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Abstract

Cytokines provide the means by which immune cells communicate with each other and with 

parenchymal cells. There are over one hundred cytokines and many exist in families that share 

receptor components and signal transduction pathways, creating complex networks. Reductionist 

approaches to understanding the role of specific cytokines, through the use of gene-targeted mice, 

have revealed further complexity in the form of redundancy and pleiotropy in cytokine function. 

Creating an understanding of the complex interactions between cytokines and their target cells is 

challenging experimentally. Mathematical and computational modeling provides a robust set of 

tools by which complex interactions between cytokines can be studied and analyzed, in the 

process creating novel insights that can be further tested experimentally. This review will discuss 

and provide examples of the different modeling approaches that have been used to increase our 

understanding of cytokine networks. This includes discussion of knowledge-based and data-driven 

modeling approaches and the recent advance in single-cell analysis. The use of modeling to 

optimize cytokine-based therapies will also be discussed.
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1. Introduction

Cytokines allow immune cells to communicate with each other and with parenchymal cells. 

Cytokines include interleukins, interferons, chemokines and growth factors that are released 

by immune cells in response to a variety of stimuli and they induce complex transcriptional 

responses resulting in cellular proliferation, differentiation, and migration. These responses 

are mediated by the binding of cytokines to specific receptors expressed on responding cells. 

There are over one hundred cytokines and many exist in families that share receptor 

components and signal transduction pathways. Reductionist approaches to understanding the 

role of specific cytokines, through the use of gene-targeted mice, have revealed further 

complexity in the form of redundancy and pleiotropy in cytokine function [1,2].

*Corresponding author at: Professor of Immunology, University of Pittsburgh, 200 Lothrop Street, BST E1055, Pittsburgh, PA 15261, 
USA. morel@pitt.edu (P.A. Morel). 

HHS Public Access
Author manuscript
Cytokine. Author manuscript; available in PMC 2018 October 01.

Published in final edited form as:
Cytokine. 2017 October ; 98: 115–123. doi:10.1016/j.cyto.2016.11.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Many diseases are characterized by complex cytokine networks that have either positive or 

negative impacts on disease. For example, in colorectal cancer cytokines can either lead to 

tumor rejection through the induction of anti-tumor immunity or can promote tumor growth 

through chronic inflammation [3]. In addition, there are temporal effects such that cytokines, 

e.g. TNF and IL-17, may play a useful anti-tumor role early in the disease but become pro-

tumorigenic later as the tumor progresses [3]. Similarly complex networks play an important 

role in autoimmune diseases such as rheumatoid arthritis (RA) [4] and inflammatory bowel 

disease (IBD) [5]. Therapies for inflammatory diseases such as RA and IBD have targeted 

the cytokines thought to play a key role in disease pathogenesis, TNF and IL-17 [6,7]. While 

these therapies have been very successful for many patients not all individuals with IBD, for 

example, respond to anti-TNF therapy [8]. Some of these patients have benefited from 

therapies that target other cytokines such as IL-12, IL-13 and IL-6 [5].

Advances in multiplex technology allow cytokine measurements in a wide variety of 

settings. These technologies generate large datasets that can include proteomic, genomic and 

epigenomic information. New analytic techniques are being developed to analyze these 

datasets [9], but there is a further need to place these data in a biological framework. 

Systems biology approaches allow the development of mathematical models that not only 

explain how a network of cytokines may be influencing a disease process, but may provide 

testable predictions concerning possible therapeutic interventions [10]. Several modeling 

approaches have been developed for biological systems and two main types of modeling are 

used; one is knowledge or theory-based in which prior knowledge is used to construct a 

mathematical model and the other is data-driven in which complex experimental datasets are 

analyzed mathematically to generate new hypotheses (Fig. 1) [11]. Both approaches have 

been successfully applied to the immune system and have generated novel insights into 

many immune processes including vaccine responses [12,13], IL-2 and Tregs [14], IL-7 

receptor signaling [15] IgE receptor [16] and TCR signaling pathways [17,18]. This review 

will discuss recent examples in which each of these modeling approaches have shed light on 

the complex world of cytokines and their functions in the immune response.

