Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Sep;87(17):6522–6526. doi: 10.1073/pnas.87.17.6522

Role of 1,25-dihydroxycholecalciferol in growth-plate cartilage: inhibition of terminal differentiation of chondrocytes in vitro and in vivo.

Y Kato 1, A Shimazu 1, M Iwamoto 1, K Nakashima 1, T Koike 1, F Suzuki 1, Y Nishii 1, K Sato 1
PMCID: PMC54568  PMID: 2395858

Abstract

The effects of vitamin D metabolites on alkaline phosphatase [ALPase; orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] activity, a marker of terminal differentiation, in chondrocyte cultures and growth plates in vivo were examined. In cultures of pelleted rabbit growth-plate chondrocytes, 1,25-dihydroxycholecalciferol (1,25-dihydroxyvitamin D3) increased the contents of DNA and macromolecules containing uronic acid (proteoglycans). It also decreased ALPase activity with an ED50 of less than 1 nM. Other vitamin D3 metabolites, such as 24,25-dihydroxycholecalciferol and 25-hydroxycholecalciferol, had little effect on these biochemical parameters. In rachitic growth plates, the uronic acid content was half that in normal growth plates, whereas ALPase activity was 2.5 times that in normal growth plates. Administration of 1,25-dihydroxycholecalciferol at a low dose (0.1 micrograms per kg of body weight) to rachitic rats increased the uronic acid content 1.4-fold and decreased ALPase activity by 40%. This compound, like 24,25-dihydroxycholecalciferol (10 micrograms per kg of body weight), increased the calcium level of the blood. However, administration of 24,25-dihydroxycholecalciferol had little effect on the uronic acid and ALPase contents in growth plates. These observations suggest that 1,25-dihydroxycholecalciferol is a bioactive form of vitamin D that plays an important role in the control of chondrocyte terminal differentiation.

