the total area (using Amix 3.9.14), then divided for the number of protons giving rise
to it. We did not use the 0.04 ppm-sized bucket intensities since, in the presence of some misalignments,
the simple rectangular bucketing often makes edges of buckets cut individual peaks and single buckets
contain parts of signals from different metabolites. Significance of quantitative differences for each
metabolite was calculated by t-test.

To assess biological relationships among genes and metabolites, we used the Ingenuity Pathway
Analysis software (IPA, Ingenuity System, Redwood City, CA, USA; http://www.ingenuity.com). IPA
computes a score for each network according to the fit of the set of supplied focus metabolites (here,
metabolites differently expressed in ccRCC patients). These scores indicate the likelihood of focus
metabolites to belong to a network versus those obtained by chance. The canonical pathways generated
by IPA are the most significant for the uploaded data set. The Benjamini–Hochberg multiple testing
correction method was used to calculate the significance of the networks and functional categories.

3. Results and Discussion

3.1. Results

3.1.1. Multivariate Statistical Analysis of Urine NMR Profiles

1H-NMR spectra were recorded for urine samples collected from 40 patients and 29 controls.
In CMPG experiments, the broad signals of macromolecules (such as proteins, which might be in
the sample) were removed. All spectra were aligned using the TSP peak at 0.00 ppm as reference,
obtaining a good peak correspondence among samples.

The digitalized CPMG spectra, segmented into rectangular 0.04 ppm-sized buckets as described
above, were analyzed by PCA (unsupervised approach) to investigate general sample distribution
and to identify potential outliers. PCA, usually used to get an overview of data without any a



Diseases 2016, 4, 7 5 of 15

priori assumption, did not reveal any clustering/trend according to gender or age. We excluded any
confounding effect in our study due to these variables (Figure 1) [25]. Furthermore, PCA models
displayed no separation of the data-reduced profiles according to health status along the first PCs as a
consequence of the high inter-individual variability typical of urine metabolome (data not shown).Diseases 2016, 4, 7 5 of 14 
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Figure 1. Principal Component Analysis (PCA) applied on all urine samples. It showed no clusters
relating to sex (F = female, M = male) or age (years).

Hence, the dataset was examined by OPLS-DA (a supervised approach), comparing the conditions
pairs of the three groups available, i.e., healthy controls (HC), ccRCC-BN patients, and ccRCC-AN
patients. We obtained a good discrimination between ccRCC patients and HC (cumulative R2 0.76,
cumulative Q2 > 0.61), that revealed the existence of differences in urinary metabolome profiles
(Table 2).

The intra-class variance was confirmed to be huge (the orthogonal variance was greater than the
predictive one). Models built with data from the samples collected before and after nephrectomy from
the same patients were quite descriptive but not predictive, having R2(cum) ~0.69 and Q2(cum) < 0,
likely because of the low number of samples (Table 2).

In details, OPLS-DA comparisons revealed that: (i) comparing urine of ccRCC-BN patients vs. HC,
we found in patients higher levels of creatine and lactate and lower levels of citrate, hippurate, betaine,
and 3-hydroxybutyrate; (ii) comparing urine samples of ccRCC-AN patients vs. HC, higher levels
of creatine and pyruvate and lower levels of creatinine, hippurate, betaine, and citrate were found
in ccRCC-AN patients; and (iii) comparing urine samples of ccRCC-BN vs. ccRCC-AN patients, we
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found higher levels of citrate, hippurate, betaine, and alanine and lower levels of creatine, trigonelline,
and 3-hydroxybutyrate before nephrectomy. Moreover, we found that the content of sugars (mainly
glucose and fructose) was greater in all ccRCC patients compared to controls (Figure 2).

Table 2. Parameters describing the three Orthogonal Partial Least Squares-Discriminant Analysis
(OPLS-DA) models obtained using SIMCA software: R2X(cum) (cumulative R2X, X variance explained
by the current components), R2(cum) (cumulative R2, goodness of fit), and Q2(cum) (cumulative Q2,
Q2 up to the specified component, where Q2 is the fraction of Y variation predicted by the X model in a
component, according to cross-validation), specificity, sensitivity, accuracy, and Cohen’s K calculated
in cross-validation.