2. Differentiation of cytokine-producing cells and the control of cytokine 

production

The adaptive immune response is orchestrated by CD4+ T cells through the secretion of 

cytokines that drive the activation and differentiation of effector cells such as B cells, 

cytotoxic T cells and cells of the innate immune system. Naïve CD4+ T cells are induced to 

differentiate into T helper (Th) cell subsets following recognition of peptide (p)MHC 

complexes presented by dendritic cells (DC) in the context of a particular cytokine 

microenvironment. At least 6 major Th subsets are recognized today: Th1, Th2, Th17, Th9, 

T follicular helper (Tfh), and regulatory (Treg) cells [19,20] and this number is likely to 

keep increasing. Th cell subsets are distinguished by the expression of specific transcription 

factors that regulate the distinct patterns of cytokine secretion characteristic of each Th cell 

subset. Th cell differentiation has been the topic of many mathematical models [21]. Early 

mathematical models of this differentiation process utilized ordinary differential equations 

(ODE) and were developed from existing knowledge [22,23]. More recently different 
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modeling techniques have been used, including logical network models [24,25], and 

increasingly, experimental data have been used to drive the models [26,27].

Th1 and Th2 cells were first described in the 1980s [28] and Th1 differentiation requires the 

presence of IFN-γ and IL-12 [29], whereas Th2 cells arise in the presence of IL-4 [30]. In 

addition, there are inhibitory interactions between cytokines such that IFN-γ inhibits the 

action of IL-4 on Th2 differentiation and vice versa [31]. Th1/Th2 differentiation has been 

the subject of many mathematical models over the years. Many of these models treated 

Th1/Th2 differentiation as a binary cell fate decision controlled by specific gene regulatory 

networks, in this case T-bet and GATA-3 [32–34]. However recent single-cell analyses have 

cast doubt on the binary cell fate model by revealing that cells adopt a continuum of states 

[35,36]. A recent study examined this question in more detail using a combination of 

experimental and modeling approaches [26]. By stimulating CD4 T cells in the presence of 

increasing amounts of both IL-12 and IL-4, it was shown that expression of T-bet and 

GATA-3 occurs continuously and is tuned by the input signals. The authors show using a 

model of the gene regulatory network describing Th1/Th2 differentiation [32,37], that 

autoregulation of transcription factor expression must dominate over cross-inhibitory effects 

for the continuum to exist [26]. Further, they show that production of IFN-γ or IL-4 by 

individual cells is determined in a stochastic way, and that individual cells retain the ability 

to make one or both cytokines independently [26]. The final model describes a two stage 

differentiation process involving continuous tunable transcription factor expression that then 

drives binary stochastic cytokine secretion [26]. Thus, this study demonstrates, using a 

combination of modeling and experimental validation, that Th1 or Th2 cells retain the ability 

to tune their cytokine responses depending on the external conditions.

The differentiation of naïve CD4+ T cells into Th17 and induced (i)Treg both require TGF-β 
but the addition of IL-6 will favor Th17 over iTreg differentiation, whereas the presence of 

retinoic acid favors iTreg development [38]. Th17 cells play important roles in the defense 

against extracellular pathogens and fungi but also have immunopathological roles in some 

autoimmune diseases such as multiple sclerosis and RA [39]. Treg cells, on the other hand 

play an important role in preventing autoimmunity and minimizing immunopathology 

following an infection [40,41]. TGF-β and IL-6 induce the Th17 master regulator RORγt 

[42], whereas the presence of TGF-β with retinoic acid will induce the expression of the 

iTreg-specific transcription factor Foxp3 [43,44]. Several models have been developed to 

explore these interactions and to shed light on the factors driving the differentiation 

outcome. In one approach [45], an ODE model described the reciprocal differentiation of 