Full text

PDF
6522

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe E., Miyaura C., Sakagami H., Takeda M., Konno K., Yamazaki T., Yoshiki S., Suda T. Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4990–4994. doi: 10.1073/pnas.78.8.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  3. Binderman I., Sömjen D. 24,25-Dihydroxycholecalciferol induces the growth of chick cartilage in vitro. Endocrinology. 1984 Jul;115(1):430–432. doi: 10.1210/endo-115-1-430. [DOI] [PubMed] [Google Scholar]
  4. Chacko S., Abbott J., Holtzer S., Holtzer H. The loss of phenotypic traits by differentiated cells. VI. Behavior of the progeny of a single chondrocyte. J Exp Med. 1969 Aug 1;130(2):417–442. doi: 10.1084/jem.130.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connerty H. V., Briggs A. R. Determination of serum calcium by means of orthocresolphthalein complexone. Am J Clin Pathol. 1966 Mar;45(3):290–296. doi: 10.1093/ajcp/45.3.290. [DOI] [PubMed] [Google Scholar]
  6. Hale L. V., Kemick M. L., Wuthier R. E. Effect of vitamin D metabolites on the expression of alkaline phosphatase activity by epiphyseal hypertrophic chondrocytes in primary cell culture. J Bone Miner Res. 1986 Dec;1(6):489–495. doi: 10.1002/jbmr.5650010602. [DOI] [PubMed] [Google Scholar]
  7. Harmand M. F., Thomasset M., Rouais F., Ducassou D. In vitro stimulation of articular chondrocyte differentiated function by 1,25-dihydroxycholecalciferol or 24R,25-dihydroxycholecalciferol. J Cell Physiol. 1984 Jun;119(3):359–365. doi: 10.1002/jcp.1041190315. [DOI] [PubMed] [Google Scholar]
  8. Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
  9. Holick M. F., Kleiner-Bossaller A., Schnoes H. K., Kasten P. M., Boyle I. T., DeLuca H. F. 1,24,25-Trihydroxyvitamin D3. A metabolite of vitamin D3 effective on intestine. J Biol Chem. 1973 Oct 10;248(19):6691–6696. [PubMed] [Google Scholar]
  10. Ibbotson K. J., Roodman G. D., McManus L. M., Mundy G. R. Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol. 1984 Aug;99(2):471–480. doi: 10.1083/jcb.99.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iwamoto M., Sato K., Nakashima K., Shimazu A., Kato Y. Hypertrophy and calcification of rabbit permanent chondrocytes in pelleted cultures: synthesis of alkaline phosphatase and 1,25-dihydroxycholecalciferol receptor. Dev Biol. 1989 Dec;136(2):500–507. doi: 10.1016/0012-1606(89)90275-3. [DOI] [PubMed] [Google Scholar]
  12. Kato Y., Gospodarowicz D. Effect of exogenous extracellular matrices on proteoglycan synthesis by cultured rabbit costal chondrocytes. J Cell Biol. 1985 Feb;100(2):486–495. doi: 10.1083/jcb.100.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kato Y., Iwamoto M. Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation. J Biol Chem. 1990 Apr 5;265(10):5903–5909. [PubMed] [Google Scholar]
  14. Kato Y., Iwamoto M., Koike T., Suzuki F., Takano Y. Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9552–9556. doi: 10.1073/pnas.85.24.9552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kato Y., Shimazu A., Nakashima K., Suzuki F., Jikko A., Iwamoto M. Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth-plate chondrocyte cultures. Endocrinology. 1990 Jul;127(1):114–118. doi: 10.1210/endo-127-1-114. [DOI] [PubMed] [Google Scholar]
  16. Lau K. H., Onishi T., Wergedal J. E., Singer F. R., Baylink D. J. Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clin Chem. 1987 Apr;33(4):458–462. [PubMed] [Google Scholar]
  17. McNutt K. W., Haussler M. R. Nutritional effectiveness of 1,25-dihydroxycholecalciferol in preventing rickets in chicks. J Nutr. 1973 May;103(5):681–689. doi: 10.1093/jn/103.5.681. [DOI] [PubMed] [Google Scholar]
  18. PEEL J. L., LOUGHMAN B. C. Some observations on the role of copper ions in the reduction of phosphomolybdate by ascorbic acid and their application in the determination of inorganic orthophosphate. Biochem J. 1957 Apr;65(4):709–716. doi: 10.1042/bj0650709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raisz L. G., Kream B. E., Smith M. D., Simmons H. A. Comparison of the effects of vitamin D metabolites on collagen synthesis and resportion of fetal rat bone in organ culture. Calcif Tissue Int. 1980;32(2):135–138. doi: 10.1007/BF02408532. [DOI] [PubMed] [Google Scholar]
  20. Reach G., Elkik F., Parry C., Corvol P., Milleiz P. Increased urate excretion after o,p'-DDD. Lancet. 1978 Jun 10;1(8076):1269–1269. doi: 10.1016/s0140-6736(78)92515-1. [DOI] [PubMed] [Google Scholar]
  21. Schwartz Z., Knight G., Swain L. D., Boyan B. D. Localization of vitamin D3-responsive alkaline phosphatase in cultured chondrocytes. J Biol Chem. 1988 May 5;263(13):6023–6026. [PubMed] [Google Scholar]
  22. Schwartz Z., Schlader D. L., Swain L. D., Boyan B. D. Direct effects of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 on growth zone and resting zone chondrocyte membrane alkaline phosphatase and phospholipase-A2 specific activities. Endocrinology. 1988 Dec;123(6):2878–2884. doi: 10.1210/endo-123-6-2878. [DOI] [PubMed] [Google Scholar]
  23. Shepard R. M., Horst R. L., Hamstra A. J., DeLuca H. F. Determination of vitamin D and its metabolites in plasma from normal and anephric man. Biochem J. 1979 Jul 15;182(1):55–69. doi: 10.1042/bj1820055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shimomura Y., Yoneda T., Suzuki F. Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcif Tissue Res. 1975 Dec 22;19(3):179–187. doi: 10.1007/BF02564002. [DOI] [PubMed] [Google Scholar]
  25. Suda S., Takahashi N., Shinki T., Horiuchi N., Yamaguchi A., Yoshiki S., Enomoto S., Suda T. 1 alpha,25-dihydroxyvitamin D3 receptors and their action in embryonic chick chondrocytes. Calcif Tissue Int. 1985 Jan;37(1):82–90. doi: 10.1007/BF02557684. [DOI] [PubMed] [Google Scholar]
  26. Sömjen D., Binderman I., Weisman Y. The effects of 24R,25-dihydroxycholecalciferol and of 1 alpha,25-dihydroxycholecalciferol on ornithine decarboxylase activity and on DNA synthesis in the epiphysis and diaphysis of rat bone and in the duodenum. Biochem J. 1983 Aug 15;214(2):293–298. doi: 10.1042/bj2140293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sömjen D., Weisman Y., Binderman I., Kaye A. M. Stimulation of creatine kinase BB activity by 1 alpha,25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol in rat tissues. Biochem J. 1984 May 1;219(3):1037–1041. doi: 10.1042/bj2191037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Takigawa M., Enomoto M., Shirai E., Nishii Y., Suzuki F. Differential effects of 1 alpha,25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol on the proliferation and the differentiated phenotype of rabbit costal chondrocytes in culture. Endocrinology. 1988 Mar;122(3):831–839. doi: 10.1210/endo-122-3-831. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES