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Abstract

A normality assumption is typically adopted for the random effects in a clustered or longitudinal
data analysis using a linear mixed model. However, such an assumption is not always realistic, and
it may lead to potential biases of the estimates, especially when variable selection is taken into
account. Furthermore, flexibility of nonparametric assumptions (e.g. Dirichlet process) on these
random effects may potentially cause centering problems, leading to difficulty of interpretation of
fixed effects and variable selection. Motivated by these problems, we proposed a Bayesian method
for fixed and random effects selection in nonparametric random effects models. We modeled the
regression coefficients via centered latent variables which are distributed as probit stick-breaking
(PSB) scale mixtures. By using the mixture priors for centered latent variables along with
covariance decomposition, we could avoid the aforementioned problems, and allow efficient
selection of fixed and random effects from the model. We demonstrated the advantages of our
proposed approach over other competing alternatives through a simulated example, and also via an
illustrative application to a dataset from a periodontal disease study.
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1. Introduction

Linear mixed (effects) models are routinely used to analyze clustered and longitudinal data,
where a common feature is the fidelity to the ‘Gaussian’ paradigm for the random effects
and within subject random errors. Even though normality might be a reasonable model
assumption, its violations may potentially impact the underlying estimation, prediction, etc
of both the fixed and random effects. For example, consider the motivating data example
from a clinical study conducted at the Medical University of South Carolina (MUSC) to
determine periodontal health status of Gullah-speaking African American Type-2 diabetic
(GAAD) subjects. One of the most important biomarkers to assess periodontal disease (PD),
the clinical attachment level (or CAL, in mm), was measured for various pre-specified sites
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within a mouth/subject, giving rise to a typical clustered data framework. Figure 1 (Panel a)
plots the density histogram of site-level CAL for the full data, while Panels b and c display
the density histogram and Q-Q plots of the empirical Bayes’ estimates of the subject-level
random effects, obtained after fitting a classical linear mixed model (LMM), controlling for
some clinical covariables as fixed effects (such as Age, Gender, etc, more details in Section
5). These plots are indicative of the violation of the normality assumptions for the random
effects, typically for a LMM analysis.

To allow for flexibility of distributions of the random effect, several frequentist
considerations are available [1, 2, 3]. Under the Bayesian framework, a vast majority of
current research centers around the nonparametric Dirichlet process (DP) priors [4], DP
mixtures [5], and other specifications, allowing unknown distributions for random effects [6,
7, 8, 9]. Under a LMM framework, inclusion of a covariate (say, age) only as a fixed effects
component would quantify only the ‘average effect’ of age on the mean CAL (response),
and leave out important information on how the age effect might vary across subjects.
Hence, there is a need to also include a ‘random’ age effect to control for this with the
ultimate goal to accommodate uncertainty of predictors and simultaneously achieve
parsimony through variable selection and variance-covariance component selections.
However, all of the methods described above do not accommodate this predictor uncertainty.
One may potentially calculate AIC/BIC for each candidate model, yet this is infeasible
unless the number of candidate predictors is modest. There does not exist any general
consensus on the penalty for model complexity for a random effects model. Related
frequentist propositions include score tests for random effect selection [10, 11, 12], a
generalized likelihood ratio test [13], etc. However, these methods can not be directly
utilized for the general subset selection problem. In a Bayesian context, a majority of work
[14, 15, 16, 17, 18] focuses on variable/model selection in normal variance component
models. Relaxing the normality assumption by a DP mixtures for the (unknown) random
effects distribution, one may adopt the Basu and Chib [19] approach to compare the
resulting semiparametric Bayesian model with the fully parametric linear model that
excludes the random effect using marginal likelihoods and Bayes factors for DP mixtures.
Such an approach is potentially feasible only when the number of competing random effect
models is modest.

Under DP-related models for random effects, there is a difficulty in interpreting posterior
inference for fixed effects and variance components of random effects due to the potential
bias resulting from the unknown (distributional) specification of random effects. Under
normality assumptions in the LMM, Chen and Dunson [17] proposed a Bayesian approach
for random effects selection via a stochastic search variable selection algorithm [20] through
a special decomposition of the random effects covariance. The Chen and Dunson’s model
was extended [21] to fixed effects and random effects selection under linear and logistic
mixed models. Unfortunately, it is not straightforward to modify these approaches to allow
unknown random effects distributions due to difficulties in incorporating moment
constraints. A center-adjusted approach was also proposed [22], however, it is difficult to
incorporate random effects selection. The Chen and Dunson’s approach was also extended
incorporating unknown distribution for random effects [23] using the centered stick-
breaking mixtures [24]. A potential problem still remains because the variance of the latent
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variables related to random effects is not equal to one, resulting in non-unique
decompositions of the covariance matrix for the random effects. Such decompositions may
potentially affect the variance component selection and inferences. Cai and Dunson [25]
developed a variable selection approach under the nonparametric random effects model with
centered latent variables. However, the potential bias might still exist due to the
nonparametric specification on the random effects.

In this article, we addressed some of the aforementioned limitations and developed a
Bayesian approach for fixed and random effects selection with nonparametric distributions
for random effects. By reparameterizing the random coefficients using centered latent
variables relating to the fixed and random effects components, the proposed approach avoids
the need for moment constraints, and the potential bias in estimation and variable selection.
The centered latent variables were modeled by the probit stick-breaking (PSB) scale
mixtures [24], allowing latent variables to be centered at the fixed effects. In addition, the
centered reparametrization provided a way to incorporate variance-covariance components
selection without violating the definition of decomposition of covariance matrix of the
random effects. With these characteristics, the proposed method had more appropriate
interpretation of the fixed effects and more efficient mixing behavior.

The paper proceeds as follows. Section 2 describes our Bayesian nonparametric
specification of the LMM, the reparameterization of random coefficients, and the variable
selection strategy. Section 3 outlines the posterior computational strategy, and related
sampling procedures. Section 4 evaluates the performance of our method with existing
alternatives using simulated data. Section 5 applies the methodology to the motivating PD
dataset. Finally, Section 6 concludes, with some discussions.

2. Statistical Model

2.1. Nonparametric priors for random effects

We start with the definition of a typical LMM. Let yj;be a response variable for the jh
observation (=1, ..., 7) from subject /(/=1, ..., 1), x;;and z;;be a px 1 vectorand a g x 1
vector of candidate predictors, respectively. The LMM for y;can be written as

yi=Xif+Z;bitei, (1)

where Y= Vi, -os Yin) s Xi= Xits oo Xin)'s Zi= (Za1, - Zin)”, Bis a px 1 vector of fixed
effects regression coefficients, b;j= (b, ..., b,-q)’ ~ N0, ) is a g x 1 vector of subject-
specific random effects with covariance matrix Z, and &; is a residual error vector, typically
assumed to be &;~ N(0, &2l).

To allow for flexibility of the distributional assumption for the random effects, if all of the
candidate predictors are included, one may choose b~ G, where G is the unknown random
effects distribution. Following the Bayesian approach [7], a prior distribution for G with
support on the space of random probability measures can be chosen. A natural choice would
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be the DP prior which could be specified as G~ DAa Gp), where a is a precision parameter
and Gy is the base distribution of the DP. Under this specification, for any partition B = (B,
..., BY)' of R, we have {G(B)), ..., G(BY} ~ D(aGy(By), ..., aGy(By)), where D(-) denotes
the finite Dirichlet density. Under the stickbreaking representation of Sethuraman (1994)
[26], we have

G=> pnde, (), pn=Va[[A-W). Vi heta(1,0), €&, ¥ Go,
h=1 I<h )

with &, denoting the degenerate distribution with all its mass at e and V4 = 0. Hence, the
random distribution G can be represented as an infinite set of point masses at locations
generated independently from the base distribution. In addition, we have E(G) = Gy, with a
natural choice of Gy being the N(0,X) distribution, so that the prior is centered at the LMM.
Under this specification, the expected value of y; (conditional on X ;and Z ) is E(y;|X;Z
B.G) = X8+ ZE(b)). Now, under the nonparametric DP setting, the random effects
distribution cannot guarantee that the mean of random effects is centered at 0 as the random
mean of G, E(b)) = J b;jdG(b)), is typically non-zero. This leads to potential complications of
interpretation and inference for the fixed effects corresponding to the random effects. In
addition, the computational efficiency of Gibbs sampling algorithms for posterior
computation in the LMM(and other hierarchical models) tends to depend strongly on the
parameterization used [27]. For greater efficiency, one can focus on the centered
parameterization: y;= X 8+ &; with B;~ G, G~ DAaGp), and Gy = N(l4,Z), assuming X,
=Z;s0 p= q. In this case, the fixed effects can be expressed as B= J BidG(B) by integrating
out the random effects. Li et al. [22]proposed a moment-adjustment procedure for inference
on the fixed effects that are paired with the random effects and the variance components of
the random effects with hierarchically centered DP prior. However, this approach assumes
that all predictors are certainly included in the fixed and random effects components. In
addition, it is not straightforward for this method to be extended to the case where fixed and
random effects selection is taken into account. The reason is that the fixed and random
effects must be paired in order to avoid the non-zero mean of random effect due to the DP
setting. Yang [23] proposed a method for fixed and random effects selection with
nonparametric distributions for the random effects. To avoid the potential biases caused by
the nonparametric DP prior, the random effects are modeled nonparametrically by using the
probit stick-breaking (PSB) scale mixtures [24].