OPLS-DA ccRCC-BN vs. HC ccRCC-AN vs. HC ccRCC-BN vs. ccRCC-AN

Component R2X(cum) R2(cum) Q2(cum) R2X(cum) R2(cum) Q2(cum) R2X(cum) R2(cum) Q2(cum)
Model 0.474 0.765 0.615 0.429 0.874 0.685 0.256 0.699 ´0.267

Predictive 0.077 0.765 0.615 0.106 0.874 0.685 0.102 0.699 ´0.267
P1 0.077 0.765 0.615 0.106 0.874 0.685 0.102 0.699 ´0.267

Orthogonal in
X 0.397 0 0.323 0 0.155 0

O1 0.305 0 0.234 0 0.155 0
O2 0.397 0 0.323 0

Specificity 0.893 0.964 0.778
Sensitivity 0.939 0.9 0.444
Accuracy 0.918 0.947 0.611

Cohen’s K in
cross-validation 0.835 0.864 0.222
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Figure 2. Results of OPLS-DA applied on the three groups of urine samples, compared two-by-two.
On the left there are the score plots, reporting the predictive component on X-axis (t1) and the
first orthogonal component on Y-axis (to1); on the right there are the loading plots, reporting the
variables (buckets of 0.04 ppm) on X-axis and the corresponding loading vector values of the predictive
component (pq1 normalized to unit length) on Y-axis.

When observing the spread of the samples RCC-BN vs. HC along the two orthogonal components
of the OPLS-DA model that were unrelated to the a priori set class (i.e., disease status), no separation
of them according to gender was evident. The same was observed along the minor components
(the second one and the third one) of the corresponding PLS-DA model (we considered only models
with ď3 components to not over-fit the data; Table 2) (Supplementary Figure S1).

We repeated the statistical analyses considering only the males, and we obtained similar class
separation and loading patterns. Moreover, when we used the females as a testing group to validate
the OPLS-DA model RCC-BN vs. HC built with all males, their disease status was predicted with few
errors (specificity 0.92, sensitivity 0.87, Cohen’s Kappa in prediction 0.8, at significance level of 0.05)
(Supplementary Table S1).

All these observations confirmed that gender had no particular influence on group discrimination.

3.1.2. Network Analysis

In order to investigate the role of metabolites found specifically increased in urine of ccRCC
patients in the context of the pathology, we performed a bioinformatic analysis of the pathways
and networks of metabolites. We integrated metabolites with data from a variety of experimental
platforms and algorithmically assembled networks with other metabolites and genes on the basis of
their functional and biological connectivity.

For these kinds of analyses, we focused on fifteen urinary metabolites, safely identified in all
spectra and resulted to be present at significantly different levels in the compared groups (Table 3 and
Supplementary Figure S2).

Table 3. Urinary metabolites considered for the pathway analysis and positions in the 1H-NMR
spectrum of the corresponding selected peaks.

Metabolites ppm

Trigonelline 9.13
Hippurate 7.84

N-phenylacetylglycine 7.40
Sucrose 5.25
Glucose 4.65

Creatinine 4.06
Creatine 3.93
Glycine 3.58

Carnitine 3.23
Betaine 3.28
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Table 3. Cont.

Metabolites ppm

Citrate 2.55
Pyruvate 2.35
Alanine 1.49
Lactate 1.34

3-hydroxybutyrate 1.20
3-hydroxyisobutyrate 1.37

For each identified network, a score was computed according to the fit of the set of metabolites
differently modulated in urine of ccRCC patients. These scores indicated the likelihood of identified
metabolites belonging to a network versus those obtained by chance. Among biological pathways
most differentially modulated in ccRCC patients compared to HC, we found Pyruvate Fermentation to
Lactate, Glycine Biosynthesis, Alanine Biosynthesis and Degradation, Glycine Betaine Degradation
and HIF1α Signaling (Figure 3 and Supplementary Table S2).
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Interestingly, many metabolites were associated with functions involving renal diseases and
dysfunctions, such as glomerular injury, renal inflammation and renal necrosis/cell death (Figure 4
and Supplementary Table S3).

Then, we performed a comparative analysis intersecting metabolite data with the gene expression
data from CD133+/CD24+ cancer renal stem cell of ccRCC previous published [20]. Interestingly, we
found functional associations of pyruvate with the HIF-α signaling and the acetyl-CoA biosynthesis.
In addition, the methionine degradation, the choline degradation, and the AMPK signaling pathways
resulted differentially modulated in patients both at gene expression level and at urinary metabolite
level in cancer stem cells (Figure 5).

Diseases 2016, 4, 7 9 of 14 

 

Interestingly, many metabolites were associated with functions involving renal diseases and 
dysfunctions, such as glomerular injury, renal inflammation and renal necrosis/cell death (Figure 4 
and Supplementary Table S3). 

