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Biofilms are structured communities found associated with a wide range of surfaces. Here we report the
identification of a three-component regulatory system required for biofilm maturation by Pseudomonas aerugi-
nosa strain PA14. A transposon mutation that altered biofilm formation in a 96-well dish assay originally
defined this locus, which is comprised of genes for a putative sensor histidine kinase and two response
regulators and has been designated sadARS. Nonpolar mutations in any of the sad4RS genes result in biofilms
with an altered mature structure but do not confer defects in growth or early biofilm formation, swimming, or
twitching motility. After 2 days of growth under flowing conditions, biofilms formed by the mutants are
indistinguishable from those formed by the wild-type (WT) strain. However, by 5 days, mutant biofilms appear
to be more homogeneous than the WT in that they fail to form large and distinct macrocolonies and show a
drastic reduction in water channels. We propose that the sad4RS three-component system is required for later
events in biofilm formation on an abiotic surface. Semiquantitative reverse transcription-PCR analysis showed
that there is no detectable change in expression of the sad4ARS genes when cells are grown in a planktonic
culture versus a biofilm, indicating that this locus is not itself induced during or in response to biofilm
formation. DNA microarray studies were used to identify downstream targets of the SadARS system. Among
the genes regulated by the SadARS system are those required for type III secretion. Mutations in type II1
secretion genes result in strains with enhanced biofilm formation. We propose a possible mechanism for the
role that the SadARS system plays in biofilm formation.

Biofilms are surface-associated microbial communities
found on a wide array of biotic and abiotic substrata. Such
communities are ubiquitous in natural environments but can
also be found in industrial and clinical settings. Biofilms con-
tribute to nosocomial infections when they form on a variety of
implants, such as catheter lines (11). Recent evidence suggests
that biofilms may also contribute to some nonimplant infec-
tions in diseases such as cystic fibrosis, otitis media, and peri-
odontitis (13, 19, 43, 69). Therefore, a greater understanding of
biofilm formation is required to develop strategies to control
the formation of these microbial communities.

Much of what is currently known about the molecular ge-
netics of biofilm formation in gram-negative organisms comes
from the study of Pseudomonas aeruginosa. Microscopic exam-
ination of early biofilm formation in combination with muta-
tional studies showed that P. aeruginosa first adheres to a
substratum as a monolayer, which is followed thereafter by the
formation of microcolonies (56). Microcolonies are comprised
of ~30 to 100 cells and are thought to form largely as a
consequence of cell division (40, 56). Microcolony formation is
followed, at least under some conditions (40), by the appear-
ance of macrocolonies which can attain heights approaching
100 pm or greater. Macrocolonies are typically separated by
fluid-filled channels and surrounded by a matrix composed of
polysaccharide, DNA, and proteins (1). Recently, genes pro-
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posed to be involved in the synthesis of the polysaccharide
component of the matrix have been reported (12, 22, 23, 34,
48). The resulting elaborate architecture of the mature biofilm
is thought to be important for the influx of nutrients and
oxygen into the biofilm and for removal of metabolic waste
products (12).

The formation of biofilms has been proposed to be a devel-
opmental process wherein planktonic (free-swimming) bacte-
ria adapt to life on a surface (15). If biofilm formation is
analogous to other developmental systems, there should be
regulatory pathways that control the transition between plank-
tonic and biofilm growth, and this predicted regulatory cascade
should be controlled in response to environmental signals (15).
For example, recent studies have shown that the availability of
both iron and oxygen can have profound impacts on biofilm
formation by P. aeruginosa (5, 68, 82). Furthermore, a number
of regulatory systems that influence the early stages of biofilm
formation by this organism have been described. A mutation in
the global virulence factor regulator gacA results in a 10-fold
decrease in biofilm formation, and this mutant fails to make
microcolonies (59). The GacA-regulated genes required for
biofilm formation have yet to be identified. Crc, the catabolite
repression control protein originally identified for its role in
catabolite repression of sugars by organic acids, has also been
shown to play a role in biofilm formation by P. aeruginosa. A
crc mutant fails to show high-level expression of at least a
subset of type IV pilus biosynthetic genes, rendering these
strains deficient in twitching motility (55). Like the gac4A mu-
tants, crc mutant strains fail to make microcolonies. AlgR, a
response regulator protein required for synthesis of alginate,
which is thought to be the major component of the matrix of
biofilms in the cystic fibrosis lung (26), also appears to function
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in controlling assembly and/or disassembly of type IV pili (75,
78). Mutations in algR that prevent phosphorylation of the
AlgR protein lead to defects in twitching motility and a de-
crease in biofilm formation but have no effect on alginate
production. An algR null mutant fails to twitch but also shows
more severe defects in biofilm initiation, suggesting that AlgR
regulates additional functions required for attachment (76).
These studies underscore the importance of regulators in early
biofilm formation by P. aeruginosa.

Additional work indicates that regulatory systems are impor-
tant for later stages of biofilm formation as well. Studies by
Davies and colleagues suggest that the formation of mature
biofilm architecture from microcolonies is not a stochastic pro-
cess but is regulated by quorum sensing. Under some condi-
tions, strains lacking a functional /as quorum-sensing system
initiate biofilms normally but are unable to establish the typical
architecture of a mature biofilm. Instead, the las mutant strain
makes a biofilm with a relatively thin layer of cells (5, 16, 38).
Furthermore, recent evidence indicates that the complex ar-
chitecture of the mature biofilm is actively maintained (14).
Davey et al. provided evidence that rhamnolipid surfactants,
produced by cells within the biofilm, maintain the open spaces
or channels surrounding macrocolonies by inhibiting coloniza-
tion by invading planktonic cells (14).

Other regulators may affect biofilm formation at multiple
stages. RpoN, an alternative sigma factor for RNA polymer-
ase, controls expression of a diverse set of genes, including
those for flagella and pili (36, 67, 73), which affect early stages
of biofilm formation. RpoN also positively regulates expression
of rhil (27), which is in turn required for rhamnolipid synthesis;
these surfactants are important during later stages of biofilm
formation, as described above.

Here we report the identification of a so-called three-com-
ponent regulatory system involved in biofilm formation by P.
aeruginosa strain PA14. This three-component regulatory sys-
tem consists of a sensor histidine kinase and two response
regulators. In flowing systems, strains carrying mutations in
this three-component system appear to initiate biofilm forma-
tion identically to the wild-type (WT) strain but make mature
biofilms with an altered structure lacking normal channels. We
present DNA microarray data used to identify downstream
targets of the SadARS system. Finally, a possible mechanism
for the role played by this regulatory system in biofilm forma-
tion is proposed.

MATERIALS AND METHODS

Bacterial strains, plasmids, and culture conditions. The parental strain for all
studies is P. aeruginosa PA14 (63), unless otherwise stated. Strains were grown in
lysogeny broth (LB) or minimal M63 medium (58) as indicated. For P. aerugi-
nosa, cultures were supplemented with antibiotics as follows: ampicillin, 1,500
png/ml; tetracycline, 150 pg/ml; or gentamicin, 100 pwg/ml. For E. coli, cultures
were supplemented with ampicillin at 150 pg/ml. Plasmid pSMC21 (green fluo-
rescent protein positive; Ap" Kn") constitutively expresses the gene for the green
fluorescent protein and was used to label the strains for microscopy studies (4).
The original sad-160::Tn5 strain was reconstructed by phage-mediated transduc-
tion as described previously (6) to produce strain SMC693. The strains and
plasmids used in this study are described in Table 1.

Microscopy and image acquisition. A DM IRB inverted microscope (Leica
Microsystems, Wetzlar, Germany) equipped with a cooled charge-coupled-de-
vice digital camera and a 10X, 40X, or 63X PL FLOTAR objective lens was used
for epifluorescence and phase-contrast microscopy. Digital images were captured
with a G4 Macintosh computer with the OpenLab software package (Improvi-
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sion, Coventry, England). The images were processed for publication with Pho-
toshop software (Adobe, Mountain View, Calif.). Confocal scanning laser mi-
croscopy (CSLM) was performed with a Fluoview 300 confocal microscope in the
IX70 inverted microscope platform (Olympus, Melville, N.Y.). Images were
obtained with a 60X objective and captured on an IBM PC with the Fluoview
software (Olympus). Image deconvolution and three-dimensional rendering
were performed with the Volocity software package (Improvision).

Biofilm formation assays. (i) Ninety-six-well microtiter dish assay. Initial
biofilm formation was measured by using the microtiter dish assay system, as
described previously (56, 57). Microtiter wells were inoculated from overnight
LB-grown cultures diluted 1:50 in minimal M63 medium supplemented with
glucose (0.2%), magnesium sulfate (1 mM), and Casamino Acids (CAA) (0.5%).
Unless otherwise stated, cells were grown for 8 h before they were stained with
crystal violet (CV) and quantified (57). Crystal violet-stained wells were digitally
imaged with a Nikon (Melville, N.Y.) 990 digital camera. Biofilm formation was
quantified by solubilization of the CV staining in 30% glacial acetic acid. The
absorbance of the resulting solution was measured at 550 nm.

