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Abstract

A normality assumption is typically adopted for the random effects in a clustered or longitudinal 

data analysis using a linear mixed model. However, such an assumption is not always realistic, and 

it may lead to potential biases of the estimates, especially when variable selection is taken into 

account. Furthermore, flexibility of nonparametric assumptions (e.g. Dirichlet process) on these 

random effects may potentially cause centering problems, leading to difficulty of interpretation of 

fixed effects and variable selection. Motivated by these problems, we proposed a Bayesian method 

for fixed and random effects selection in nonparametric random effects models. We modeled the 

regression coefficients via centered latent variables which are distributed as probit stick-breaking 

(PSB) scale mixtures. By using the mixture priors for centered latent variables along with 

covariance decomposition, we could avoid the aforementioned problems, and allow efficient 

selection of fixed and random effects from the model. We demonstrated the advantages of our 

proposed approach over other competing alternatives through a simulated example, and also via an 

illustrative application to a dataset from a periodontal disease study.
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1. Introduction

Linear mixed (effects) models are routinely used to analyze clustered and longitudinal data, 

where a common feature is the fidelity to the ‘Gaussian’ paradigm for the random effects 

and within subject random errors. Even though normality might be a reasonable model 

assumption, its violations may potentially impact the underlying estimation, prediction, etc 

of both the fixed and random effects. For example, consider the motivating data example 

from a clinical study conducted at the Medical University of South Carolina (MUSC) to 

determine periodontal health status of Gullah-speaking African American Type-2 diabetic 

(GAAD) subjects. One of the most important biomarkers to assess periodontal disease (PD), 

the clinical attachment level (or CAL, in mm), was measured for various pre-specified sites 
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within a mouth/subject, giving rise to a typical clustered data framework. Figure 1 (Panel a) 

plots the density histogram of site-level CAL for the full data, while Panels b and c display 

the density histogram and Q-Q plots of the empirical Bayes’ estimates of the subject-level 

random effects, obtained after fitting a classical linear mixed model (LMM), controlling for 

some clinical covariables as fixed effects (such as Age, Gender, etc, more details in Section 

5). These plots are indicative of the violation of the normality assumptions for the random 

effects, typically for a LMM analysis.

To allow for flexibility of distributions of the random effect, several frequentist 

considerations are available [1, 2, 3]. Under the Bayesian framework, a vast majority of 

current research centers around the nonparametric Dirichlet process (DP) priors [4], DP 

mixtures [5], and other specifications, allowing unknown distributions for random effects [6, 

7, 8, 9]. Under a LMM framework, inclusion of a covariate (say, age) only as a fixed effects 

component would quantify only the ‘average effect’ of age on the mean CAL (response), 

and leave out important information on how the age effect might vary across subjects. 

Hence, there is a need to also include a ‘random’ age effect to control for this with the 

ultimate goal to accommodate uncertainty of predictors and simultaneously achieve 

parsimony through variable selection and variance-covariance component selections. 

However, all of the methods described above do not accommodate this predictor uncertainty. 

One may potentially calculate AIC/BIC for each candidate model, yet this is infeasible 

unless the number of candidate predictors is modest. There does not exist any general 

consensus on the penalty for model complexity for a random effects model. Related 

frequentist propositions include score tests for random effect selection [10, 11, 12], a 

generalized likelihood ratio test [13], etc. However, these methods can not be directly 

utilized for the general subset selection problem. In a Bayesian context, a majority of work 

[14, 15, 16, 17, 18] focuses on variable/model selection in normal variance component 

models. Relaxing the normality assumption by a DP mixtures for the (unknown) random 

effects distribution, one may adopt the Basu and Chib [19] approach to compare the 

resulting semiparametric Bayesian model with the fully parametric linear model that 

excludes the random effect using marginal likelihoods and Bayes factors for DP mixtures. 

Such an approach is potentially feasible only when the number of competing random effect 

models is modest.

Under DP-related models for random effects, there is a difficulty in interpreting posterior 

inference for fixed effects and variance components of random effects due to the potential 

bias resulting from the unknown (distributional) specification of random effects. Under 

normality assumptions in the LMM, Chen and Dunson [17] proposed a Bayesian approach 

for random effects selection via a stochastic search variable selection algorithm [20] through 

a special decomposition of the random effects covariance. The Chen and Dunson’s model 

was extended [21] to fixed effects and random effects selection under linear and logistic 

mixed models. Unfortunately, it is not straightforward to modify these approaches to allow 

unknown random effects distributions due to difficulties in incorporating moment 

constraints. A center-adjusted approach was also proposed [22], however, it is difficult to 

incorporate random effects selection. The Chen and Dunson’s approach was also extended 

incorporating unknown distribution for random effects [23] using the centered stick-

breaking mixtures [24]. A potential problem still remains because the variance of the latent 
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variables related to random effects is not equal to one, resulting in non-unique 

decompositions of the covariance matrix for the random effects. Such decompositions may 

potentially affect the variance component selection and inferences. Cai and Dunson [25] 

developed a variable selection approach under the nonparametric random effects model with 

centered latent variables. However, the potential bias might still exist due to the 

nonparametric specification on the random effects.

In this article, we addressed some of the aforementioned limitations and developed a 

Bayesian approach for fixed and random effects selection with nonparametric distributions 

for random effects. By reparameterizing the random coefficients using centered latent 

variables relating to the fixed and random effects components, the proposed approach avoids 

the need for moment constraints, and the potential bias in estimation and variable selection. 

The centered latent variables were modeled by the probit stick-breaking (PSB) scale 

mixtures [24], allowing latent variables to be centered at the fixed effects. In addition, the 

centered reparametrization provided a way to incorporate variance-covariance components 

selection without violating the definition of decomposition of covariance matrix of the 

random effects. With these characteristics, the proposed method had more appropriate 

interpretation of the fixed effects and more efficient mixing behavior.

The paper proceeds as follows. Section 2 describes our Bayesian nonparametric 

specification of the LMM, the reparameterization of random coefficients, and the variable 

selection strategy. Section 3 outlines the posterior computational strategy, and related 

sampling procedures. Section 4 evaluates the performance of our method with existing 

alternatives using simulated data. Section 5 applies the methodology to the motivating PD 

dataset. Finally, Section 6 concludes, with some discussions.

2. Statistical Model

2.1. Nonparametric priors for random effects

We start with the definition of a typical LMM. Let yij be a response variable for the jth 

observation (j = 1, …, ni) from subject i (i = 1, …, n), xij and zij be a p × 1 vector and a q × 1 

vector of candidate predictors, respectively. The LMM for yi can be written as

(1)

where yi = (yi1, …, yini)′, Xi = (xi1, …, xini)′, Zi = (zi1, …, zini)′, β is a p × 1 vector of fixed 

effects regression coefficients, bi = (bi1, …, biq)′ ~ Nq(0, Σ) is a q × 1 vector of subject-

specific random effects with covariance matrix Σ, and εi is a residual error vector, typically 

assumed to be εi ~ N(0, σ2I).

To allow for flexibility of the distributional assumption for the random effects, if all of the 

candidate predictors are included, one may choose bi ~ G, where G is the unknown random 

effects distribution. Following the Bayesian approach [7], a prior distribution for G with 

support on the space of random probability measures can be chosen. A natural choice would 
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be the DP prior which could be specified as G ~ DP(αG0), where α is a precision parameter 

and G0 is the base distribution of the DP. Under this specification, for any partition B = (B1, 
…, Bk)′ of ℜ, we have {G(B1), …, G(Bk)} ~ D(αG0(B1), …, αG0(Bk)), where D(·) denotes 

the finite Dirichlet density. Under the stickbreaking representation of Sethuraman (1994) 

[26], we have

(2)

with δε denoting the degenerate distribution with all its mass at ε and V0 = 0. Hence, the 

random distribution G can be represented as an infinite set of point masses at locations 

generated independently from the base distribution. In addition, we have E(G) = G0, with a 

natural choice of G0 being the Nq(0,Σ) distribution, so that the prior is centered at the LMM. 

Under this specification, the expected value of yi (conditional on Xi and Zi) is E(yi |Xi,Zi, 

β,G) = Xiβ + ZiE(bi). Now, under the nonparametric DP setting, the random effects 

distribution cannot guarantee that the mean of random effects is centered at 0 as the random 

mean of G, E(bi) = ∫ bidG(bi), is typically non-zero. This leads to potential complications of 

interpretation and inference for the fixed effects corresponding to the random effects. In 

addition, the computational efficiency of Gibbs sampling algorithms for posterior 

computation in the LMM(and other hierarchical models) tends to depend strongly on the 

parameterization used [27]. For greater efficiency, one can focus on the centered 

parameterization: yi = Xiβi + εi, with βi ~ G, G ~ DP(αG0), and G0 = Np(μ,Σ), assuming Xi 

= Zi so p = q. In this case, the fixed effects can be expressed as β = ∫ βidG(βi) by integrating 

out the random effects. Li et al. [22]proposed a moment-adjustment procedure for inference 

on the fixed effects that are paired with the random effects and the variance components of 

the random effects with hierarchically centered DP prior. However, this approach assumes 

that all predictors are certainly included in the fixed and random effects components. In 

addition, it is not straightforward for this method to be extended to the case where fixed and 

random effects selection is taken into account. The reason is that the fixed and random 

effects must be paired in order to avoid the non-zero mean of random effect due to the DP 

setting. Yang [23] proposed a method for fixed and random effects selection with 

nonparametric distributions for the random effects. To avoid the potential biases caused by 

the nonparametric DP prior, the random effects are modeled nonparametrically by using the 

probit stick-breaking (PSB) scale mixtures [24].

The PSB approach [28, 29] was proposed for conditional distribution modeling with variable 

selection. Briefly, a probability measure G follows a PSB with base measure G0 if it has a 

representation of the form

(3)
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where Φ(·) denotes the cumulative standard normal distribution. [24] proposed priors for the 

residual density based on PSB scale mixtures and symmetrized PSB (sPSB) location-scale 

mixtures. Note that expression (3) is identical to the stick-breaking representation [26] of the 

DP, but the DP is obtained by replacing the stick-breaking weight Φ(ηh) with a beta(1, α) 

distributed random variable. Hence, the PSB process differs from the DP in using probit 

transformations of Gaussian random variables instead of betas for the stick lengths. In 

addition, ηh is not necessarily to be predictor-dependent, though it can be generalized as a 

predictor-dependent parameter. To allow the residuals of the linear regression model to 

follow an unknown distribution, a normal hierarchical structure was used with the proposed 

priors. For the scale PSB process mixture of Gaussian, the nonparametric distribution f(·) 

can be expressed as , where ph’s are defined as in (3), τh ~ (aτ, 

bτ) and (a, b) denote a gamma prior with mean of a/b and variance of a/b2. Note that the 

unknown density f(·) is expressed as a countable mixture of Gaussians centered at zero but 

with varying variances. Observations will be automatically allocated to clusters, with 

outlying clusters corresponding to components having large variance. Similarly, the 

location-scale sPSB mixture of Gaussians can be expressed as 

, and remains centered at zero while 

allowing for multimodal densities. The resulting property of centering at zero from the PSB 

approach provides us a solution to the non-zero centering problem from the conventional DP 

setting.

2.2. Fixed and random effects selection

In this article, our focus is on selecting the predictors to be included in the fixed effects and 

random effects components of the model under nonparametric settings. The fixed effects and 

random effects components have p and q candidate predictors respectively. One of the 

methods on subset selection for the fixed effects predictors is based on mixture priors for the 

regression coefficients β [30, 31]. In particular, because βl = 0 corresponds to the lth 

candidate predictor being effectively excluded from the fixed effects component, a prior that 

assigns positive probability to both H0l : βl = 0 and H1l : βl ≠ 0, for l = 1, …, p, allows for 

uncertainty in the subset of predictors to be included. In linear regression models, many 

choices of mixture priors have been proposed, and a variety of algorithms are available for 

posterior computation.

Compared to fixed effects selection, selection of random effects components is more 

challenging. One may intuitively follow the idea of fixed effects selection by inserting a 

vector of indicator variables, γ = diag(γ1, …, γq) in the LMM specification resulting in 

Ziγbi. With γl = 1, the lth random effects is included and γl = 0 otherwise. One may then 

combine it with bi ~ G with G ~ DP(αG0). Although the steps are straightforward, this 

approach is not immune to flaws such as the uncentered parameterization resulting in 

potential estimation biases, modeling the covariance random effects indirectly through G0 

instead of G, and impossibility of selection of off-diagonal elements in the random effects 

covariance matrix. Chen and Dunson [17] proposed a modified Cholesky decomposition of 

Σ in developing a stochastic search variable selection algorithm, but their approach relies on 

introducing standard normal latent variables underlying the random effects. Here, the LMM 
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takes the form yi = Xiβ + ZiΛΓεi + εi, where the latent variables εi are constrained to follow 

N(0,1), Λ is a diagonal matrix, and Γ is a lower triangular matrix with 1’s in the diagonal 

entries. With the reparameterizations and constraints, E(bi) = 0 and Var(bi) = ΛΓΓ′Λ′. This 

Cholesky decomposition allows for selection of both diagonal elements (variances) and off-

diagonal elements (covariances) through mixture priors. In the nonparametric case, one 

could instead model the latent variables as having an unknown distribution with mean 0 and 

variance 1. However, such constraints are non-trivial to include in nonparametric models. 

The approach by Yang [23] (described earlier) assumes the latent variables εi to follow the 

centered PSB and sPSB mixtures of Gaussians. Integrating out random effects results in the 

decomposition of the covariance matrix of the random effects, such that Var(bi) = ΛΓΩΓ′Λ′ 
with Var(εi) = Ω. Selecting elements in Λ regardless of Ω in the approach may lead to 

potential biases in fixed effects and random effects selection.

2.3. Reparameterization and prior specification

To resolve the aforementioned drawbacks, we reparameterize the random effects with 

centered nonparametric distributions for the centered latent variables. In practice, it is 

typically unknown which covariates will be included/excluded in terms of fixed and random 

effects. To allow for selection of fixed and random effects for all covariates, we let Xi = Zi. 

Then, model (1) can be expressed as

(4)

Instead of modeling βi as the random effects centered at the fixed effects, we model βi as

(5)

where  denotes a vector of independent latent variables underlying βi, Γ 
denotes the lower triangular matrix with 1’s in the diagonal entries, and β denotes the fixed 

effects as in (1). In model (4), the candidate predictors included in the random effects are 

chosen as the candidate predictors included in the fixed effects, which allows all predictors 

to possibly vary across subjects. In addition, with the reparameterization of the random 

coefficients in (5), the proposed model allows for the nonparametric distributions of latent 

variables with possibility of avoiding the centering and scaling problems.

Let , for l = 1, …, p, where . The measure Q(·) is a 

random distribution of λl. To incorporate random effects selection into the model, we choose 

Q(·) as a mixture prior consisting of a point mass at zero (with probability πl0) and a 

nonparametric PSB component:
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(6)

where plh is defined as in (3), πl0, al and bl are hyperparameters. Typically, πl0 is taken as 

0.5 to reflect an equal preference of inclusion and exclusion. The prior probability that the 

lth predictor of the p candidate predictors is excluded from the random effects components is 

then πl0 = Pr(λl = 0). Thus, the latent random coefficients ’s follow

(7)

With πl0, the distribution of ’s reduces to a point mass distribution at βl, implying that 

’s, for i = 1, …, n, are replaced with βl. In this case, the lth predictor only has no random 

effects. With 1 − πl0, the resulting nonparametric distribution for  implies that the latent 

variables are expressed as a countable mixture of Gaussians centered at the fixed effects βl, 

but with varying variances. Under this scenario, there is heterogeneity of the effect of the lth 

predictor across subjects.

With the centering property of the PSB, it is obvious that the random coefficients βi are 

centered at the fixed effects β with E(βi) = β. In addition, it can be shown that Var(βi) 

=ΓΨΨ′Γ′ which is the standard Cholesky decomposition of the covariance matrix with 

, where . When λl = 0 with probability πl0, ψl = 0 and all 

the atoms in Gl are effectively generated from a point mass at βl, such that there is no 

heterogeneity in the βil coefficients among subjects. In this case, the corresponding off-

diagonal elements γlr and γsl, for r = 1, …, l − 1, s = l + 1, …, p are removed by setting their 

values to 0. Note that γlr is only included in the model when both the lth and rth random 

effects are included, which occurs when ψl > 0 and ψr > 0. This procedure has no effect on 

the likelihood, but does impact posterior computation. We choose a prior for γψ, the 

elements of γ that are included in the model. To facilitate posterior computation, we choose 

a conditionally conjugate N(γψ; Eγψ, Vγψ) prior. In order to allow zero off-diagonal 

elements in the random effects covariance matrix, this prior can be easily modified to 

include a mass at zero. The overall prior probability of excluding all the random effects from 

the model is . When ψl > 0 with 1 − πl0, it is clear that . [32] 

showed that with a truncated stick-breaking representation,  with 

 almost surely. For the choice of the truncation of the mixture, [33] suggested to 

use a reasonably large value such as 30, or the sample size.