Then, we performed a comparative analysis intersecting metabolite data with the gene 
expression data from CD133+/CD24+ cancer renal stem cell of ccRCC previous published [20]. 
Interestingly, we found functional associations of pyruvate with the HIF-α signaling and the acetyl-
CoA biosynthesis. In addition, the methionine degradation, the choline degradation, and the AMPK 
signaling pathways resulted differentially modulated in patients both at gene expression level and at 
urinary metabolite level in cancer stem cells (Figure 5). 

 
Figure 4. Biological processes most differentially modulated in ccRCC patients generated from 
urinary metabolites obtained through variable size bucketing. 

 
Figure 5. Pathway comparative analysis performed intersecting urinary metabolite dataset with the 
gene expression dataset from CD133+/CD24+ cancer renal stem cells of ccRCC patients. 

Figure 4. Biological processes most differentially modulated in ccRCC patients generated from urinary
metabolites obtained through variable size bucketing.

Diseases 2016, 4, 7 9 of 14 

 

Interestingly, many metabolites were associated with functions involving renal diseases and 
dysfunctions, such as glomerular injury, renal inflammation and renal necrosis/cell death (Figure 4 
and Supplementary Table S3). 

Then, we performed a comparative analysis intersecting metabolite data with the gene 
expression data from CD133+/CD24+ cancer renal stem cell of ccRCC previous published [20]. 
Interestingly, we found functional associations of pyruvate with the HIF-α signaling and the acetyl-
CoA biosynthesis. In addition, the methionine degradation, the choline degradation, and the AMPK 
signaling pathways resulted differentially modulated in patients both at gene expression level and at 
urinary metabolite level in cancer stem cells (Figure 5). 

 
Figure 4. Biological processes most differentially modulated in ccRCC patients generated from 
urinary metabolites obtained through variable size bucketing. 

 
Figure 5. Pathway comparative analysis performed intersecting urinary metabolite dataset with the 
gene expression dataset from CD133+/CD24+ cancer renal stem cells of ccRCC patients. 

Figure 5. Pathway comparative analysis performed intersecting urinary metabolite dataset with the
gene expression dataset from CD133+/CD24+ cancer renal stem cells of ccRCC patients.



Diseases 2016, 4, 7 10 of 15

Moreover, pyruvate, betaine, and creatinine seemed to be involved in several renal dysfunctions,
such as renal hypertrophy, renal inflammation, glomerular injury (Figure 6A and Supplementary
Table S4), and in several biological functions, such as renal and urological disease, cancer, inflammatory
response, and immune cell trafficking (Figure 6B and Supplementary Table S5). When we also
compared urinary metabolome profile data of patients with ccRCC after nephrectomy, we found that
after nephrectomy some biological functions were no more represented. In particular, the processes
of glomerular injury, renal hypertrophy, renal necrosis/cell death and renal proliferation were no
modulated by metabolites collected after nephrectomy (Figure 6).
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3.2. Discussion

In the current study, 1H-NMR-based approach was applied to investigate the urinary metabolome
profile in patients with ccRCC before and after nephrectomy and, for the first time, NMR data were
integrated with transcriptomic data from CD133+/CD24+ cancer stem cells of patients with ccRCC.

To prevent disturbing effects due to the presence of proteins in our urine samples, we used a
specific NMR pulse sequence called CPMG. Reduced spectral data were analyzed by multivariate
statistical analysis. PCA suggested no influence of gender and age on our study, but indicated a
significant inter-individual variability, as expected. OPLS-DA permitted a good class separation,
suggesting the potential presence of distinctive metabolome features.

It seems that in ccRCC patients compared to healthy subjects levels of creatine, alanine, lactate and
pyruvate increased and that levels of hippurate, citrate, and betaine decreased. When urine samples of
patients before and after nephrectomy were compared, ccRCC-BN urinary samples resulted to have a
greater content of hippurate, betaine, lactate and alanine. Instead, RCC-AN samples showed higher
levels of creatine and pyruvate.

In order to deeply investigate the connection with the pathology of metabolites found altered in
ccRCC urine samples, we performed an analysis of potentially related genes. Spectral data were used
to carry out the pathway analyses.

Creatine and its by-product creatinine are metabolized in muscles (95%), kidneys, liver and
pancreas. It plays a fundamental energetic role: phosphocreatine gives a phosphoric group to ADP
to form ATP. Augmented urinary levels of creatine normally occur in hyper-catabolic situations,
such as accelerated catabolism of tumor cells and convalescence after a surgical operation [26,27]. It
could explain the high creatine excretion in urine samples collected from ccRCC patients before and
after the nephrectomy. However, in the former creatine might be released by renal cells, while
in the latter predominantly by muscle tissue. Serum creatinine is frequently used as a kidney
dysfunction biomarker.