(ii) Microscopy of the air-liquid interface (ALI) of static biofilms. ALI assays
were performed as previously described, with modifications (7). Briefly, cultures
were grown overnight in LB and diluted 1:50 into the minimal M63 glucose
medium described above, and 350-pl aliquots were inoculated into 24-well,
polystyrene, flat-bottomed plates (Corning, Inc., Corning, N.Y.). The plates were
incubated at a 45° angle such that the air-liquid interface was located at the
center of the well bottom for optimal microscopic visualization. After 6 h, wells
were aspirated and 300 pl of M63 was added to each well. Bacteria attached to
the well were then visualized by phase-contrast microscopy as described above,
using the 40X objective.

(iii) Flow cells. Biofilms were cultivated in flow chambers with channel dimen-
sions of 5 by 1 by 30 mm. The flow system was assembled as described previously
(9), using a modified EPRI medium lacking lactate, succinate, and trace metals.
Modified EPRI medium is a phosphate-buffered minimal salts medium similar to
M63 but containing nitrate as an alternative electron acceptor to promote growth
of P. aeruginosa under oxygen-limiting conditions. The flow cell was inoculated
from overnight LB-grown cultures diluted 10-fold in EPRI medium. The medium
flow was turned off prior to inoculation and for 1 h after inoculation. Thereafter,
medium was pumped through the flow cell at a constant rate (1.8 ml/h) for the
duration of the experiment. The flow was controlled with a PumpPro MPL
(Watson-Marlow, Cornwall, England). Quantitative analysis of epifluorescence
microscopic images obtained from flow cell-grown biofilms was performed with
COMSTAT image analysis software (28).

Construction of mutant strains. (i) sadS (PA3946). A knockout mutation of
sadS was constructed by amplifying 5’ flanking (primers S5Sac and S5SpX) and
3’ flanking (primers S3Spe and S3DnH) DNA fragments (primers are listed in
Table 2). Genomic DNA used as the PCR template was isolated by the gua-
nidium thiocyanate method (61). The 5" and 3’ fragments were ligated (by using
the Spel sites engineered in primers S5SpX and S3Spe) and amplified with
primers S3DnH and S5Sac. The resulting PCR product was cloned into the
pGEM cloning vector (Promega, Inc., Madison, Wis.), which was then digested
with HindIII and Sstl. The insert fragment was cloned into plasmid pEX18Gm
cut with the same enzymes to generate the knockout plasmid pSMC65. The
plasmid was electroporated into Escherichia coli SM10-\pir. Conjugations were
performed (see below), and integrants were confirmed by PCR from chromo-
somal DNA, using primers SHK-7 and RRI-10. The resulting AsadS strain was
named SMC1368.

(ii) sadR (PA3947). A knockout mutation of sadR was constructed by ampli-
fying 5’ flanking (primers RRAdU and RRD3’) and 3’ flanking (primers
RRAJD with RRD5’) DNA fragments. The products were then amplified in a
mixed PCR with primers bearing att sites and regions that could anneal to the 5’
and 3’ ends of the knockout construct (a#Bl and attB2). The cassette was
integrated into the gene replacement vector pEXGW (a gift from Matt Wolf-
gang) by using the Gateway in vitro cloning system (Life Technologies, Carlsbad,
Calif.) to generate plasmid pSMC44, which was electroporated into E. coli
SM10-Apir. Conjugations were performed, and integrants were confirmed by
PCR from chromosomal DNA, using primers RRAdU and RRAdD. The result-
ing AsadR strain was named SMC1061.

(iii) sadA (PA3948). A knockout mutation of sadA4 was generated by amplifying
5" flanking (primers R5Sac and R5SpX) and 3’ flanking (primers R3Spe and
3DHDIII) DNA fragments. The fragments were ligated (using the Spel sites
engineered in primers R5SpX and R3Spe) and amplified with primers R5Sac and
3DHDIII. The resulting PCR product was digested with SstI and HindIII and
cloned into pEX18Gm cut with the same enzymes to generate the knockout
plasmid pSMC59. The plasmid was electroporated into E. coli SM10-\pir. Con-
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TABLE 1. Strains and plasmids

Strain or plasmid

Relevant characteristics

Source or reference

P. aeruginosa strains

PA14 Wild type 63
SMC241 Wild type/pSMC21 This study
SMC416 sad-110 (pilA)::Tn5SB21(Tc", 'lacZ) This study
SMC257 sad-36 (figK)::Tn5B30(Tc) 56
SMC693 sad-160::Tn5B21(Tc", 'lacZ) This study
SMC707 sad-160::Tn5B21(Tc", 'lacZ)/pSMC21 This study
SMC1022 AsadRS::Gm" (APA3946-PA3947) This study
SMC1023 AsadRS::Gm'/pSMC21 This study
SMC1368 AsadS (APA3946) This study
SMC1437 AsadS/pSMC21 This study
SMC1061 AsadR (APA3947) This study
SMC1101 AsadR/pSMC21 This study
SMC1259 AsadA (APA3948) This study
SMC1263 AsadA/pSMC21 This study
MID383 pscl:TnphoA F. Ausubel®
MID241 perD:TnphoA F. Ausubel”
PAO1 Wild type 35
MID33913 perV:1SphoA/hah 35
MID21792 perH::1SphoA/hah 35
MID20540 popB::ISphoA/hah 35
Plasmids
pACOGM Gm* 65
pCVD442 Ap', sacB, suicide vector for generating chromosomal knockout mutations 18
pEXGW Gateway modified pEX18Gm Matt Wolfgang
pEX18Gm Gm', sacB, suicide vector for generating chromosomal knockout mutations 30
pSU21 Cm’, cloning vector 47
pSMC21 Ap', Km', GFP expression vector This study
pSMC32 Cloning vector, Km* This study
pSMC42 KO plasmid for AsadRS::Gm’", in pCVD442 This study
pSMC44 KO plasmid for AsadR, in pPEXGW This study
pSMCS57 KO construct for AsadA in pPGEM-T This study
pSMCS58 KO construct for AsadS in pSU21 This study
pSMC59 KO plasmid for AsadA, in pPEX18Gm This study
pSMC65 KO plasmid for AsadsS, in pEX18Gm This study

pGEM-T easy vector Ap', cloning vector

Promega, Inc.

“ P. aeruginosa PA14 strains were obtained from MGH-Parabiosys:NHLBI Program for Genomic applications, Massachusetts General Hospital and Harvard Medical
School, Boston, Mass. (http://pga.mgh.harvard.edu/cgi-bin/pal4/mutants/retrieve.cgi) (February 2003).

jugations were performed, and integrants were confirmed by PCR with primers
RRAdU and RRAdD. The resulting AsadA strain was named SMC1259.

(iv) AsadRS::Gm". A double knockout mutation of the sadR and sadS genes
was generated by amplifying a sadR-flanking PCR fragment (primers RR1-1 and
RR1-2) and a sadS-flanking fragment (primers SHK-8 and SHK-9). The sadS
fragment was cloned into the pGEM-T Easy vector (Promega, Inc.), excised by
using BamHI and Spel, and cloned adjacent to the sadR flanking sequence in the
pGEM vector cut with BamHI and Spel. The Gm" gene was amplified from
pACQOGM by using primers pACF1 and pACRI, digested with BamHI, and
cloned into the BamHI site between the sadR and sadS PCR fragments. The
entire insert was then excised by using Sphl and cloned into the SphlI site of
pCVD442 to generate plasmid pSMC42. Conjugations were performed, and
integrants were confirmed by Southern blotting. The resulting strain, in which the
sadRS region was replaced by the AsadRS::Gm" allele, was named SMC1022.

(v) Conjugation and sucrose selection. For all mutant constructions, the
knockout plasmid was transformed into SM10Apir and then transferred to PA14
by conjugation for gene replacement. Exconjugants harboring a chromosomal
insertion of the knockout plasmid were selected on ampicillin and gentamicin
(for pCVDA422) or on gentamicin alone (for pPEX18Gm and pEXGW). Selection
on sucrose was used as described previously (18) to isolate Suc" colonies con-
taining the targeted gene knockout. Mutations were confirmed by PCR and/or
Southern blot analysis.

Growth assays. Strains (WT, sad-160::Tn5, AsadRS, AsadR, AsadS, and
AsadA) were grown overnight in LB and diluted 1:50 into either M63 minimal
medium supplemented with MgSO, (1 mM), glucose (0.2%), and CAA (0.5%)
or modified EPRI medium supplemented with MgSO, (1 mM) and glucose
(0.2%). For these experiments, 0.2 ml of the freshly inoculated medium was

added to the wells of a 96-well microtiter dish (four wells per strain). The dish
was incubated at 37°C for 48 h. Readings of optical density at 650 nm (ODys)
were taken at 2-h intervals for the first 8 h and then at 12 and 24 h, using a Vmax
kinetic microplate reader (Molecular Devices Corp., Sunnyvale, Calif.). The
plates were incubated for an additional 24 h to assess stationary-phase viability.
At that time, CFU per milliliter were determined for all strains.

Motility assays. Swimming and twitching experiments were performed in trip-
licate, and the averages and standard deviations of the data are presented.