To allow βl to effectively drop out of the model, we choose a mixture prior consisting of a 

point mass at zero (with probability νl0) and a normal density:
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(8)

We refer to the prior (8) as a point-mass mixture prior, . The prior probability 

that the lth predictor of the p candidate predictors is excluded from the fixed effects 

component is then νl0 = Pr(βl = 0). From the perspective of fixed effects and random effects 

selections, our specification can drop predictors by choosing mixture priors for the 

parameters β and Λ without being complicated by the nonparametric characterization. 

Following standard convention, we choose a conjugate gamma prior for the residual 

precision of the model, π(σ−2) (c, d) with hyperparameters c and d.

3. Posterior computation

We choose priors for the parameters as described in Section 2.3. After initializing values for 

the parameters, the proposed Markov chain Monte Carlo (MCMC) algorithm proceeds 

through the following steps:

1. Following [32], we first update the cluster allocation parameter Hil, for i = 1, …, 

n and l = 1, …, p. The latent variable Hil indicates the cluster that βil belongs to. 

Let , where Γ* = I − Γ, Γ−l denotes the submatrix of 

Γ excluding the lth column, and  denotes the subvector of  with  being 

excluded. Then Hil can be drawn from its full conditional posterior distribution, 

, where

with , and 

Γl being the lth column of Γ.

2. Under the current allocation {Hil = h : h ∈ (1, …, Nl)}, we update latent variable 

, for i = 1, …, n and l = 1, …, p, from its full conditional posterior distribution 

given the data and other parameters, .

3. To update plh = Φ(ηlh)∏r<h(1 − Φ(ηlr)), for h = 1, …, Nl and l = 1, …, p 
(following [24]), a latent variable ϕlh is introduced such that ϕlh ~ N(ηlh, 1). 

Thus, plh = P(ϕlh > 0, ϕlr < 0, for r < h). Then

4. Updating ηlh, for h = 1, …, Nl and l = 1, …, p, is straightforward from its full 

conditional posterior distribution, , where 

 and .
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5. Following Geweke [30] and Kuo and Mallick [34], we update the variance 

component ψl, for l = 1, …, p, from the full conditional mixture distribution with 

point mass at 0. The conditional probability of ψl = 0 is calculated by integrating 

out λlh, for h = 1, …, Nl,

with

where L( , β, Γ, σ−2; y) =  N(zi; XiΓl , σ2Ini),  = ( ,…, )′, 

âlh = al + , b̂lh = bl + Σi:Hil = h (  − βl)2, and nlh = ♯{i : Hil = h}. With π̂
l, we 

choose ψl from the degenerate distribution δ0(·), which means that we have ψl = 

0 and . Otherwise, we generate λlh from ℐ (âlh, b̂lh), for h = 1, …, Nl.

6. Similarly, Following [30, 34], we update the parameters related to the fixed 

effects and random effects selection. The fixed effects βl, for l = 1, …, p, can be 

sampled from the mixture distribution with the point mass at 0, given by

where the probability of βl = 0 is calculated by integrating out βl,

where 

denotes the lth column of Γ*,  denotes the submatrix of Γ* excluding the lth 

column, and β−l denotes the subvector of β with βl excluded. When ψl = 0, 

.

7. The non-zero lower triangular elements γψ can be generated from
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where V̂ψ = (σ−2 )−1, Êψ = V̂{σ−2 (yi − Xi ) + 

Eψ}, Vi = (Vi1,…,Vini  with 

, and , and 

denotes Vi removing the elements corresponding to zeroes of ψ.

8. Finally, the variance of the error terms σ−2 can be updated straightforwardly 

from the Gamma distribution

Relying on the above algorithm, we conduct a stochastic search through the fixed effects and 

random effects model spaces. For updating a single parameter from the non-conjugate 

distribution, we use adaptive rejection Metropolis sampling [35]. The algorithm was 

implemented in Matlab [36], with the respective MCMC iteration and burn-in sizes for 

simulation studies and real data application presented in Sections 4 and 5. After convergence 

of the samples for the parameters and latent variables, the posterior densities of the 

parameters and posterior probabilities for each of the different submodels can be 

straightforwardly calculated. Convergence of model parameters for both simulations and real 

data analysis were tested using the Geweke’s diagnostics [37] and Gelman-Rubin 

diagnostics [38], and good mixing behavior was observed.