Hippurate is normally found in human urine at concentration depending on the microbial activity
in the colon and on the individual diet [28,29]; we can speculate that its decrease may indicate a
metabolic alteration and an impaired secretion at the level of the proximal tubule [30].

Citrate gives a measure of the tubular cell function [31]. We can hypothesize that reduced
excretion of citrate in ccRCC patients could be likely due to the presence of a mild metabolic acidosis,
and/or to an incorrect activity of the sodium/citrate co-transporter in the kidney (influenced by
pH) [32]. Lower levels of hippurate and citrate were also observed in IgA nephropathy and other
glomerulonephritides [33,34].

A number of studies have demonstrated that malignant transformation is associated with an
increase in glycolytic flux and in anaerobic and aerobic cellular lactate excretion. Lactate seems to
activate the hyaluronan synthesis by tumor-associated fibroblasts, to upregulate VEGF and HIF-1α,
and to directly enhance the cellular motility [35]. It was also found in abnormal urinary concentration
in patients with autosomal dominant polycystic kidney disease and glomerulonephritis [34,36]. Our
data showed that lactate and glucose (from which lactate derived) were found more abundant in
ccRCC-BN urine samples than in ccRCC-AN ones.

Betaine (or N,N,N-trimethylglycine) is a methylamine that functions as a methyl donor in essential
biochemical processes, for example detoxification reactions; it plays a role in osmoregulation of
most tissues. It derives through NAD-dependent dehydrogenization of betaine aldehyde, primarily
formed through the mitochondrial oxidation of choline in the liver and kidney [37]. Betaine can
protect the kidneys from damage; it occurs abundantly in the medulla, where (as other osmolytes)
it acts as a chemical chaperone, countering the denaturing effect of urea on proteins. Betaine
re-methylates homocysteine to methionine by betaine homocysteine methyltransferase (BHMT),
an enzyme osmoregulated [38]. It is likely that the production of reactive and toxic compounds,
plausibly due to the inflammation response activated in hypoxic conditions within the tumor mass,
could stimulate detoxification reactions and consume betaine reserves. This could explain why
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ccRCC-BN samples showed lower content of betaine. In ccRCC-AN, low betaine levels may be linked
to detoxification from drugs or to insufficient production of betaine.

Then, we performed a comparative analysis intersecting metabolite data with the gene expression
data obtained from CD133+/CD24+ renal cancer stem cells of ccRCC previous published [22].

We found both genes and metabolites belonging to HIF-α signaling, methionine and choline
degradation and the acetyl-CoA biosynthesis.

The modulation of the HIF-α signaling pathway is interesting since this pathway is implicated
with the angiogenesis that is one of the most important hallmarks of RCC. Tumoral CD133+/CD24+
stem cells were also able to trigger an angiogenic response. In fact, they can develop numerous
allantoic vessels in the chick embryo chorioallantoic membrane. Several genes involved in cellular
differentiation are directly or indirectly regulated by hypoxia and by HIF-1. These include Epo, lactate
dehydrogenase A (LDHA), ET1, transferrin, transferrin receptor, VEGF, PDGF-β, FGF, and genes
affecting glycolysis. HIF1-α-activated genes include VEGF, which promotes angiogenesis; GLUT1,
which activates glucose transport; LDHA, which is involved in the glycolytic pathway; and Epo, which
induces erythropoiesis. HIF1-α also activates transcription of NOS, which promotes vasodilation and
angiogenesis [39–41].

Interestingly, the pyruvate, betaine and creatinine metabolites seem to be involved in several
renal dysfunction, as glomerular injury, renal hypertrophy, renal inflammation and we found that,
after nephrectomy, some renal dysfunction processes, as glomerular injury, renal hypertrophy, renal
necrosis/cell death and renal proliferation, were no more represented. This could indicate the
biochemical change after the kidney removal.

The principal limitation of this study is that even if the modulation of these metabolites is
interesting and is supported by the common pathways modulated in the gene expression data, the
validation of metabolites by biochemical assays is lacking. Further studies will be needed to confirm
these data.

4. Conclusions

In summary, metabolomics based on 1H-NMR spectroscopy, revealed metabolic features typical
of urine samples of ccRCC patients, which distinguished them from healthy individuals and patients
after nephrectomy. This is due overall to differences in concentration of the same metabolites. Results
from the interconnection between transcriptional data from a particular type of tumoral renal stem cells
and urinary metabolomic data may add knowledge on mechanisms underlying ccRCC pathogenesis
and disease progression.
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