Th17 and iTreg, was able to recapitulate the key features of Th17 and iTreg differentiation 

and, in addition provided new insights into the existence of cells that express both RORγt 

and Foxp3 [45]. The model suggested that double-expressing cells do not represent an 

intermediate step in differentiation but rather that they appeared in conditions of high TGF-β 
concentration at later stages of differentiation. This is in agreement with reports that describe 

the existence of iTreg that co-express Foxp3 and RORγt and have suppressive function [46].

In another approach aimed at investigating Th17 differentiation the authors used a RNASeq 

dataset generated over a detailed time course to explore the validity of several potential 

models [27]. In this study a dynamic ODE model of Th17 differentiation was used as a 
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framework and four hypothetical mechanisms were identified that resulted in 12 alternative 

models for the molecular interactions important for Th17 differentiation. A statistical 

approach was applied to the time course RNASeq data and used to select which of the 12 

alternative models best fit the data. This approach identified three models that best fit the 

RNASeq data, and by incorporating additional protein data on the dose response relationship 

between TGF-β and Foxp3 expression a single model was identified. The most robust model 

was one that incorporated the mechanisms of RORγt inhibition by Foxp3 and the inhibition 

of Foxp3 by STAT3 signaling downstream of IL-6 [27]. This study is a good example of 

combining modeling with detailed time course experimental data to provide important new 

insights into the complexities of Th17 differentiation.

Recent studies have examined the control of IFN-γ production in differentiated Th1 cells 

[47]. In the case of IFN-γ production by T cells the authors used a combination of single-

cell assays and mathematical modeling to determine whether the observed heterogeneity in 

production level of IFN-γ is stably maintained in an individual T cell, such that cells are 

either producers or non-producers, or whether every cell can be a cytokine producer or non-

producer depending on the timing or circumstance. The experiments showed that individual 

T cells make a stable decision to produce IFN-γ or not and that this is correlated with 

several factors including the expression level of T-bet and the methylation status of the IFN-

γ and Tbx21 loci [47]. The mathematical model of the population heterogeneity was best 

able to fit the data when each cell was given an inherent ability to produce a certain level of 

IFN-γ, rather than being the consequence of gene-expression noise [47]. Interestingly T 

cells retained a quantitative memory of IFN-γ production levels for as long as one month in 
vivo. Similar results were obtained for IL-17 production [47].

Another study has examined the control of TNF production by macrophages stimulated with 

various TLR ligands [48]. In this study ODE models of the three stages of TNF production, 

transcription, RNA stabilization and translation, were combined and used to simulate 

macrophage response to various TLR signals. This model could accurately simulate the 

responses to LPS and poly I:C, but failed in the case of CpG. In order to accurately simulate 

CpG-induced TNF production it was necessary to add a model component of autocrine 

signaling by TNF in order to promote optimal NFκB-mediated TNF production [48]. 

Experiments were performed to confirm that optimal NFκB activation in response to CpG 

required the presence of TNF, whereas this was not required for the LPS response [48].

3. Cytokine signaling

Cytokines bind to specific receptors on cells, which trigger a signaling cascade ultimately 

leading to gene transcription and a cellular response. Many cytokines share receptor 

components and signaling intermediates but yet induce distinct responses in individual cells. 

Examples include the common γ-chain cytokines [49], the IL-12 and IL-6 family of 

cytokines [50]. IL-12 and IL-23 share the same signaling chain, IL-12Rβ2, and signal via 

JAK2 and STAT4 [51]. IL-2, IL-4, IL-9, IL-7, IL-15 and IL-21 all share the common γ chain 

important for signaling [52]. IL-2 and IL-15 not only share the common γ-chain but also 

share the IL-2Rβ chain, and specificity is conferred by an α chain that is unique for each 

cytokine [53,54]. Recent studies examining the signaling pathways induced by both 
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cytokines in T cells have revealed that these are quite similar and that distinct cellular 

responses induced by IL-2 or IL-15 are influenced by differential signal strength, caused by 

differences in the binding affinity and in the expression levels of the unique α chains as well 

as the dynamics of receptor internalization [55].

Cytokines may also have more than one effect on the same cell. For example, IL-2 can 

induce both proliferation and death in T cells depending on the circumstance. A simple ODE 

model of this paradoxical signaling [56] demonstrated that these events were important in 

the homeostasis of cell populations. The proliferative and death inducing effects of IL-2 

were both positively correlated with the production of IL-2 by T cells but the dynamics were 

distinct. The proliferation rate was correlated with IL-2 secretion in a cooperative manner 

whereas there was a linear relationship between IL-2 production and death [56]. The model 

predicted that if the cells were diluted during the proliferative phase the death function 

would dominate and this was confirmed experimentally [56]. Additionally, the model 

demonstrated that it was important for robust homeostasis for the same cytokine to have 

these paradoxical effects rather than allowing two separate cytokines to either increase 

proliferation or increase the death rate. A modified model that allowed for two cytokines to 

have the proliferative and death-inducing effects created unstable dynamics which were 

much more sensitive to the parameter values. There was only a very narrow range of 

parameters in which the two cytokine model could achieve homeostasis whereas the one 

cytokine model was robust over a wide range of parameters [56].

Cytokines such as TNF-α or TGF-β can bind to more than one receptor which leads to 

increased complexity in the cellular response. TGF-β binds to type I and type II receptors 

which work in concert to activate the TGF-β signaling pathway. TGF-β has multiple 

functions, and, in addition, a family of related cytokines can bind to these receptors. This 

signaling pathway has been extensively modeled [57] and these models have provided 

important insights into the biology of TGF-β in multiple settings. Several recent studies have 

examined the effects of sustained versus pulsed TGF-β signaling using combined 

experimental and mathematical approaches [58–60].

A cautionary tale is provided by two recent studies of pulsatile signals that appear to result 

in opposite conclusions. In one study cells treated to a short pulse of TGF-β became 

unresponsive to subsequent ligand stimulation [59]. This behavior was associated with a 

rapid internalization and degradation of TGF-β receptors followed by slow re-expression of 

these receptors. A mathematical model of the receptor dynamics and refractory state was 

constructed and this model identified important determinants of the refractory state, namely 

the rate of receptor turnover and the ratio of the ligand-induced to constitutive receptor 

turnover [59]. Further, the model predicted that the ability of tumor cells to respond to TGF-

β would be dependent on the level of autocrine TGF-β production and this was confirmed 

experimentally [59]. An earlier paper [60] using the same cell line failed to show the 

development of a refractory state, but rather showed that multiple short pulses of TGF-β led 

to sustained signaling. A mathematical model was developed and this reproduced the 

experimental results and was able to explain the switch like behavior seen for several 

readouts [60]. These two papers used slightly different experimental approaches to interrupt 

the TGF-β signal with one study using an inhibitor of the TGF-β signal or a neutralizing 
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anti-TGF-β antibody [59], whereas the other study washed the excess TGF-β out from the 

cells [60]. It is possible that these experimental differences could be responsible for the 

contradictory results reported in these two studies, and this has yet to be resolved. In both 

cases the models were able to reproduce the experimental results and provide predictions 

that were experimentally validated. These studies highlight that care must be taken when 

choosing biological conditions, and interpreting the results of a mechanistic model. 

However, since these two studies focus on slightly different aspects of the signaling pathway 

it is possible that careful analysis of both systems will reveal a unified understanding of 

TGF-β signaling.