(i) Swimming assay. Bacteria were assayed for swimming motility as described
previously (55). Briefly, a colony of the indicated strain was inoculated into M63
agar (0.3% agar) supplemented with MgSO,, glucose, and CAA and incubated
at 37°C for 24 h. The diameter of the swim zone was measured in millimeters.

(ii) Twitching assay. Bacteria were assayed for twitching motility as reported
previously (56). Briefly, a colony of the indicated strain was inoculated into M63
agar (1.5% agar) supplemented with MgSO,, glucose, and CAA and incubated
at 37°C for 24 h. The diameter of the twitching zone was measured in millimeters.

Rhamnolipid assays. Rhamnolipid assays were performed as reported previ-
ously (66).

Arbitrary PCR and DNA sequencing. Arbitrary PCR was performed as re-
ported previously (57).

Expression analysis of individual genes. (i) Growth of bacteria. For analysis of
gene expression from planktonic batch cultures, strains were grown overnight in
LB and then diluted 1:100 in fresh minimal M63 medium supplemented with
glucose (0.2%), magnesium sulfate (1 mM), and CAA (0.5%). Strains were
grown to late log phase (ODg of 0.8), and experiments were run in triplicate.

For planktonic chemostat cultures, strains were diluted 1:100 from overnight
LB cultures into 60 ml of the modified EPRI medium described for use in the
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TABLE 2. Primers used in these studies

J. BACTERIOL.

Primer Sequence (5’ to 3")
attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCT
attB2 GGGGACCACTTTGTACAAGAAAGCTGGGT
OMIAF2 ..o CATCCAGCAAGGCAACGTCGTAACGCAG
omlAR TCATTGCGGGCTGGGGTCCAGAGGTTCG
PCIVE i AGTCAGAAACCTTAATGCCGCTCG
perVR TGAAATAGGCCGACACCAGGAACT
PCTHF i TATGAACAGGCCCTGCAGAGCTAC
perHR TGCTCGATCCTTTCTCGCGGTTAC
POPBE ..o ATCATCGTCGGCGCAATCATGGTG
popBR TTTCAGCGAGTGCGACAGCGATTG
PACR L.t TCTTGCCCGCCTGATGAATG
pACF1 CATATCACCAGCTCACCGTC
TPIUL o CGCAGTGATTGTTACCGGTG
rplU2 AGGCCTGAATGCCGGTGATC
RIFT0 s CATCAGCAGTGTCGTGGCGTTG
R1-11 AGCCCTGGGCTATGGAGCAAC
RI-I2 s TGGTCGACAAGCTGTTCTGGC
R1-13 GCCTGATCGAACTCGGTTGCTC
RRI-T o ACATGCATGCATGTTGTAGGTGCTGACGGTCTTGTTG
RR1-2 CGGGATCCCGCCACACAGGGTTTCCAGGAAATAC
RRIFI0 s CATCAGCAGTGTCGTGGCGTTG
RR2-10 ACGGACAATGGCGTGGATGCCATC
RR2-11 s CGAATAGCCCATGGCGAGATGCTG
RRAdU AAAAAGCAGGCTCGAGCGATCCAGCGACTCTCCTGC
RRAAD ..o AGAAAGCTGGGTATCCGCCGACGCTCGTCGCGTGGC
RRD3’ ATGAATGATTTGAATGTTCTGGTGAGATCTCTCGACTATTGCTCCGGATCCTGA
RRDS i TCAGGATCCGGAGCAATAGTCGAGAGATCTCACCAGAACATTCAAATCATTCAT
R5Sac GGCGGAGCTCTACCCGTTGTTCGTCGCTCT
RESPX s GGCGTCTAGAACTAGTACGATCAGGACGGTATGCAT
R3Spe GGCGACTAGTGCAATTCGCTGATCCACTGA
SHEK-T ot AATGCGCCTGGACGCGATCGAC
SHK-8 CGGGATCCCGTCCGCGGAGCCTGACCAAAGATCGGAATAC
SHEK-9 o ACATGCATGCATGGAAGTGCACGTCCATGGTCACGTCGAACAG
SK-10 TTGAACACCGCCAATCGATCAC
SK-TT o TTCCTGCTGTTCTTCTGCCTG
SK-13 TGAACAGCGTCAGGGACGGATG
SK-T4 oo GCAGCAGGCAGAAGAACAGCAG
S3DnH GGCGAAGCTTCATTTCGATGATCGAGTGCCT
S58AC..c s GGCGGAGCTCCACATCTCGGCGAACGCCTC
S5SpX GGCGTCTAGAACTAGTGGAAGAGTGCACGGATTGAC
S3SPE s GGCGACTAGTGATCGCATGAAAGGTCTGTG
3DHDIII GGCGAAGCTTATCTGCTCGCGACGCCTGTT

flow cell analysis, supplemented with MgSO, (1 mM), CAA (0.025%), and
glucose (0.02%). Modified EPRI medium containing nitrate was the medium
used in all chemostat studies comparing planktonic and biofilm populations, as it
facilitates the growth of biofilm populations under oxygen-limiting (nonaerated)
conditions. Planktonic cultures were grown in chemostats (two vessels per strain)
with aeration for 4 days at 37°C and maintained in early log phase (ODg, of
0.25). Cell samples (10 ml) were harvested every 24 h for 3 days. Cells were
pelleted by centrifugation at 4°C at 2,750 X g. Cell pellets were rapidly frozen in
an ethanol-dry ice bath and stored at —80°C until RNA was isolated. Three
samples for each strain were analyzed.

For growth of bacterial biofilms in chemostats, the method used was similar to
that previously described (77). From overnight LB cultures, bacteria were diluted
1:20 into LB and grown for 6 h. Cultures were diluted such that 107 cells were
added to 50 ml of a minimal EPRI medium supplemented with MgSO, (1 mM),
glucose (0.02%), and CAA (0.025%) in chemostat vessels (two vessels per
strain). Each vessel was filled with 8.5 g of plastic filter devices (a gift of Colin
Steven, University of Maryland Biotechnology Institute, Center for Marine Stud-
ies), and cells were given 24 h to attach before the flow of medium was initiated,
followed by a washout period of 5 h at a high flow rate (150 ml h™!) to remove
unattached planktonic bacteria. Growth of the biofilm was resumed at a dilution
rate of 0.2 h~' for 5 days. To harvest biofilm bacteria, the filters were sonicated
(Fisher Scientific, Pittsburgh, Pa.) in EPRI medium for 5 min. Bacterial cells
were centrifuged at 2,750 X g (4°C for 10 min) and stored at —80°C prior to RNA
extraction.

(ii) Isolation of total RNA. Total RNA was isolated by using the RNeasy kit
from Qiagen (Valencia, Calif.), including the on-column DNase treatment. The
protocol was modified such that the lysozyme digestion was performed for 5 min
with a 1-mg/ml final concentration of lysozyme. A second DNase treatment using
all 50 pl of RNA eluted from the column and 50 U of DNase I (Roche, Basel,
Switzerland) was performed, and samples were incubated for 1 h at room tem-
perature. Following this treatment, RNA was purified with the Qiagen columns
according to the manufacturer’s instructions, and the RNA was subsequently
precipitated with 2.5 volumes of 100% ethanol and 0.1 volume of 3 M sodium
acetate. RNA was pelleted by centrifugation at 13,000 X g, washed with 0.5 ml
of 70% ethanol, and then centrifuged at 5,000 X g for 5 min at 4°C. The pellet
was air dried for 5 min, resuspended in 0.02 ml of diethyl pyrocarbonate-treated
water, and heated at 65°C for 5 min. The purity and concentration of the RNA
were determined by spectrophotometry (Eppendorf, Hamburg, Germany). RNA
samples were determined to be free from DNA contamination by PCR with 1 pl
of RNA in a reaction with primers specific to the rp/U gene.

(iii) Reverse transcription-PCR (RT-PCR). For first-strand cDNA synthesis, 5
pg of total RNA was used in the first-strand cDNA synthesis kit (Amersham
Biosciences, Piscataway, N.J.) according to the manufacturer’s instructions. PCR
was carried out with 1 pl of first-strand cDNA in a total volume of 50 pl
containing a 0.2 mM concentration of each primer, 2.5 U of Tag DNA polymer-
ase (Qiagen), 1X buffer, and 5% dimethyl sulfoxide. To quantify the PCR
product, samples were run on a 5% polyacrylamide Ready Gel (Bio-Rad, Her-
cules, Calif.) in 1X Tris-borate-EDTA. Gels were stained in a 1X solution of
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SYBR gold (Molecular Probes, Eugene, Oreg.) in Tris-EDTA (pH 8) for 15 min
and then scanned by using the blue fluorescence filter on the Molecular Dynam-
ics Storm 860 and analyzed with Image Quant software (Amersham).

The following primer sets were used to quantify expression of individual sad
genes: sadA, RR2-10 and RR2-11; sadR, R1-11 and R1-12; and sadS, SK-10 and
SK-11 (Table 2). Expression levels were normalized to rplU or omlA by using
primer set rplU1-rplU2 or omlAF2-omlAR, respectively. The expression of omiA
has been shown to be unaltered under a variety of planktonic growth conditions
(53). We have shown that the expression of neither 7p/U nor omlA changes
detectably under any of the experimental conditions that we used in these
studies. Three primer sets were used to confirm that the sadRS genes are
cotranscribed: R1-10 and SK-13, R1-13 and SK-13, and R1-10 and SK-14.

Microarray Analysis. (i) Growth of bacteria. (a) WT versus AsadRS mutant,
planktonic-grown. Planktonic bacteria were grown in chemostats (two vessels per
strain) as described above and maintained in early log phase (ODg, of 0.2) for
4 days. Three samples for each strain were used in the microarray analysis.

(b) WT versus AsadRS mutant, biofilm-grown. Bacterial biofilms were grown
in chemostats, as described above. Two samples for each strain were used in the
microarray analysis.

WT versus AsadS mutant versus sad-160::Tn5 mutant. Bacterial cultures were
inoculated from single colonies on LB plates into 5 ml of LB and grown in batch
culture to late log or early stationary phase (ODg of 1). Cells from each strain
were then diluted in triplicate 1:50 into 1X M63 supplemented with glucose
(0.2%), MgSO, (1 mM), and CAA (0.5%) and grown to early stationary phase
(ODgq of 1.1). Cells from each of the replicates were harvested in 1-ml aliquots
and spun to a pellet at 37°C for 1 min at 16,000 X g. The supernatant was
removed, and the cell pellets were rapidly frozen in an ethanol-dry ice bath and
stored at —80°C until RNA extractions were performed. Three samples for each
strain were analyzed in these microarray studies.

(ii) RNA isolation. Total RNA was isolated by using the Qiagen RNeasy
miniprep kit as described above, with one modification. For the WT versus AsadS
mutant versus sad-160::Tn5 arrays, the RNA samples did not require ethanol
precipitation prior to cDNA synthesis.

(iii) cDNA probe generation and microarray hybridization. cDNA synthesis,
labeling, array hybridization, staining, and scanning were carried out according to
the Affymetrix (Santa Clara, Calif.) Genechip P. aeruginosa Genome Array
Expression Analysis Protocol. Briefly, cDNA was synthesized by using random
hexamers as primers (Invitrogen Life Technologies, Carlsbad, Calif.) for reverse
transcription. Primers were annealed with total RNA (10 ng) and with exoge-
nous transcripts (130 pM; kindly provided by Steve Lory) that were added to
each sample to monitor transcriptional efficiency and array performance. Re-
verse transcription proceeded with Superscript II reverse transcriptase (Invitro-
gen) (25°C for 10 min, 37°C for 60 min, and 42°C for 60 min, followed by enzyme
inactivation at 70°C for 10 min). Residual RNA was removed by alkaline treat-
ment followed by acid neutralization, and cDNA was purified with a QIAquick
PCR purification kit. Purified cDNA was fragmented with DNase I (Amersham)
and end labeled with biotin-ddUTP by using the Enzo BioArray terminal labeling
kit. Target hybridization, array staining, and scanning were performed with the
Affymetrix GeneChip system at the Dartmouth Microarray Shared Resource in
the Norris Cotton Cancer Center at Dartmouth Hitchcock Medical Center (in-
cluding a workstation with Microarray Suite software version 5.0, a hybridization
oven, a fluidics workstation, and a Hewlitt-Packard GeneArray scanner).

(iv) Microarray data analysis. Microarray data were initially analyzed by using
protocols described by Affymetrix in Microarray Suite version 5.0. Raw data
(.CEL files) were then uploaded into GeneTraffic version 3.0 (Iobion, La Jolla,
Calif.) and processed with GeneTraffic by using the robust multiarray average
analysis prior to statistical analysis. Statistical ¢ tests were performed with the
CyberT web interface (http://www.igb.uci.edu) as described previously (31, 33),
and data are presented in Tables S1 (WT versus AsadRS mutant, chemostat-
grown planktonic analysis), S2 (WT versus AsadRS mutant, chemostat-grown
biofilm analysis), and S3 (WT versus AsadS mutant versus sad-160::Tn5 mutant,
batch-grown planktonic analysis) in the supplemental material. The P values
shown are those associated with the ¢ test on log-transformed control and ex-
perimental data, using the Bayesian or regularized standard deviations.

(v) Array validation. Differential gene expression was confirmed by using
quantitative real-time PCR (QRT-PCR). QRT-PCR was performed with the
original RNA samples from the array experiments and, where indicated, with
RNA prepared from two independent sets of cultures grown as described for the
microarray studies. cDNA synthesis was performed with the Invitrogen Super-
script first-strand cDNA synthesis system according to the manufacturer’s in-
structions. Real-time PCR was performed with the SYBR Green PCR master
mix (Applied Biosystems, Foster City, Calif.) in an ABI Prism 7700 sequencing
detection system, according to the manufacturer’s instructions. Data were col-
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FIG. 1. Microtiter dish phenotypes of WT strain PA14 and isogenic
mutant strains. (A) Biofilm formation phenotypes of the WT and
sad-160::Tn5 mutant strains at 8 h in the microtiter dish assay. Cells
were grown for 8 h in minimal M63 medium supplemented with
MgSO,, glucose, and CAA. The arrowhead indicates crystal violet
staining of the biofilm at the ALI. The bracket indicates the increased
CV staining below the ALI in the Tn5 mutant. (B) Biofilm formation
by the WT, the sad-160::Tn5 transposon mutant, and the AsadRS::Gm"
mutant strain observed at 4 and 8 h. In panels A and B, the microtiter
wells are inverted. (C) Quantification of the biofilm formed by the WT
and the sad-160::Tn5 and AsadRS::Gm" mutants in microtiter dishes.
Biofilms were quantified at 4, 8, and 24 h by solubilization in 30%
glacial acetic acid, and the A5, of the resulting solution was measured.
See the Materials and Methods for experimental details. Error bars
indicate standard deviations.

lected and analyzed with the ABI Sequence Detection System software, version
1.9.1. Expression levels were quantified in picograms of input cDNA by using a
standard curve method for absolute quantification, and these values were then
normalized to rplU expression. The following primer sets were used to quantify
expression of individual type III secretion system (TTSS) genes: pcrlV, perVE-
perVR; perH, pvrHF-pvrHR; and popB, popBF-popBR (Table 2).

RESULTS

Identification and characterization of the sad-160 mutant, a
mutant defective for biofilm formation. In a previous report,
we described the isolation of P. aeruginosa mutants that are
defective for biofilm formation (56). A random Tn5 transposon
library was screened for mutants that failed to form a biofilm
in 96-well microtiter plates. In this assay, bacteria were inoc-
ulated in a minimal salts medium (M63) supplemented with
0.2% glucose and 0.5% CAA and grown at 37°C for 8 h. After
8 h, the cells were removed, the wells were rinsed, and biofilm
formation was detected by CV staining (57). From this collec-
tion of mutants, we chose the sad-160::Tn5 mutant strain
(SMC693) (sad, for surface attachment defective) for further
study.

Figure 1A depicts the biofilm formation phenotype of the
WT strain and the sad-160::Tn5 mutant strain at 8 h. WT cells
form a CV-staining ring in the microtiter dish at the air-liquid
interface (ALI). In contrast, sad-160::Tn5 mutant cells exhibit
an altered pattern of biofilm formation, with a decrease in
attachment at the air-liquid interface and a concomitant in-
crease in staining below the interface.

When we examined biofilm formation over time, we ob-
served a striking difference in the pattern of biofilm formation
in the sad-160::Tn5 mutant relative to the WT. As shown in
Fig. 1B and C, the sad-160::Tn5 mutant forms a dark ring at
the air-liquid interface after incubation for 4 h in minimal
medium supplemented with glucose and CAA. This phenotype
is dependent upon the presence of amino acids in the medium
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FIG. 2. The sadARS locus. (A) The top of the panel shows the
genomic organization of the sadARS region. The inverted triangle
labeled TnS indicates the insertion site of the original sad-160::Tn5
mutant in the sadR-sadA intergenic region. The arrow within the Tn5
transposon indicates the direction of transcription of a putative pro-
moter associated with the Tn5 insertion (see text for details). Each
open reading frame is labeled with the annotation number (PA3946 to
PA3948) from the P. aeruginosa genome project (www.Pseudomonas-
.com) and the corresponding sad gene designation. (B) Predicted
structures of the SHK (SadS) and RRs (SadR and SadA). Abbrevia-
tions for the SHK are as follows: PBP, periplasmic binding protein
domain; TM, transmembrane domain; PAS, PAS domain. The kinase,
receiver (R), and HPT domains comprise the catalytic functions re-
quired for autophosphorylation and phosphotransfer activities. RR
abbreviations: EAL, EAL family; R-Che, CheY-like phospho-receiver
domain; HTH, HTH DNA binding domain.

