(a) Cross-sectional image of plasmonic nanocomposite in which the arrows indicate each of the samples. Light blue, blue, green and red arrows represent the platinum (top adhesion layer for cutting of the sample), nanocomposite, SiO2 layer and silicon wafer, respectively; (b) Complex refractive index of the Ag–SiO2 nanocomposite with 15% (black), 20% (red) and 40% (blue) filling factors. Solid and dotted lines represent the real and imaginary parts of RI, correspondingly; (c) Reflection spectra of 20 nm Ag–SiO2 with 20% (red) and 30% (blue) filling factors deposited atop 50 nm SiO2-coated silicon measured at different angles of incidence with s—(solid lines) and p—polarization (dotted lines); (d) Calculated transmission enhancement of silicon by plasmonic coating, which is calculated by normalization of the transmission of coated silicon in comparison to the bare one. The black line shows the normalized transmission of bare silicon while the red curve is the normalized transmission of the Ag–SiO2 nanocomposite deposited on SiO2-coated silicon (adapted with permission from [142]; Copyright 2014, Royal Society of Chemistry); (e) Amplitude of the electric field in a cross-section through the plasmonic nanocomposite (between z = 0 nm and z = 20 nm). The incident’s linearly polarized plane wave propagates in the +z-direction. The plasmonic nanocomposite has a filling fraction of 20% and consists of randomly arranged non-touching silver nanospheres with a diameter of 4.1 nm embedded in a generic mondisperse dielectric material (ϵ = 2.25). The amplitude is shown at an incident wavelength of 430 nm. (Adapted with permission from [143]. Copyright 2014, MDPI).