Differences in the relative abundance of receptors or signaling intermediates can dictate how 

a cell responds to a cytokine. A prime example of how levels of receptor expression induce 

differential cellular responses is the high affinity (HA) IL-2R. Naïve T cells only express 

HA-IL-2R following activation and upregulation of CD25. In contrast, Treg constitutively 

express HA-IL-2R and thus can sequester IL-2 produced by activated T cells. Modeling of 

the IL-2R-induced signals in T cell populations, combined with detailed single-cell 

measurements revealed the complex dynamics of the ‘‘tug of war” between Th and Treg 

cells for IL-2 [61]. The wide variability in IL-2R expression between different T cells 

influences their ability to produce and consume IL-2 and to initiate signaling via the IL-2R 

[61]. This has been substantiated in several in vivo models in which it was shown that IL-2 

produced early in an immune response is utilized by resident Treg cells [62].

Another example of the effects of the abundance of signaling intermediates was examined in 

a detailed data-driven model of IL-13 signaling in two B cell lymphoma lines. These cell 

lines are representative of two distinct tumor types, Hodgkin lymphoma and primary 

mediastinal B cell lymphoma, that differ in their clinical outcome and response to therapy. 

Both cell types exhibit a hyperactive IL-13 signaling pathway that is thought to contribute to 

their growth. Detailed analysis of the abundance of the signaling components revealed 

altered stoichiometry related to the relative abundance of positive (JAK2) and negative 

(SHP1) signaling intermediates. Exposure of these cells lines to IL-13 identified differences 

and similarities in the signaling pathways in these two cell lines [63]. Structurally similar 

models were developed and calibrated for both cell lines and parameters were defined for 

each cell line based on detailed quantitative measurements. These models reproduced 

experimental data and revealed distinct therapeutic targets in each of the cell lines that could 

be tested clinically [63].

4. Cytokine networks

Cytokines do not act in isolation and, frequently, cells are exposed to multiple cytokines at 

the same time or sequentially. These interactions may change how a cell responds to any 

given cytokine. IL-2 and IL-4 were first described as growth factors for T and B cells 

respectively. Interestingly, IL-2 and IL-4 synergize when inducing proliferation of T cells 

[64,65] but they are antagonistic when inducing B cell proliferation, which was associated 

with the down-regulation of high affinity IL-2R when B cells were pretreated with IL-4 [66]. 

An ODE model that would explain these apparently contradictory actions of IL-2 and IL-4 

on the proliferation of B and T cells was developed [67]. The model predicted that synergy 
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or antagonism depended on the dynamics of the IL-2 and IL-4 receptor numbers. In 

activated T cells, because the number of high affinity IL-2R is large the threshold is reached 

before the reduction of receptor numbers by IL-4 can impact the proliferative response, and 

thus the synergy term dominates. In B cells the number of IL-2R is much lower and thus the 

presence of IL-4 will reduce this number such that there is apparent antagonism between the 

cytokines [67]. The model was calibrated to experimental data and, in T cells, the threshold 

number for IL-2 was approximately 10 fold less than that required for IL-4 to induce 

proliferation [68]. As discussed below single-cell analysis has shed important new light on 

this phenomenon.

More recently the response of macrophages to a wide array of cytokines and TLR ligands 

was examined in single or double ligand combinations as collected by the Alliance for Cell 

Signaling [69]. These datasets consisted of phosphoproteins, measured by Western blot and 

cytokine secretion measured at various time points following stimulation. This study 

describes a novel methodology for the reconstruction of the phosphoprotein networks 

following macrophage stimulation, termed an information theoretic approach [69]. This 

approach is based on the estimation of mutual information [70] of interactions by using 

kernel density estimators. This provides a novel method to analyze large signaling datasets 

and, in the case of macrophage response, known signaling networks were identified and 

some novel interactions were found [69]. For example, this study revealed that TNF 

secretion was regulated by the largest number of phosphoproteins and identified ribosomal 6 

kinase as a novel regulator of TNF production [69].