The PSB approach [28, 29] was proposed for conditional distribution modeling with variable
selection. Briefly, a probability measure G follows a PSB with base measure Gj if it has a
representation of the form

G=Y"pnde, (), =) [J(1=2(m)),  mn & Ny 02), &, % Go.
h=1 I<h (3)
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where @(-) denotes the cumulative standard normal distribution. [24] proposed priors for the
residual density based on PSB scale mixtures and symmetrized PSB (sPSB) location-scale
mixtures. Note that expression (3) is identical to the stick-breaking representation [26] of the
DP, but the DP is obtained by replacing the stick-breaking weight ®(7) with a beta(1, a)
distributed random variable. Hence, the PSB process differs from the DP in using probit
transformations of Gaussian random variables instead of betas for the stick lengths. In
addition, ny is not necessarily to be predictor-dependent, though it can be generalized as a
predictor-dependent parameter. To allow the residuals of the linear regression model to
follow an unknown distribution, a normal hierarchical structure was used with the proposed
priors. For the scale PSB process mixture of Gaussian, the nonparametric distribution )

can be expressed as f(')ZZiilth(';Ov 7, 1), where py’s are defined as in (3), 7~ %(a,,
b,) and %(a, b) denote a gamma prior with mean of @/ and variance of a/?. Note that the
unknown density f{-) is expressed as a countable mixture of Gaussians centered at zero but
with varying variances. Observations will be automatically allocated to clusters, with
outlying clusters corresponding to components having large variance. Similarly, the
location-scale sPSB mixture of Gaussians can be expressed as

FO=_,_ pr(NCGi=pp, 7 )+NCipns 7, 1)) /2, and remains centered at zero while
allowing for multimodal densities. The resulting property of centering at zero from the PSB
approach provides us a solution to the non-zero centering problem from the conventional DP

setting.

2.2. Fixed and random effects selection

In this article, our focus is on selecting the predictors to be included in the fixed effects and
random effects components of the model under nonparametric settings. The fixed effects and
random effects components have pand g candidate predictors respectively. One of the
methods on subset selection for the fixed effects predictors is based on mixture priors for the
regression coefficients B[30, 31]. In particular, because B;= 0 corresponds to the Ah
candidate predictor being effectively excluded from the fixed effects component, a prior that
assigns positive probability to both Hy,: By=0and Hyy: By#0, for /=1, ..., p, allows for
uncertainty in the subset of predictors to be included. In linear regression models, many
choices of mixture priors have been proposed, and a variety of algorithms are available for
posterior computation.

Compared to fixed effects selection, selection of random effects components is more
challenging. One may intuitively follow the idea of fixed effects selection by inserting a
vector of indicator variables, = diag(y1, ..., ) in the LMM specification resulting in

Z jyb;. With y,=1, the Ah random effects is included and y,= 0 otherwise. One may then
combine it with b;~ Gwith G~ DAaGy). Although the steps are straightforward, this
approach is not immune to flaws such as the uncentered parameterization resulting in
potential estimation biases, modeling the covariance random effects indirectly through Gy
instead of G, and impossibility of selection of off-diagonal elements in the random effects
covariance matrix. Chen and Dunson [17] proposed a modified Cholesky decomposition of
Y in developing a stochastic search variable selection algorithm, but their approach relies on
introducing standard normal latent variables underlying the random effects. Here, the LMM
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takes the formy;= X ;8+ Z ,AT'e; + e; where the latent variables e;are constrained to follow
N(0,1), A is a diagonal matrix, and I" is a lower triangular matrix with 1’s in the diagonal
entries. With the reparameterizations and constraints, E(b,) = 0 and Var(b) = ATT A’. This
Cholesky decomposition allows for selection of both diagonal elements (variances) and off-
diagonal elements (covariances) through mixture priors. In the nonparametric case, one
could instead model the latent variables as having an unknown distribution with mean 0 and
variance 1. However, such constraints are non-trivial to include in nonparametric models.
The approach by Yang [23] (described earlier) assumes the latent variables e;to follow the
centered PSB and sPSB mixtures of Gaussians. Integrating out random effects results in the
decomposition of the covariance matrix of the random effects, such that Var(b) = ATQI''A’
with Var(e)) = Q. Selecting elements in A regardless of Q in the approach may lead to
potential biases in fixed effects and random effects selection.

2.3. Reparameterization and prior specification

To resolve the aforementioned drawbacks, we reparameterize the random effects with
centered nonparametric distributions for the centered latent variables. In practice, it is
typically unknown which covariates will be included/excluded in terms of fixed and random
effects. To allow for selection of fixed and random effects for all covariates, we let X;=Z;.
Then, model (1) can be expressed as

yi=XiBit+ei.  (4)
Instead of modeling B, as the random effects centered at the fixed effects, we model §;as

Bi=B+T(B;—B), (5)

where B87=(8,- .. ,ﬁ;‘p), denotes a vector of independent latent variables underlying B, T’
denotes the lower triangular matrix with 1°s in the diagonal entries, and B denotes the fixed
effects as in (1). In model (4), the candidate predictors included in the random effects are
chosen as the candidate predictors included in the fixed effects, which allows all predictors
to possibly vary across subjects. In addition, with the reparameterization of the random
coefficients in (5), the proposed model allows for the nonparametric distributions of latent
variables with possibility of avoiding the centering and scaling problems.

Let 35 i G for 1=1, ..., p, where G,(3)=N( 81, A\)Q(dN;). The measure Q) is a
random distribution of A, To incorporate random effects selection into the model, we choose
@(*) as a mixture prior consisting of a point mass at zero (with probability =) and a
nonparametric PSB component:
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Ai~medo(A)+(1—=mo)P(N;),  P= me%,ﬂ Ain~I Y (a,by),
h=1 (6)

where py is defined as in (3), g, a7and byare hyperparameters. Typically, rzp is taken as
0.5 to reflect an equal preference of inclusion and exclusion. The prior probability that the
£h predictor of the p candidate predictors is excluded from the random effects components is

then rzp = Pr(A,=0). Thus, the latent random coefficients 37’s follow

B4 id - 08, (ﬁl*l) With 770
! S 1o N(B B Ain) - with 1—myg @)

With rp, the distribution of 33’s reduces to a point mass distribution at g, implying that
py’s, for i=1, ..., n, are replaced with B, In this case, the Ah predictor only has no random
effects. With 1 — =, the resulting nonparametric distribution for 37 implies that the latent
variables are expressed as a countable mixture of Gaussians centered at the fixed effects g,
but with varying variances. Under this scenario, there is heterogeneity of the effect of the Ah
predictor across subjects.

With the centering property of the PSB, it is obvious that the random coefficients B;are
centered at the fixed effects gwith E(B,) = 8. In addition, it can be shown that Var(B)
=I'Y¥'T’ which is the standard Cholesky decomposition of the covariance matrix with

W—diag(, ..., 3 ) Where y;=Var(}). When 2= 0 with probability zp, y;= 0 and all
the atoms in Gy are effectively generated from a point mass at g, such that there is no
heterogeneity in the B;, coefficients among subjects. In this case, the corresponding off-
diagonal elements y-and g, for r=1, ..., /-1,5=/+1, ..., pare removed by setting their
values to 0. Note that y;.is only included in the model when both the Ah and sth random
effects are included, which occurs when y> 0 and y,> 0. This procedure has no effect on
the likelihood, but does impact posterior computation. We choose a prior for yy, the
elements of y that are included in the model. To facilitate posterior computation, we choose
a conditionally conjugate N(y, EVW’ VVv’) prior. In order to allow zero off-diagonal
elements in the random effects covariance matrix, this prior can be easily modified to
include a mass at zero. The overall prior probability of excluding all the random effects from

P 00
the model is lelmo. When y> 0 with 1 — rp, it is clear that lbz:Zh:lpzn/\m. [32]

N
showed that with a truncated stick-breaking representation, Zh:lph%h (-)=Lwith

N
thlphzl almost surely. For the choice of the truncation of the mixture, [33] suggested to
use a reasonably large value such as 30, or the sample size.

To allow gyto effectively drop out of the model, we choose a mixture prior consisting of a
point mass at zero (with probability vp) and a normal density:
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Birvigdo(B1)+(1=vi0)N(BisB80,070)-  (8)

We refer to the prior (8) as a point-mass mixture prior, N, (310, o7,)- The prior probability
that the £h predictor of the p candidate predictors is excluded from the fixed effects
component is then vp = Pr(8;= 0). From the perspective of fixed effects and random effects
selections, our specification can drop predictors by choosing mixture priors for the
parameters Sand A without being complicated by the nonparametric characterization.
Following standard convention, we choose a conjugate gamma prior for the residual
precision of the model, (o72) %(c, d) with hyperparameters cand d.

3. Posterior computation

We choose priors for the parameters as described in Section 2.3. After initializing values for
the parameters, the proposed Markov chain Monte Carlo (MCMC) algorithm proceeds
through the following steps:

1.

Following [32], we first update the cluster allocation parameter Hj, for i=1, ...,
nand /=1, ..., p. The latent variable Hj,indicates the cluster that g,;;belongs to.

Letzi=y;—X,I"*B—X,I'_;8; ;, whereI"" =1 - T, T_,denotes the submatrix of

I excluding the Ah column, and B; _; denotes the subvector of 87 with 5 being
excluded. Then Hj;can be drawn from its full conditional posterior distribution,

N A~
> Dindn(-), where

1 1 1 ’ —1
5 —n; 152, -2 2
Din 0<plh§ ;/\1;120 "exp {—5()\1;7, Bito Zizi_E il :uil)}v

’ —1 ’
with ZNZ{)\ELUFU_Q(XJ‘I) (XiTy)} MilZZil{)\ﬁllﬁzﬂLU_Q(Xin) zi}, and
I';being the th column of T'.

Under the current allocation {H= h:h€ (1, ..., N)}, we update latent variable
g, for7i=1, ..., nand /=1, ..., p, from its full conditional posterior distribution

given the data and other parameters, N(37;1i, ZH).

To update pyp= @(gp)T1 (1 - ®(7p)), for h=1, ..., Mjand /=1, ..., p
(following [24]), a latent variable g, is introduced such that ¢, ~ N(n, 1).
Thus, py= Agp>0, ¢;,,<0, for r< A). Then

S| - ~Noy (min, 1)L (h=r)+N_(mpn, 1)L (h<r).

Updating ny, for A=1, ..., Njand /=1, ..., p, is straightforward from its full

conditional posterior distribution, N(Zlh(ffﬁzunﬁaﬁzh% >, ) where

—2 -1
Zm:(""l 1) and nip~N(py, 07y).
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Following Geweke [30] and Kuo and Mallick [34], we update the variance
component yy, for /=1, ..., p, from the full conditional mixture distribution with
point mass at 0. The conditional probability of y,= 0 is calculated by integrating
out Ay, for =1, ..., N

70
7T10+(1—7T10)BF

=

with

LB}, B%,B,T,072y) LT (ay,)b

(ﬂ?:ﬁl7ﬂilvﬂ7 F7 0-72;y> h=1 F(al)glﬁ}ih ’

BF=
L

where L( 8;,8", B, T, 0% y) = [ N@i X135, 2 0. 81 = (B B2
ap=a+ i, 5//72 b+ %2,’;/—/,-/:/7 (8- ,3/)2: and ny, = {7 : Hy= h}. With J'E/, we
choose 7 from the degenerate distribution &(-), which means that we have =
0 and g},=p,. Otherwise, we generate A, from Q%(4y, 13//7), forh=1, ..., N\,

Similarly, Following [30, 34], we update the parameters related to the fixed
effects and random effects selection. The fixed effects g, for /=1, ..., p, can be
sampled from the mixture distribution with the point mass at 0, given by

0180(B1)+(1—0)N(Bi; B4, V),

where the probability of 8;= 0 is calculated by integrating out 5y,

N viooexp(o° B /2)

Vi= N 1.2,
Vloaloexp(olf)zﬁl%/2)+(17V10)Vl2exp(Vl E;/2)

where
N ~ 1 5.1 A
Vi=(Vi +oi?) B
Ao~ —1 = 9 ~ _ n N % N, _ -1 .
=V(V] Ei+0;5°Bo), Vi={o QZizl(Xin) (X;I )+Zh;1”lh/\lh1} B
7 —2 n N N -1 * *
=Vi{o™2) . (XiT)) wit) " N, i:Hil:hﬂil}’ u;=y;—X:I'B;
=X LB, Iy
denotes the h column of I, T* , denotes the submatrix of I' excluding the th
column, and B-,denotes the subvector of gwith B,excluded. When y= 0,

~ 2 n ng 2 -1 =~ _92:5 n ng ’ ’
Vi=o (Zizlzj;l%ﬂ) , Bi=0 Vlzizlzj;ll“iﬂuijaUiFyij—Xz‘j,—zﬂ—z—Xijr—z(ﬂf,—z—ﬂ—z)

The non-zero lower triangular elements y,,can be generated from
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where V,, = (072 Zi;1 Vi Vi+V Ep= Vo2 2121 Vi(yi-XiB9) +
Vi Byt Vi= (Vit,.., Vigjo, . p With

Vig=(24r (B=B):d=1,...,p=Lir=I+1,...,p), and p_1,(, 1) and V;
denotes V ;removing the elements corresponding to zeroes of .

8. Finally, the variance of the error terms o2 can be updated straightforwardly
from the Gamma distribution

. 1 n 1 n ,
W(“”\ﬂi By, X) x¥ {C—FﬁZni, d+§Z(Yi_XilBi) (Yi—Xiﬂi)} .
i=1 i=1

Relying on the above algorithm, we conduct a stochastic search through the fixed effects and
random effects model spaces. For updating a single parameter from the non-conjugate
distribution, we use adaptive rejection Metropolis sampling [35]. The algorithm was
implemented in Matlab [36], with the respective MCMC iteration and burn-in sizes for
simulation studies and real data application presented in Sections 4 and 5. After convergence
of the samples for the parameters and latent variables, the posterior densities of the
parameters and posterior probabilities for each of the different submodels can be
straightforwardly calculated. Convergence of model parameters for both simulations and real
data analysis were tested using the Geweke’s diagnostics [37] and Gelman-Rubin
diagnostics [38], and good mixing behavior was observed.

4. A simulated study

A simulated data example was used to evaluate the performance of the proposed approach.
In the simulation design, we combined the following scenarios: 1) the outcome only depends
on some of the predictors in terms of fixed and random effects, which allows for selection of
fixed and random effects based on the models; 2) the random effects were designed to follow
various distributions, including the normal distribution, degenerate distribution, and the
multi-modal distribution; 3) the covariance matrix of random effects reflects the varying
correlations among the random effects. We generated 100 data sets, each with 200 subjects
and 10 repeated measurements for each subject. Ten covariates, X;; = (Xji, Xj, Xj3: Xjja» Xjss
Xifos Xift, Xijgs Xifas X,-jlo)', were included, where x;; = 1 corresponding to the intercept, and
the rest are generated from a standard uniform distribution. We chose

B ~N(2,0.1), B5=2, Bi5~N(1,0.4), Bf~0.6N(0.6,0.2)+0.4N(—0.9,0.4), and
Bis=...=F5,=0, implying =(2,2,1,0,0,0,0,0,0, 0)’. We chose the off-diagonal
elements of T as = (y21, ¥31, ¥32, 741, Y42, Y43, 51, - ¥109) =(0,0.9,0,05,0,0.6,0,
..., 0)". Then, the designed covariance matrix for the first four random coefficients (the rest

elements are zeros), {Ulm}?,m:n is
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0.10 0 0.09 0.05
0 0 O 0
0.09 0 048 0.29

0.06 0 0.29 0.99

We choose o2 = 0.4. The response variable Yijis sampled from (1). The true distributions of
the first four elements of 37 are displayed by the dashed lines in Figure 2.

Following the priors described in Section 2.3, we chose the prior distribution for o2 as %
(0.05, 0.05). The prior distributions for the elements of g were chosen as N (0, 10). The
prior probability of inclusion of a predictor was chosen to be 0.5 to reflect equal weights on
inclusion and exclusion. The elements of . were chosen to follow independent N(0, 1).
The prior for A, was chosen as % (1, 1). We ran the Gibbs sampling algorithm described in
Section 3 for 10,000 iterations, after a burn-in of 1,000. Geweke’s convergence diagnostic
[37] was conducted for the coefficients by calculating Z-scores and the corresponding p-
values. The p-values were all larger than 0.35, implying the good mixing and convergence.
In addition, the Gelman-Rubin convergence diagnostic test [38] was also applied based on
multiple chains with over-dispersed starting values. The range of shrinkage reduction factors
is between 1.01 and 1.08, indicating the good convergence. Posterior summaries, such as
posterior probabilities of the selected submodels, estimated posterior means, and 95%
credible intervals for each of the parameters were obtained based on the post burn-in
samples. Sensitivity of the results to the prior specification was assessed by repeating the
analyses with different hyperparameters. Although we do not show details, inferences for all
models are robust to the prior specification. We noticed that different choices of
hyperparameters in the prior for A, could lead to the results with some variations in
parameter estimates and probabilities of selected models. These variations were shown in
Table 1 and Table 3. This is not unexpected, given the small sample size and the relatively
large number of predictors. In terms of selection of hyperparameters, the bottom line is not
to use too small values close to zero to obtain a diffuse prior, which typically yields an
improper posterior density [39]. We suggest choosing the prior R%(a;, a) for A, with g,
value between 0.5 and 10.

To compare the results from our proposed nonparametric mixed effects (NPME) model with
other alternatives, we fitted a Bayesian LMM using the R package MCMCglmm [40], Chen
and Dunson’s (CD) model [17] with modifications by adding the fixed effects selection, and
Yang’s (Yang) [23] method with unimodal distribution. Table 1 presents the true values,
posterior estimates, and 95% credible intervals of the parameters corresponding to the first
four covariates from the four competing methods. It is shown that the NPME estimates are
closer to the true values than those from the other models. The estimates of the parameters
for the rest of the covariates are pretty close to zeros from all the methods, which are not
shown due to the space limit. Table 2 shows the comparison of the results from the four
methods over 100 simulated data sets. In Table 2, we calculated the average of the estimated
standard errors (ESE), the sample standard deviation (SSD) of the 100 point estimates and
the mean squared errors (MSEs). Although all of the MSEs are small for the estimates of £’s
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from the four methods, it is clear that the estimates from the proposed method have
relatively smaller ESEs, SSDs and MSEs.

Table 3 presents the posterior probabilities of top five models selected by the proposed
mixed effect method and the other two Bayesian methods. We also calculated corresponding
deviance information criterion (DIC) [41], obtained after running separate LMM analyses
for each model in the list. Although each method chooses the true model as the best model,
our NPME approach selected the true model with the higher posterior probability than the
CD and the Yang methods. The DICs confirmed the selection based on the posterior
probabilities. To avoid the potential overfitting problem when using DIC, we also considered
the Bayesian predictive information criterion (BPIC) [42]. Due to the complexity of the
proposed semiparametric model, computing the score required for BPIC could be
complicated. Instead, we calculated the BPIC based on [43], where we included double of
the model complexity in the criterion which provides more accurate penalty in the criterion.
The BPICs in Table 3 confirmed the top selected model but there was some disparity among
DIC, BPIC and the selection methods for the other models. As pointed out by [41, 43], the
penalty term based on the model complexity in DIC and BPIC are not invariant to
reparameterization, which may cause this problem. Figure 2 depicts the posterior densities
of the random coefficient parameters gB;based on our NPME model, and the corresponding
true densities. It appears that the proposed NPME successfully captured the right densities of

Bi

5. Application: Periodontal Data

We illustrate our approach through analysis of the motivating GAAD dataset (see Section 1)
generated from a clinical study at the Medical University of South Carolina [44]. The
relationship between PD and diabetes level has been previously studied in the dental
literature [45, 46], and the objective of this analysis is to quantify the disease status of this
interesting population, and to study the associations between PD status and diabetes level
(determined by the popular marker HbAlc, or ‘glycosylated hemoglobin’) in the Type-2
diabetic African-American adults residing in the coastal sea-islands of South Carolina.

Our analysis focused on identifying predictors of one of the most popular bio-markers of
PD, the clinical attachment level (CAL). CAL is the distance down a tooth’s root that is no
longer attached to the surrounding bone by the periodontal ligament. During a full
periodontal exam, CAL is usually measured at six pre-specified sites [47] for each tooth
(excluding the third molars, i.e., the wisdom teeth). For a subject with no missing teeth,
there are S = 168 measurements for CAL. The CAL measures for each subject are clustered
and highly correlated. The subject-level covariates include age (in year), body mass index
(BMI) (in kg/m?), gender (1=female, 0=male), HbA1c (1=high, 0=controled) and smoking
status (1=smoker, 0=non-smoker). In addition, the total number of available teeth (cluster
size) within each mouth/subject is varying, and we included the log(cluster size) for each
subject as a predictor as it is highly associated with dental health [48].

In risk assessment studies involving PD, a linear relationship was considered between the
response CAL and the associated risk factors in this data set [49, 50, 51]. We followed the

Stat Med. Author manuscript; available in PMC 2018 June 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Cai and Bandyopadhyay Page 13

same linearity assumption, and proceed by fitting our nonparametric LMM. Predictors
included in the fixed effects component have an average effect on the mean CAL, while
predictors included in the random effect component vary in their effects across subjects. Let
X = (Xipws Xip2s Xi3s Xias Xisr Xifo x,-ﬂ)’ denote the vector of candidate predictors with x;; =
1, xjp=age, xjz =BMI, x4 =gender, x;5 =HbALc, x;5 =smoking status, and x;; =log(cluster
size). We included 288 out of 360 patients, consisting of patients with at least one tooth (i.e.
6 measures) and complete covariate information. The cluster size (per subject) varied
between 18 and 168.