4. A simulated study

A simulated data example was used to evaluate the performance of the proposed approach. 

In the simulation design, we combined the following scenarios: 1) the outcome only depends 

on some of the predictors in terms of fixed and random effects, which allows for selection of 

fixed and random effects based on the models; 2) the random effects were designed to follow 

various distributions, including the normal distribution, degenerate distribution, and the 

multi-modal distribution; 3) the covariance matrix of random effects reflects the varying 

correlations among the random effects. We generated 100 data sets, each with 200 subjects 

and 10 repeated measurements for each subject. Ten covariates, xij = (xij1, xij2, xij3, xij4, xij5, 

xij6, xij7, xij8, xij9, xij10)′, were included, where xij1 = 1 corresponding to the intercept, and 

the rest are generated from a standard uniform distribution. We chose 

, and 

, implying β = (2, 2, 1, 0, 0, 0, 0, 0, 0, 0)′. We chose the off-diagonal 

elements of Γ as γ = (γ21, γ31, γ32, γ41, γ42, γ43, γ51, …, γ10,9)′ = (0, 0.9, 0, 0.5, 0, 0.6, 0, 

…, 0)′. Then, the designed covariance matrix for the first four random coefficients (the rest 

elements are zeros), , is
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We choose σ2 = 0.4. The response variable yij is sampled from (1). The true distributions of 

the first four elements of  are displayed by the dashed lines in Figure 2.

Following the priors described in Section 2.3, we chose the prior distribution for σ−2 as 

(0.05, 0.05). The prior distributions for the elements of β were chosen as Nδ0(0, 10). The 

prior probability of inclusion of a predictor was chosen to be 0.5 to reflect equal weights on 

inclusion and exclusion. The elements of γψ were chosen to follow independent N(0, 1). 

The prior for λlh was chosen as ℐ (1, 1). We ran the Gibbs sampling algorithm described in 

Section 3 for 10,000 iterations, after a burn-in of 1,000. Geweke’s convergence diagnostic 

[37] was conducted for the coefficients by calculating Z-scores and the corresponding p-

values. The p-values were all larger than 0.35, implying the good mixing and convergence. 

In addition, the Gelman-Rubin convergence diagnostic test [38] was also applied based on 

multiple chains with over-dispersed starting values. The range of shrinkage reduction factors 

is between 1.01 and 1.08, indicating the good convergence. Posterior summaries, such as 

posterior probabilities of the selected submodels, estimated posterior means, and 95% 

credible intervals for each of the parameters were obtained based on the post burn-in 

samples. Sensitivity of the results to the prior specification was assessed by repeating the 

analyses with different hyperparameters. Although we do not show details, inferences for all 

models are robust to the prior specification. We noticed that different choices of 

hyperparameters in the prior for λlh could lead to the results with some variations in 

parameter estimates and probabilities of selected models. These variations were shown in 

Table 1 and Table 3. This is not unexpected, given the small sample size and the relatively 

large number of predictors. In terms of selection of hyperparameters, the bottom line is not 

to use too small values close to zero to obtain a diffuse prior, which typically yields an 

improper posterior density [39]. We suggest choosing the prior ℐ (al, al) for λlh with al 

value between 0.5 and 10.

To compare the results from our proposed nonparametric mixed effects (NPME) model with 

other alternatives, we fitted a Bayesian LMM using the R package MCMCglmm [40], Chen 

and Dunson’s (CD) model [17] with modifications by adding the fixed effects selection, and 

Yang’s (Yang) [23] method with unimodal distribution. Table 1 presents the true values, 

posterior estimates, and 95% credible intervals of the parameters corresponding to the first 

four covariates from the four competing methods. It is shown that the NPME estimates are 

closer to the true values than those from the other models. The estimates of the parameters 

for the rest of the covariates are pretty close to zeros from all the methods, which are not 

shown due to the space limit. Table 2 shows the comparison of the results from the four 

methods over 100 simulated data sets. In Table 2, we calculated the average of the estimated 

standard errors (ESE), the sample standard deviation (SSD) of the 100 point estimates and 

the mean squared errors (MSEs). Although all of the MSEs are small for the estimates of β’s 
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from the four methods, it is clear that the estimates from the proposed method have 

relatively smaller ESEs, SSDs and MSEs.