(data not shown). In contrast, the biofilm ring formed by WT
cells under these conditions is difficult to detect at this early
time point. By 8 h, the intensity of the ring formed by the
mutant at the air-liquid interface decreases as staining below
the interface increases (Fig. 1B). In contrast, the intensity of
the ring increases at the interface for the WT. Therefore,
despite this qualitative difference in biofilm formation, quan-
tification by CV assay revealed little difference in staining of
the WT versus the sad-160::Tn5 mutant at later time points
(Fig. 1C). The similarity in CV staining between the WT and
the sad-160::Tn5 mutant is due to the increased CV staining at
the bottom of the wells for the mutant. By 24 h, both the WT
and the sad-160::Tn5 mutant form an equivalent ring at the
air-liquid interface (data not shown). These results suggest that
in a microtiter dish, the sad-160 locus may be involved in
directing biofilm formation in both a temporal and a spatial
manner, but eventually this mutant strain attaches to the sur-
face to a degree comparable to that for the WT strain as
measured by CV staining (Fig. 1C, 24-h time point).

The sad-160 locus encodes members of a three-component
regulatory system. The genomic DNA flanking the sad-160::
Tn5 transposon insertion was isolated by using arbitrary PCR
(57), and the sequence obtained was compared to the Gen-
Bank and P. aeruginosa PAO1 genome sequence (www.P-
seudomonas.com) databases. Sequence analyses indicated that
the transposon is located in an intergenic region between two
divergently transcribed genes. The genomic arrangement of
this locus is shown in Fig. 2A. The genes flanking the transpo-
son insertion site code for polypeptides with similarity to re-
sponse regulators (RRs) involved in two-component regula-
tory systems. One regulator gene is adjacent to and transcribed
in the same orientation as a downstream gene encoding a
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polypeptide with high similarity to sensor histidine kinases
(SHKS). Thus, we refer to this locus as a “three-component”
system.

The predicted protein structures for these genes are shown
in Fig. 2B. The SHK protein (SadS, PA3946) shows a high
degree of similarity to BvgS (57% amino acid identity and 40%
similarity), an SHK required for virulence gene expression in
Bordetella spp. (2, 45). The SHK also bears 25% amino acid
identity and 42% similarity to the VieS protein of Vibrio chol-
erae. The VieS protein has been implicated as an in vivo reg-
ulator of virulence gene expression in the infant mouse model
of cholera (44).

Of the two RR proteins identified, one protein (SadR,
PA3947) contains an amino-terminal receiver domain with a
high degree of similarity to CheY, the prototypical RR of the
bacterial chemotaxis system (Fig. 2B). SadR also contains an
effector domain that shows similarity to the EAL domain
(named for the conserved amino acid residues) found in di-
verse bacterial signaling proteins. The VieA protein, a V. chol-
erae RR with an EAL domain, shares sequence similarity with
SadR (29% amino acid identity and 53% similarity). Through
its EAL domain, the VieA protein was shown to regulate
intracellular levels of the unusual nucleotide signaling mole-
cule cyclic di-GMP and, in turn, to control expression of the
Vibrio exopolysaccharide synthesis (vps) genes, which are im-
portant for biofilm formation (72).

The second response regulator (SadA, PA3948) has a re-
ceiver domain with similarity to CheY and a predicted effector
domain containing a helix-turn-helix (HTH) motif with simi-
larity to HTH domains in the LuxR and GerE families of
transcriptional regulators (Fig. 2B). SadA is highly similar over
its length to BvgA (59% identity and 74% similarity), a positive
transcriptional regulator of virulence gene expression in Bor-
detella spp. (45).

Construction of mutants. To determine which of the genes
at the sad-160 locus (hereafter referred to as the sadARS locus)
are involved in biofilm formation, we generated a set of null
mutations in each gene (see Materials and Methods for de-
tails). The AsadS, AsadR, and AsadA alleles are in-frame de-
letion mutations. A AsadRS::Gm" mutation was also generated
by a drug replacement strategy and eliminates both the sadR
(PA3947) and sadS (PA3946) genes and replaces them with a
Gm" cassette. All knockout strains were confirmed by PCR
and/or Southern blotting (data not shown). No difference in
growth rate, stationary-phase viability, or rhamnolipid produc-
tion was observed between the WT and any of the sadARS
mutants (data not shown).

Mutations in the sadARS locus render cells defective for
biofilm formation. We tested the ability of the constructed
mutants to form biofilms in the 96-well microtiter dish assay.
We examined biofilm formation at 4, 8, and 24 h after inocu-
lation into minimal M63 medium supplemented with glucose
and CAA. In contrast to the sad-160::Tn5 mutant, neither the
AsadRS::Gm" mutant (Fig. 1B) nor any of the other sadARS
knockout mutants (data not shown) formed an intense ring of
attached cells after 4 h. However, all of the knockout mutants
showed slightly reduced biofilm formation at 8 h. Unlike the
Tn5 mutant, the knockout mutants did not show an increase in
CV staining below the ALI (Fig. 1B). Therefore, the quantifi-
cation of CV staining in the knockout mutants more accurately
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TABLE 3. Motility assays

Strain Swim zone (mm)” Twitch zone (mm)*
WT 18.8 (0.2) 10.0 (0.7)
sad-160::Tn5 11.6 (0.5) 9.4 (0.5)
AsadRS::Gm" 20.2 (2.9) 10.0 (0.9)
AsadR 19.4 (0.9) 11.0 (0)
AsadA 19.5 (0.3) 7.2(0.2)
pilA ND” 0
figK 0 ND

“ Values are means of measurements of motility zones taken after 24 h at 37°C.
The number in parentheses indicates the standard deviation for measurements of
at least three plates per strain.

» ND, not determined.

reflects the amount of biofilm formation at the ALI relative to
that for the WT. By 24 h, all strains attached to the surface of
the microtiter wells to a degree comparable to that of the WT,
as determined by visual inspection and CV quantification.

sadARS mutants exhibit normal motility. Several studies
have shown that bacterial motility is critical for early attach-
ment events in P. aeruginosa biofilm formation (17, 42, 56, 62).
We tested whether sad4ARS mutants were capable of swimming
and twitching motility behaviors in minimal medium supple-
mented with glucose and CAA, as described previously (57).
The results indicate that all of the mutants migrate from the
point of inoculation on 0.3% motility agar and thus are capable
of swimming motility. Measuring the zone of migration shows
that all mutants except the sad-160::Tn5 mutant swim as well as
the WT (Table 3). The sad-160::Tn5 mutant strain shows a
less-than-twofold decrease in swimming motility relative to the
WT on minimal medium. This deficiency is corrected on LB
(data not shown). Thus, the sad-160::Tn5 mutant strain shows
a small medium-dependent defect in swimming motility.

Twitching motility is assessed by using a similar plate assay,
except that the agar is at a concentration of 1.5% instead of the
0.3% used to measure swimming motility. Twitch-positive
strains of P. aeruginosa form a haze of growth surrounding the
point of inoculation. Twitch-negative strains such as the pil4
mutant (which cannot make type IV pili) fail to migrate from
the inoculation point. In this assay, all sadARS mutants are
capable of twitching motility (Table 3). Upon measurement of
twitching zones (distance of migration from the inoculation
point), we observed that the mutant strains twitch as well as the
WT strain, with the exception of the AsadA strain, which shows
slightly reduced twitching.

sadARS mutants exhibit defects in mature biofilm architec-
ture. We hypothesized that the early defect in biofilm forma-
tion displayed by the mutants in the microtiter dish would have
an impact on the formation of mature biofilm architecture. To
address this point, we examined biofilm maturation over the
course of 5 days by using a once-through flow cell system in
which a minimal medium was continuously supplied to the
growing biofilm. To monitor the bacteria by epifluorescence
microscopy or CSLM, the strains carried plasmid pSMC21,
which constitutively expresses the green fluorescent protein
4).

We monitored biofilm formation at several time points dur-
ing growth, as shown in Fig. 3. WT cells begin to attach to the
glass slide within a few hours of incubation at 37°C (not
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shown). Under the conditions used in these studies, by day 2
(Fig. 3A), both the WT and mutant cells begin to cluster (and
grow) and form microcolonies. At this time point, we quanti-
fied the number of cells attaching to the surface, using data
from three independent experiments, and observed equivalent
levels of attachment for the WT and the sadARS mutants (data
not shown). Therefore, none of the sad4ARS mutants had any
apparent defects in attachment or microcolony formation in
the flow cell at day 2. This result is consistent with the subtle
biofilm formation defect observed for the constructed sad4ARS
mutants in the microtiter dish assay shown in Fig. 1B and C. By
day 5, epifluorescence microscopy showed that the WT micro-
colonies had grown to form macrocolonies, and the macrocolo-
nies appeared dispersed on the surface (Fig. 3B). These mac-
rocolony structures have defined borders and are separated by
a network of channels. In contrast, all of the sad4ARS mutant
strains form a biofilm lacking distinct macrocolonies with de-
fined borders. Furthermore, the network of channels seen in
the WT is drastically reduced in all of the sadARS mutants. A
similar striking phenotype was observed for the AsadRS::Gm"
mutant compared to the WT when visualized by CSLM (Fig.
30).