The prior distributions for the elements of Bare chosen as Ng (0, 10) with vp =0.5. The
prior distributions for the free elements of y are independent N(O, 1). The mixture prior
distributions of the elements of A, are chosen as independent % (1, 1). We also chose ¥
(0.05, 0.05) as the prior for o2. We ran the MCMC algorithm described in Section 3 for
20,000 iterations, with a burn-in size of 10,000. The Geweke’s diagnostic tests [37] for
regression coefficients based on Z-scores and the Gelman-Rubin diagnostic [38]
demonstrated good mixing. Posterior probabilities for the possible submodels, estimated
posterior means, and 95% credible intervals for each of the parameters are calculated
thereafter. Sensitivity of the results to the prior specifications were assessed by repeating the
analyses with varying choices of hyperparameters, similar to those in the simulated example.
The results appeared stable.

Table 4 presents the posterior means and 95% credible intervals for fixed effects, and the
marginal posterior probability of inclusion of predictors in terms of fixed effects and random
effects. From the proposed approach, we observe a significant negative effect of gender on
CAL, indicating males more likely to be prone to PD than females. A significantly positive
effect of HbAlc implies patients with uncontrolled glycemic level are more likely to
experience PD. This result is consistent with previous findings [48]. In addition, the log of
cluster size of teeth sites confirmed a significantly negative impact on the CAL, which is
intuitive given that patients with larger number of available teeth (i.e., higher log cluster
size) are expected to have a lower degree of PD. From the Bayesian LMM, only the log of
cluster size is significantly and negatively affecting CAL. For comparison purpose, the
means and 95% credible intervals for 8, ..., f7 from the Bayesian LMM are also presented
in Table 4. Although the estimates of the fixed effects from the two approaches are similar,
the 95% credible intervals of estimates from the Bayesian LMM are wider than those based
on our proposed approach. From the marginal posterior probabilities of inclusion, it is clear
that for the fixed effects components, the predictors including gender, HbA1C and
log(cluster size) are important in predicting CAL. On the other hand, our nonparametric
random effects method suggests to include the random intercept and effects for the smoking
status, implying heterogeneity of these effects across subjects, while the effects of the other
predictors do not vary substantially. The proposed method selected the top model with the
posterior probability of 0.35, including all predictors in fixed effects, and all predictors
except age and log(cluster size) in random effects. In contrast, Chen and Dunson’s method
and Yang’s method chose the same model with the posterior probability of 0.29 and 0.28,
respectively. Based on the marginal probability, the Bayes factor can be calculated [52] as
inclusion criterion for a single predictor in terms of fixed and random effects. Kass and
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Raftery [52] suggest the cutoff points for positive, strong and very strong evidence for a
Bayes factor as 3, 20 and 150, respectively. Given the same prior probability for inclusion
and exclusion (i.e. 0.5), the marginal posterior probability over 0.96 corresponds to the
Bayes factor being over 20, indicating a strong evidence of inclusion. Figure 3 shows the
histogram of empirical Bayes estimates of random intercept based on the LMM and the
density curve of posterior estimates of the random intercept from the proposed method. In
terms of model fits to the data, we calculated the DIC and BPIC for both the models. The
DICs for the Bayesian LMM and our proposed model are 54,403.15 and 54,205.68,
respectively, and the BPICs for the Bayesian LMM and our proposed model are 54,545.39
and 54,386.00, respectively, implying that the proposed model has a better fit to the data.

6. Conclusions

We develop a Bayesian approach to the problem of nonparametric random effects models
where both the predictors to be included and distributions of their random effects are
unknown. Relying on reparameterization of the random coefficients and the centered
nonparametric distributions, our proposed approach avoids the potential biases in estimation,
which may lead to difficulty in interpretation. Incorporating centered independent latent
variables with the decomposition of the dependency of random coefficients allows the
approach to be efficient and straightforward to implement. By using latent random
coefficients which are centered at fixed effects, the proposed reparameterization allows for
the random effects not necessarily being the subset of the fixed effects, resulting in the
independent selection of the fixed and random effects. The simulation study shows that the
performance of the proposed method is better than the other competing methods available. It
is straightforward to extend the method to allow categorical outcomes by using data
augmentation as in probit models. Although motivated by the random effects selection
problem, the proposed approach provides a general strategy for dependency modeling in
related unknown distributions. Future research may focus on analyzing multivariate
responses with spatial information observed in datasets from dental epidemiology. In
addition, it might be really interesting to analyze non-continuous responses, with variable
selection under the similar nonparametric framework. Such methods are less developed and
challenging, and will be pursued elsewhere.
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Plots of density histogram for site-level CAL (Panel a); density histogram (Panel b) and Q-Q
plots (Panel c) of empirical Bayes estimates of the subject-level random effects, obtained
from fitting a LMM to the GAAD dataset.
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Figure2.

Posterior densities (solid lines) and true densities (dashed lines) of the first four parameters
Biin the simulated example. The shaded area indicates the 95% credible interval band. The
vertical bars denote the probability of the point mass at 2.
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