Table 3 presents the posterior probabilities of top five models selected by the proposed 

mixed effect method and the other two Bayesian methods. We also calculated corresponding 

deviance information criterion (DIC) [41], obtained after running separate LMM analyses 

for each model in the list. Although each method chooses the true model as the best model, 

our NPME approach selected the true model with the higher posterior probability than the 

CD and the Yang methods. The DICs confirmed the selection based on the posterior 

probabilities. To avoid the potential overfitting problem when using DIC, we also considered 

the Bayesian predictive information criterion (BPIC) [42]. Due to the complexity of the 

proposed semiparametric model, computing the score required for BPIC could be 

complicated. Instead, we calculated the BPIC based on [43], where we included double of 

the model complexity in the criterion which provides more accurate penalty in the criterion. 

The BPICs in Table 3 confirmed the top selected model but there was some disparity among 

DIC, BPIC and the selection methods for the other models. As pointed out by [41, 43], the 

penalty term based on the model complexity in DIC and BPIC are not invariant to 

reparameterization, which may cause this problem. Figure 2 depicts the posterior densities 

of the random coefficient parameters βi based on our NPME model, and the corresponding 

true densities. It appears that the proposed NPME successfully captured the right densities of 

βi.

5. Application: Periodontal Data

We illustrate our approach through analysis of the motivating GAAD dataset (see Section 1) 

generated from a clinical study at the Medical University of South Carolina [44]. The 

relationship between PD and diabetes level has been previously studied in the dental 

literature [45, 46], and the objective of this analysis is to quantify the disease status of this 

interesting population, and to study the associations between PD status and diabetes level 

(determined by the popular marker HbA1c, or ‘glycosylated hemoglobin’) in the Type-2 

diabetic African-American adults residing in the coastal sea-islands of South Carolina.

Our analysis focused on identifying predictors of one of the most popular bio-markers of 

PD, the clinical attachment level (CAL). CAL is the distance down a tooth’s root that is no 

longer attached to the surrounding bone by the periodontal ligament. During a full 

periodontal exam, CAL is usually measured at six pre-specified sites [47] for each tooth 

(excluding the third molars, i.e., the wisdom teeth). For a subject with no missing teeth, 

there are S = 168 measurements for CAL. The CAL measures for each subject are clustered 

and highly correlated. The subject-level covariates include age (in year), body mass index 

(BMI) (in kg/m2), gender (1=female, 0=male), HbA1c (1=high, 0=controled) and smoking 

status (1=smoker, 0=non-smoker). In addition, the total number of available teeth (cluster 

size) within each mouth/subject is varying, and we included the log(cluster size) for each 

subject as a predictor as it is highly associated with dental health [48].

In risk assessment studies involving PD, a linear relationship was considered between the 

response CAL and the associated risk factors in this data set [49, 50, 51]. We followed the 
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same linearity assumption, and proceed by fitting our nonparametric LMM. Predictors 

included in the fixed effects component have an average effect on the mean CAL, while 

predictors included in the random effect component vary in their effects across subjects. Let 

xij = (xij1, xij2, xij3, xij4, xij5, xij6, xij7)′ denote the vector of candidate predictors with xij1 = 

1, xij2=age, xij3 =BMI, xij4 =gender, xij5 =HbA1c, xij6 =smoking status, and xij7 =log(cluster 

size). We included 288 out of 360 patients, consisting of patients with at least one tooth (i.e. 

6 measures) and complete covariate information. The cluster size (per subject) varied 

between 18 and 168.

The prior distributions for the elements of β are chosen as Nδ0 (0, 10) with νl0 = 0.5. The 

prior distributions for the free elements of γ are independent N(0, 1). The mixture prior 

distributions of the elements of λlh are chosen as independent ℐ (1, 1). We also chose 

(0.05, 0.05) as the prior for σ−2. We ran the MCMC algorithm described in Section 3 for 

20,000 iterations, with a burn-in size of 10,000. The Geweke’s diagnostic tests [37] for 

regression coefficients based on Z-scores and the Gelman-Rubin diagnostic [38] 

demonstrated good mixing. Posterior probabilities for the possible submodels, estimated 

posterior means, and 95% credible intervals for each of the parameters are calculated 

thereafter. Sensitivity of the results to the prior specifications were assessed by repeating the 

analyses with varying choices of hyperparameters, similar to those in the simulated example. 

The results appeared stable.