Quantitative analysis of biofilm structure. Visual inspection
of the biofilm formed by sad4ARS mutants relative to that
formed by the WT indicated that the mutants are defective for
mature biofilm architecture. To confirm our observations in
the flow cell, we utilized the COMSTAT image analysis pro-
gram to perform a quantitative analysis of biofilm architecture
at the 5-day time point (28). As shown in Table 4, four vari-
ables were used to evaluate biofilm architecture. The WT and
the sadARS mutants had the same maximum thickness; how-
ever, the mean thickness of the mutants was ~2-fold greater
than that of the WT. The increased mean thickness in this
analysis reflects the decreased prevalence of channels (i.e.,
“low-height” regions) in the mutant strains. The increased
total biomass and decreased roughness coefficient (a measure
of biofilm heterogeneity) in the biofilms formed by the mutants
is consistent with the small, poorly defined channels observed
for these mutant strains (Fig. 3B and C). Taken together, these
quantitative analyses support our visual observations.

Expression of the sadARS locus. Semiquantitative RT-PCR
was used to examine the relative steady-state levels of the
sadARS transcripts, using primer pairs specific for each tran-
script (see Materials and Methods and Table 2). We found that
the sad-160::Tn5 mutant strain expresses the sadR and sadS
transcripts at much higher levels (~20-fold) than the WT
strain (Fig. 4A and B). Overexpression of sadR and sadS in the
Tn5 mutant is likely due to an outwardly directed promoter
activity associated with Tn5 (Fig. 2A). The activation of genes
by insertion of Tn5-derived transposons has been documented
previously (3, 37, 74). However, we cannot rule out an alter-
native possibility that the Tn5 insertion has disrupted a nega-
tive regulatory element in the intergenic region between the
two RRs. This mutant also shows increased expression of the
sadA transcript, but the increase is only twofold compared to
that in the WT (Fig. 4B). We also quantified expression levels
of the sadARS transcripts in each of the mutant strains relative
to the WT. In the AsadRS::Gm" mutant, the sadR and sadS
transcripts are undetectable, as expected. Similarly, in the
AsadR mutant, sadR expression is undetectable; however, lev-
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FIG. 3. Biofilm formation under continuous flow. Biofilm formation at day 2 (A) and day 5 (B) is shown for modified EPRI-grown bacteria in
a flow cell. (A) Top-down phase-contrast micrographs at a magnification of X1,400 are shown for the WT and three representative mutants.
(B) Top-down fluorescence images of 5-day-old biofilms at a magnification of X630. (C) CSLM images of 5-day old biofilms, at a magnification
of X600, of the WT and the AsadRS::Gm" mutant, showing the xy and xz planes. Flow cell experiments were performed as described in Materials

and Methods.

els of sadS transcript are elevated (~8-fold) relative to those in
the WT. These data suggest that SadR may negatively regulate
SadS and potentially autoregulate its own expression, since the
sadRS genes appear to be in an operon (see below). In both the
AsadRS::Gm" and AsadR mutant strains, the sadA mRNA is
expressed at levels comparable to those in the WT. In the
AsadA mutant, expression of sadR and sadS$ is comparable to
that seen for the WT.

TABLE 4. COMSTAT: quantitative analysis of biofilm structure®

Mean Maximum Total Roughness

Strain thickness thickness biomass coefficient
(m) (wm) (pm*/pm?)

WT 16.5 (6.4) 76.8 (11) 15.2(6.3) 1.3 (0.2)

sad-160::Tn5 34.8 (7.6) 81.0 (8.2) 32.0(7.3) 0.7 (0.1)

AsadRS::Gm" 32.8 (4.5) 81.3 (8.4) 30.0 (3.8) 0.8 (0.1)

AsadA 25.1(7.9) 77.2 (6.4) 21.3(6.4) 0.9 (0.2)

“ Values are means of data from six z-series image stacks for each strain taken
at day 5. The number in parentheses indicates the standard deviation.
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FIG. 4. Expression of the sadARS locus. (A) Semiquantitative RT-
PCR analysis of sadR expression in planktonically grown cells of WT
strain PA14 and various isogenic sadARS mutants. (B) Relative ex-
pression levels of the sadR, sadA, and sadS genes in the WT and
various sadARS mutants in planktonic cultures analyzed as for panel A.
Expression levels are measured in fluorescence units (emitted at 537
nm), using Image Quant software and normalized to the rplU gene.
(C) Semiquantitative RT-PCR analysis of sadR, sadA, and sadS gene
expression in planktonic (P)- versus biofilm (B)-grown populations of
the WT and the sad-160::Tn5 mutant. (D) Expression levels from
panel C, measured in fluorescence units (as described above) and
normalized to the rplU gene. Error bars indicate standard deviations.

The genomic arrangement of the sadR and sadS genes sug-
gests that these genes comprise an operon. To test this predic-
tion, we used RT-PCR to detect a product by using three
different primer pairs that span the 100-bp region between the
open reading frames. We were able to amplify products of the
expected size from the WT strain, and these products were
present at elevated levels in the sad-160::Tn5 mutant and were
absent from the AsadRS::Gm" mutant (data not shown). Thus,
the sadR and sadS$ genes appear to be cotranscribed.

Biofilm versus planktonic expression. We investigated
whether expression of the sadARS locus might be differentially
regulated at the transcriptional level in planktonic- versus bio-
film-grown populations. We used semiquantitative RT-PCR to
assess the relative steady-state levels of the sadARS transcripts
in planktonic- versus biofilm-grown cells in both the WT and
sad-160::Tn5 mutant strains (Fig. 4C and D). In WT cells,
expression of sadR and sadS is not significantly different in
planktonic versus biofilm populations, but sadA gene expres-
sion is slightly decreased (~2-fold) in a biofilm. In the
sad-160::Tn5 mutant, all three genes show increased expres-
sion relative to the WT in both planktonic and biofilm samples.
Therefore, this mutant exhibits a constitutive high-level expres-
sion of sadR and sadS, regardless of growth mode. The sadA
transcript level shows a slight decrease (~1.5-fold) in the
sad-160::Tn5 mutant grown in a biofilm, as was also observed
for the WT.

Identification of SadARS-regulated genes by using DNA mi-
croarrays. In order to better understand the role of the Sa-
dARS regulatory system during biofilm formation, we used
DNA microarray analysis to identify potential gene targets of
this system. Ideally, such an analysis would be performed un-
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der conditions in which the regulatory system is known to be
active. However, in the case of the SadARS system, we do not
know when SadARS activity is required during the process of
biofilm formation, nor do we know the specific signals required
for SadARS activation. To address these potential limitations,
we approached the microarray analysis in two different ways, as
described below.

First, we compared gene expression in the WT strain with
that in the AsadRS::Gm" mutant strain in both planktonic and
biofilm modes of growth. Gene expression profiles of plank-
tonic cultures of the WT and AsadRS::Gm" mutant were de-
termined for cells grown in chemostats (maintained in early
logarithmic phase [ODg, of 0.2]) in a minimal EPRI medium
supplemented with glucose and CAA. RNA for comparison of
gene expression profiles of the WT and AsadRS::Gm" mutant
biofilms was obtained from cells grown on plastic filter devices
for a period of 5 days in chemostats with the same minimal
medium used for the planktonic studies. Analysis of the mi-
croarray data shows that for planktonically grown bacteria, 61
genes were differentially expressed to a statistical significance
of P < 0.005 between the WT and the AsadRS::Gm" mutant
(see Table S1 in the supplemental material), whereas for these
same strains grown as biofilms, ~200 genes showed differential
expression at this same level of significance (see Table S2 in
the supplemental material).

The second approach to identifying SadARS targets is based
on several studies which have shown that overexpression of an
RR could be used to identify valid targets of a two-component
regulatory system (8, 29, 41, 52, 54). We reasoned that use of
the sad-160::Tn5 mutant, in which the SadARS system is con-
stitutively overexpressed, might allow us to identify candidate
gene targets in the absence of activating signals. The RNA for
gene expression profiles comparing the WT versus AsadS$ ver-
sus sad-160::Tn5 strains was obtained from planktonic, batch-
grown, test-tube cultures in early stationary phase (ODg, of
~1.1), using M63 minimal medium supplemented with glucose
and CAA. Analysis of these data revealed that ~740 genes
were differentially expressed at a statistical significance of P <
0.005 in the sad-160::Tn5 mutant compared to the WT,
whereas only ~100 genes showed differential expression be-
tween the AsadS mutant and the WT at this same level of
significance (see Table S3 in the supplemental material).

Upon closer inspection of the genes whose expression was
significantly and consistently altered among these microarray
studies, we noted differential expression of genes encoding the
TTSS. The TTSS in P. aeruginosa is a contact-dependent pro-
tein secretion and delivery system that is responsible for the
translocation of bacterial virulence effectors directly into the
host cell cytoplasm. This system consists of at least 35 coordi-
nately regulated gene products required for the secretion and
translocation of effector proteins. Most of the TTSS genes are
organized in a cluster of five operons on the P. aeruginosa
chromosome. Genes encoding the effector proteins are located
elsewhere on the chromosome (20, 21, 46, 79-81).

Expression of 35 TTSS genes was elevated (2.7-fold on av-
erage, ranging from 1.6- to 4.1-fold) in the AsadRS::Gm" mu-
tant growing in a biofilm relative to a WT biofilm (Table 5). In
addition, the genes exoT (PA0044) and exoY (PA2191), encod-
ing two of the four known TTSS effector proteins, also showed
elevated expression in this analysis. No change in expression
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TABLE 5. TTSS genes regulated by SadARS as determined by DNA microarray analysis

Fold change in expression”

PA no. Gene Predicted function®

AsadRS::Gm/WT, biofilm Tn5/WT
PA0044 exoT Toxin, ADP-ribosyltransferase 34 —3.8¢
PA1690 pscU Translocation machinery 2.0
PA1691 pscT Translocation machinery 1.9
PA1692 Translocation machinery 3.7 -2.0
PA1693 PScR Translocation machinery 2.2
PA1694 pscQ Translocation machinery 32 -1.7
PA1695 pscP Translocation machinery 2.8
PA1696 pscO Translocation machinery 4.1 -13
PA1697 ATP synthase 2.4
PA1698 popN Outer membrane protein 2.4
PA1699 Unknown 2.5
PA1700 Unknown 2.8
PA1701 Unknown 4.0 -1.8
PA1702 Unknown 1.6
PA1703 perD Unknown 2.7
PA1704 pcrR Transcriptional regulator 1.9
PA1705 pcrG Type III regulatory protein 2.8 -1.5
PA1706 perV Translocation machinery 2.9¢ —3.3¢
PA1707 perH Type III regulatory protein 2.7¢ —4.2¢
PA1708 popB Pore formation 2.9¢ —4.0¢
PA1709 popD Pore formation 2.9 -3.7
PA1710 exsC TTSS regulator 2.6 =32
PA1711 Unknown -1.7
PA1712 exsB TTSS regulator 1.6 -1.6
PA1713 exsA TTSS regulator 2.0 -1.3¢
PA1714 exsD TTSS regulator 2.8 —-2.0¢
PA1715 pscB Translocation machinery 3.1 -1.5
PA1716 pscC Outer membrane protein 3.4 -1.6
PA1717 pscD Translocation machinery 2.5 -1.5
PA1718 pscE Translocation machinery 3.1 -3.2
PA1719 pscF Translocation machinery 2.7¢ —2.9¢
PA1720 pscG Translocation machinery 2.1 -1.8
PA1721 pscH Translocation machinery 2.5 -2.1
PA1722 pscl Translocation machinery 3.5¢ —2.44
PA1723 psc] Translocation machinery 2.6 -13
PA1724 pscK Translocation machinery 2.4
PA1725 pscL Translocation machinery 23
PA2191 exoY Toxin, adenylate cyclase 32 -2.0

“ Predicted functions based on data at www.Pseudomonas.com.

® Fold changes determined using the program CyberT, at a P value of <0.005.
¢ Confirmed by QRT-PCR on original array samples.

4 Confirmed by QRT-PCR on original array samples plus two independent samples.

was detected for these genes in the comparison of the WT and
the AsadRS::Gm" mutant grown planktonically in chemostats
(see Table S1 in the supplemental material).

We also found that 25 TTSS genes, including exoT and exoY,
showed decreased expression (2-fold on average, ranging from
1.3- to 4.2-fold) in the planktonic batch-grown sad-160::Tn5
mutant relative to the WT. None of the TTSS genes were
differentially expressed in the planktonic, batch-grown AsadS$
mutant relative to the WT (see Table S3 in the supplemental
material), a result consistent with the lack of differential ex-
pression of the TTSS genes observed in the comparison of the
chemostat-grown planktonic WT versus the AsadRS::Gm" mu-
tant.

QRT-PCR analysis of TTSS gene expression in the WT and
in sadARS mutants. Observations from our microarray studies
prompted us to further examine whether the SadARS system
might regulate TTSS gene expression. To this end, we used
QRT-PCR to assess the relative steady-state levels of TTSS
gene expression in various sadARS mutant backgrounds. We

chose eight TTSS genes whose expression was altered in the
array data (PA0044, PA1706, PA1707, PA1708, PA1713,
PA1714, PA1719, and PA1722). The expression patterns ob-
served for each of these genes in the sad4ARS mutants, as
measured by QRT-PCR, are nearly identical. The results for
three representative genes are shown in Fig. SA. As observed
in the array experiments, expression of TTSS genes is reduced
(~5-fold on average) in the sad-160::Tn5 mutant relative to the
WT. In the AsadRS::Gm" mutant (Fig. 5A) and the AsadS
mutant (data not shown), levels are approximately WT,
whereas in the AsadR mutant, TTSS transcript levels are less
than the WT levels and are comparable to those seen for the
sad-160::Tn5 mutant (3.4-fold reduced on average). In the
AsadA mutant, expression of the TTSS genes is elevated (1.5-
fold on average) relative to the WT level.

Analysis of biofilm formation by TTSS mutants. One regu-
latory role of the SadARS system might include modulating
TTSS gene expression during biofilm formation. Hence, we
speculated that mutants defective for TTSS expression and/or
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FIG. 5. Characterization of TTSS gene expression and TTSS mu-
tant biofilm formation. (A) QRT-PCR analysis of TTSS gene expres-
sion of WT strain PA14 and isogenic sad4RS mutants. Relative ex-
pression levels of PA1706 (pcrV), PA1707 (pcrH), and PA1708 (popB)
in the WT (grey bars), sad-160::Tn5 (white bars), AsadRS (black bars),
AsadR (hatched bars), and AsadA (stippled bars) strains are shown.
Expression levels were quantified as picograms of input cDNA and
normalized to rplU levels. Relative expression levels are plotted, with
WT levels set equal to 1. (B) Quantification of the biofilm formed by
WT PAO1 and the pcrV:ISphoA/hah, pcrH:1SphoA/hah, and
popB::ISphoA/hah mutants in microtiter dishes. Biofilms were quanti-
fied at 6 h after inoculation into minimal glucose medium plus MgSO,
and CAA. Error bars indicate standard deviations. (C) Biofilm forma-
tion at the ALI in 24-well flat-bottomed plates. Top-down phase-
contrast micrographs at a magnification of X400 are shown for the WT
PAOT1 strain and two representative TTSS mutants. Bar, 35 pm. The
lower panels are centered at 140 wm below the ALI, as indicated.
Strains were grown in minimal glucose medium plus MgSO, and CAA
for 6 h. ALI assays were performed as described in Materials and
Methods.

function might also show defects in biofilm formation. To test
this hypothesis, we obtained several TTSS transposon mutants
from the PAO1 and PA14 transposon mutant libraries (35;
http://pga.mgh.harvard.edu/cgi-bin/pal4/mutants/retrieve.cgi)
and examined these strains in the microtiter plate biofilm as-
say. Biofilm formation was quantified at 6 h after inoculation
into minimal glucose medium plus CAA, and results for three
representative PAO1 mutants are plotted in Fig. SB. The data
indicate that TTSS mutants show increased CV staining (al-
though to slightly different degrees) and thus enhanced biofilm
formation compared to the WT. We observed similar en-
hanced biofilms for the PA14-derived transposon mutants with
mutations in the TTSS pscl and pcrD genes (data not shown).

We next examined biofilm formation using phase-contrast
microscopy to visualize cell attachment after 6 h of incubation
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under static conditions in minimal glucose medium plus CAA
(Fig. 5C). Shown in the top left panel, WT cells have attached
(dark regions) at the ALI and have formed small clusters or
microcolonies interspersed by the plastic surface devoid of
bacteria (light gray areas). In the lower left panel (centered
~140 pm below the ALI), such cell-free spaces are again
observed, and cell clusters are relatively small. In contrast, pcrl/
mutant cells show almost complete coverage of the surface
both at and below the ALI (middle panels). In addition, pcrV”
mutant cells formed a thicker layer than the WT and formed
large cell clusters below the ALI (compare left and middle
bottom panels). In the rightmost panels, popB mutant cells also
show increased attachment, with fewer cell-free spaces than for
the WT. Below the ALL the layer of popB mutant cells appears
to be thicker than the WT layer but not as dense as that of pcrl/
mutant cells. Thus, the microscopic data support the observa-
tions from quantification of CV staining in the microtiter plate
assay; that is, TTSS mutants exhibit enhanced biofilm forma-
tion compared to the WT.

DISCUSSION

In this study we describe the identification and initial genetic
characterization of a three-component regulatory system re-
quired for biofilm formation. This regulatory locus adds to a
growing list of regulatory factors that have been shown to be
involved in the regulation of biofilm formation (10, 16, 55, 59).
SadARS, the three-component system described here, appears
to play a role in biofilm maturation, in particular the formation
of large macrocolonies and fluid-filled channels observed in
some mature P. aeruginosa biofilms (39, 40). This flow cell
phenotype is distinct from those previously described, suggest-
ing that the sadARS system affects a step in biofilm maturation
distinct from that affected by other regulatory loci.

The original sad-160::Tn5 mutant was isolated due to its
reduced ability to form a biofilm in a 96-well microtiter dish
relative to the WT. This static system is typically thought to be
effective for monitoring early events in biofilm formation, and
thus it was surprising that a mutant initially identified with a
phenotype in a microtiter plate screen at 8 h displayed a late
biofilm maturation defect in the flow cell. However, it appears
that the particular allele isolated, a transposon insertion that
up-regulates the sadS and sadR genes over 20-fold, leads to a
defect in biofilm formation that is evident at as early as 4 h in
the microtiter dish (Fig. 1B). The more subtle biofilm defect of
the sadARS knockout mutants observed at 8 and 24 h in the
microtiter dish is consistent with a later defect in biofilm for-
mation (as observed after 5 days in the flow cell [Fig. 3B and
C]) and may reflect differences in the kinetics of biofilm for-
mation in the static microtiter plate assay versus the flow cell
system.