Table 4 presents the posterior means and 95% credible intervals for fixed effects, and the 

marginal posterior probability of inclusion of predictors in terms of fixed effects and random 

effects. From the proposed approach, we observe a significant negative effect of gender on 

CAL, indicating males more likely to be prone to PD than females. A significantly positive 

effect of HbA1c implies patients with uncontrolled glycemic level are more likely to 

experience PD. This result is consistent with previous findings [48]. In addition, the log of 

cluster size of teeth sites confirmed a significantly negative impact on the CAL, which is 

intuitive given that patients with larger number of available teeth (i.e., higher log cluster 

size) are expected to have a lower degree of PD. From the Bayesian LMM, only the log of 

cluster size is significantly and negatively affecting CAL. For comparison purpose, the 

means and 95% credible intervals for β1, …, β7 from the Bayesian LMM are also presented 

in Table 4. Although the estimates of the fixed effects from the two approaches are similar, 

the 95% credible intervals of estimates from the Bayesian LMM are wider than those based 

on our proposed approach. From the marginal posterior probabilities of inclusion, it is clear 

that for the fixed effects components, the predictors including gender, HbA1C and 

log(cluster size) are important in predicting CAL. On the other hand, our nonparametric 

random effects method suggests to include the random intercept and effects for the smoking 

status, implying heterogeneity of these effects across subjects, while the effects of the other 

predictors do not vary substantially. The proposed method selected the top model with the 

posterior probability of 0.35, including all predictors in fixed effects, and all predictors 

except age and log(cluster size) in random effects. In contrast, Chen and Dunson’s method 

and Yang’s method chose the same model with the posterior probability of 0.29 and 0.28, 

respectively. Based on the marginal probability, the Bayes factor can be calculated [52] as 

inclusion criterion for a single predictor in terms of fixed and random effects. Kass and 
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Raftery [52] suggest the cutoff points for positive, strong and very strong evidence for a 

Bayes factor as 3, 20 and 150, respectively. Given the same prior probability for inclusion 

and exclusion (i.e. 0.5), the marginal posterior probability over 0.96 corresponds to the 

Bayes factor being over 20, indicating a strong evidence of inclusion. Figure 3 shows the 

histogram of empirical Bayes estimates of random intercept based on the LMM and the 

density curve of posterior estimates of the random intercept from the proposed method. In 

terms of model fits to the data, we calculated the DIC and BPIC for both the models. The 

DICs for the Bayesian LMM and our proposed model are 54,403.15 and 54,205.68, 

respectively, and the BPICs for the Bayesian LMM and our proposed model are 54,545.39 

and 54,386.00, respectively, implying that the proposed model has a better fit to the data.

6. Conclusions

We develop a Bayesian approach to the problem of nonparametric random effects models 

where both the predictors to be included and distributions of their random effects are 

unknown. Relying on reparameterization of the random coefficients and the centered 

nonparametric distributions, our proposed approach avoids the potential biases in estimation, 

which may lead to difficulty in interpretation. Incorporating centered independent latent 

variables with the decomposition of the dependency of random coefficients allows the 

approach to be efficient and straightforward to implement. By using latent random 

coefficients which are centered at fixed effects, the proposed reparameterization allows for 

the random effects not necessarily being the subset of the fixed effects, resulting in the 

independent selection of the fixed and random effects. The simulation study shows that the 

performance of the proposed method is better than the other competing methods available. It 

is straightforward to extend the method to allow categorical outcomes by using data 

augmentation as in probit models. Although motivated by the random effects selection 

problem, the proposed approach provides a general strategy for dependency modeling in 

related unknown distributions. Future research may focus on analyzing multivariate 

responses with spatial information observed in datasets from dental epidemiology. In 

addition, it might be really interesting to analyze non-continuous responses, with variable 

selection under the similar nonparametric framework. Such methods are less developed and 

challenging, and will be pursued elsewhere.
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Figure 1. 
Plots of density histogram for site-level CAL (Panel a); density histogram (Panel b) and Q-Q 

plots (Panel c) of empirical Bayes estimates of the subject-level random effects, obtained 

from fitting a LMM to the GAAD dataset.
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Figure 2. 
Posterior densities (solid lines) and true densities (dashed lines) of the first four parameters 

βi in the simulated example. The shaded area indicates the 95% credible interval band. The 

vertical bars denote the probability of the point mass at 2.
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Figure 3. 
Histogram of empirical Bayes estimates and the density of posterior estimates of the random 

intercept.
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