Biofilm maturation appears to require all three sadARS
genes, and all of the mutations in this locus appear to confer
the same defect in biofilm maturation when observed in a flow
cell system. The biofilms formed between days 0 and 2 are
indistinguishable from the WT; however, strains lacking a func-
tional sadARS system do not make a normally structured ma-
ture biofilm by day 5 (Fig. 3). Interestingly, it appears that
overexpression of sadS and/or sadR also leads to a defect in
biofilm maturation. Given that we observed a constitutive low-
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level expression of the sadARS genes in the WT in both plank-
tonic and biofilm modes of growth, it may not be surprising
that overexpression of sadARS in the sad-160::"Tn5 mutant
would disrupt what appears to be an otherwise carefully reg-
ulated system. Furthermore, there are several other examples
in which overexpression or hyperactivity of two-component
systems results in disruption of the signal transduction pathway
(8, 29, 41, 52, 54).

We used DNA microarray analysis to identify candidate
gene targets of the SadARS regulatory system that might be
important for its role in biofilm formation. In one approach, we
compared gene expression in the WT versus the AsadRS::Gm"
mutant when grown in chemostats either planktonically or as
biofilms. Statistical analysis of the data revealed that expres-
sion of 35 TTSS genes was elevated in the AsadRS::Gm" mu-
tant relative to the WT, but only in the biofilm mode of growth.
In a second approach to microarray analysis, we compared
gene expression in planktonically grown batch cultures of the
WT versus the AsadS mutant versus the sad-160::Tn5 mutant.
The results from this analysis showed that expression of 25
TTSS genes was reduced in the sad-160::Tn5 mutant but un-
affected in the AsadS mutant relative to the WT. The fact that
expression of the TTSS genes is unaltered in batch-grown cells
of the AsadS mutant is consistent with the results from che-
mostat-grown planktonic cells. However, it appears that the
sad-160::Tn5 mutant, likely as a result of the overexpression of
sadRS, does show altered expression of TTSS genes in plank-
tonic, batch-grown cells.

While array studies showed that the AsadRS::Gm" mutant
grown as a biofilm has elevated TTSS gene expression, these
same genes are repressed in the planktonically grown
sad-160::Tn5 mutant. SadARS regulation of TTSS gene ex-
pression was further examined in batch-grown planktonic cul-
tures by QRT-PCR (Fig. 5A). As expected from the array
studies, TTSS gene expression is repressed in the sad-160::Tn5
mutant relative to the WT under these conditions. We postu-
late that the overexpression of the sadRS genes in this mutant
leads to aberrant activity of this system under planktonic
growth conditions, making it difficult to draw any firm conclu-
sions from these data regarding “normal” SadARS-mediated
control of gene expression. Interestingly, the AsadR mutant
also shows decreased expression of TTSS genes under these
planktonic conditions. In contrast, loss of the other RR, SadA,
resulted in a small derepression of the TTSS genes. Perhaps
SadR and SadA act to balance activation and repression of the
TTSS genes, respectively. Consistent with this idea, loss of
either the sadRS genes (Fig. SA) or sadS alone (not shown)
leads to either a slight derepression or no change in expression
of the TTSS genes. That is, in the absence of the appropriate
input signal via SadS, and therefore loss of appropriate sig-
nal(s) to SadR and SadA, perhaps there is a return to a base-
line level of expression of the TTSS genes that is similar to that
in the WT.

The studies described here support recent findings from
other laboratories showing a link between the regulation of
pathogenesis and biofilm formation. For example, Irie and
coworkers have recently shown that BvgAS, a two-component
regulatory system controlling virulence gene expression in Bor-
detella spp., is also important in regulating biofilm formation
(32). The BvgAS system regulates gene expression in at least
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three distinct phases: a virulent Bvg" phase, a nonvirulent
Bvg ™ phase, and an intermediate Bvg' phase (45, 49). In Bor-
detella bronchiseptica, Irie et al. reported that biofilm forma-
tion is maximal in the Bvg' phase and requires both expression
of BvgAS-regulated filamentous hemagglutinin (FHA) ad-
hesins and the concomitant repression of the toxin adenylate
cyclase/hemolysin (ACY), which is also under BvgAS control.

An in-frame deletion of the cya gene (which codes for ACY)
leads to increased biofilm formation in the Bvg" phase, com-
parable to that observed in the Bvg' phase, suggesting that
ACY expression is capable of suppressing biofilm formation in
the Bvg™ phase. Irie et al. presented evidence to suggest that
biofilm inhibition is mediated, at least in part, by direct inter-
action of ACY with FHA (32), a model consistent with data
from Zaretzky et al. (83) showing that ACY and FHA interact
directly in Bordetella pertussis.

The notion that the SadARS system might play a role in
pathogenesis in addition to regulating biofilm formation is not
surprising given the similarity between the SadS and SadA
proteins and the BvgS and BvgA proteins, respectively. Evi-
dence supporting a role for SadS in promoting pathogenesis
comes from studies by Gallagher et al., using a nematode
model system for P. aeruginosa virulence (25). In those studies,
the authors identified SadS as a regulator of several quorum-
sensing-controlled genes, including the 4/l gene and the Rh-
IIR-regulated genes required for cyanide production (hcn) in
P. aeruginosa PAO1 (25). Cyanide is required for rapid killing
of the nematode Caenorhabditis elegans, and it was shown that
a sadS mutant has reduced levels of cyanide production and a
fivefold reduction in virulence relative to the WT in the C.
elegans model system (24). We did not observe any effects of
the AsadS mutation on rhll or hcn gene expression in our
microarray analysis; however, our studies were performed with
a different strain and under different growth conditions. In
addition to similarity to BvgS, the SadS protein also shows
similarity to VieS, a V. cholerae sensor shown to be involved in
cholera toxin expression in vitro (71) and required for full
virulence in vivo (44).

We have identified gene targets of the SadARS regulatory
system; however, the specific mechanism by which SadARS
regulates expression of these genes is unclear. The QRT-PCR
data suggest that SadS and SadA are important for controlling
expression of TTSS genes. SadA contains an HTH motif and
thus may regulate TTSS gene expression at the level of tran-
scription. In Bordetella spp., BvgA also contains an HTH motif,
and under activating conditions (in the Bvg™" phase), this pro-
tein binds to virulence gene promoters and activates transcrip-
tion. BvgA is generally thought to be an activator of virulence
gene expression; however, our data suggest that SadA may
have a small negative effect on TTSS expression. In Bordetella
spp. an additional class of genes is repressed under conditions
where virulence factor genes are maximally expressed, and
repression of these genes is also under bvg control. The bvgR
gene, which is located immediately downstream of bvgAS, has
been shown to be required for repression of all of the known
bvg-repressed genes in B. pertussis (50, 51). In contrast to
BvgR, SadR appears to be a positive regulatory factor in re-
gard to the TTSS genes. While there may be sequence simi-
larity and some functional analogies between the BvgARS and
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SadARS systems, many details of their regulatory pathways
and impact on cell physiology are likely to differ.

The mechanism of BvgR-mediated repression is unknown;
however, BvgR contains an EAL domain and was the founding
member of the EAL protein family. Since its discovery, numer-
ous examples of proteins containing EAL domains, including
PleD (60), VieA (72), and SadR, have emerged. The EAL
domain has been associated with a phospodiesterase activity
that degrades the unusual nucleotide known as cyclic di-GMP,
producing GMP (64, 70). Recent evidence shows that the VieA
RR is involved in the regulation of biofilm formation via its
ability to regulate the intracellular concentration of cyclic di-
GMP (72). Whether and how the SadR EAL domain is in-
volved in biofilm formation and/or pathogenesis remains to be
determined.

The phenotypic analysis of sadARS mutants in the flow cell
system along with data from our microarray and QRT-PCR
studies implicate the SadARS system as a regulator of both
biofilm formation and TTSS gene expression. Furthermore,
the observation that TTSS mutants show enhanced biofilm
formation relative to the WT (Fig. 5B and C) suggests that
modulation of TTSS gene expression may be an important
means of regulating biofilm formation. Taken together, these
data suggest that the SadARS regulatory system may function
to promote biofilm formation, possibly in part by repressing
expression of the TTSS. Perhaps biofilm formation and con-
tact-dependent secretion are incompatible. Given that the
TTSS is a highly specialized virulence system utilized during
host cell infection, it is also possible that the SadARS system
functions at a more general level in controlling a switch be-
tween a biofilm mode and a pathogenic mode of existence. The
studies presented here were conducted under conditions con-
ducive to biofilm formation and not to TTSS expression and
assembly. It is plausible that under different circumstances, the
SadARS system may promote TTSS expression, favoring
pathogenesis over biofilm formation. Thus, the SadARS sys-
tem may function to control the switch from one developmen-
tal program, such as biofilm formation, to an alternate path-
way, such as pathogenesis.
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