Another study used discrete logic modeling to examine the response of human cells to 

combinations of 7 cytokines [71]. This study used extensive datasets available in the 

literature to build and train the model. Subsequent model testing against new data showed 

increased predictive power and identified new interactions between signaling molecules that 

were validated experimentally [71]. Thus, the use of Boolean logic was able to generate a 

model of complex signaling pathways that yielded testable predictions.

A recent study examined the profiles of cytokines produced by PBMC from healthy or HIV+ 

individuals in response to three different stimuli [72]. Using partial least-squares 

discriminant analysis of these datasets they identified differences in the pattern of cytokine 

responses that depended on the stimulus and donor type. In addition, a decision tree analysis 

revealed that HIV+ donors had an early defect in the production of IFN-γ in response to 

innate stimuli. Further experiments revealed that this was an NK cell defect and that it had 

an impact on later production of cytokines by other immune cells [72].

Increasing complexity arises when attempting to model an entire immune response involving 

several cell types and the cytokines they produce. This has resulted in the generation of 

multi-scale models in which multiple layers such as intracellular signaling pathways, 

secretion and diffusion of cytokines and the response of multiple cell types are included 

[73,74]. One such model examined how the response to TNF-induced apoptosis in the 

intestine was influenced by the presence of lymphocytes [75]. Using a data-driven multi-

scale model this study found that the presence of lymphocytes abrogated the negative impact 

of TNF signaling in the intestine through the secretion of the chemokine MCP-1 and 
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recruitment of plasmacytoid DCs [75]. Another study examined the role of IL-21 in 

maintaining the CD4 T cell response in the gut to Helicobacter Pylori infection [76].

5. Single-cell analysis

Heterogeneity is ubiquitous in biological systems. Even when studying cultured cell lines, 

there is natural cell-to-cell variability in the activity or abundance of regulators for cytokine-

dependent signals. Non-genetic differences between cells that result from morphological, 

asynchronous cell-cycle state, microenvironment, or stochastic sources can lead to diverse 

responses from subpopulations of single cells in otherwise homogeneous conditions 

[36,77,78]. Because the goal of many mathematical models is to understand how cells 

process information and respond to stimuli, it is important to parameterize models to single-

cell data when it is available. Recent technological advances in single-cell analysis makes it 

possible to address some of these issues and understand how variability in cytokine-induced 

signals leads to different cell fates. These include advances in single-cell analysis, imaging, 

and ‘omics’ techniques [35,79–81].

Although many useful predictions can be made from observations that measure ‘bulk’ 

properties from cell populations, such as the biochemical average in a lysate from many 

thousands of cells, these measurements often miss important principles of signal 

transduction. For example, although an EC50 from a doseresponse curve can be used to 

characterize the potency of a drug, this is also the precise concentration that produces the 

greatest heterogeneity of single-cell responses. How does heterogeneity in the biochemical 

state of a cell lead to different responses to a cytokine or drug? Cotari et al. recently 

developed a hybrid computational and experimental methodology called cell-to-cell 

variability analysis (CCVA) to dissect these quantitative relationships [82]. Using flow 

cytometry to simultaneously measure IL-2Rα receptor abundance and pSTAT5 as a 

downstream effector in the same cell, they used CCVA to determine how cell-to-cell 

variation in IL2-Rα abundance influences sensitivity to cytokines whose receptor shares the 

common γ-chain. Comparing cell subpopulations from a cultured cell line showed that the 

EC50 for IL-2 and other γ-chain cytokines can vary by orders of magnitude depending on 

IL2-Rα abundance. Using a Bayesian strategy to parameterize a thermodynamic model of 

receptor complexes to single-cell data revealed that IL-2Rα competes with other pre-formed 

receptor complexes for binding the common γ-chain, and γ-chain depletion by abundant 

complexes can alter the EC50 for other γ-chain cytokines in the same cell. Their model 

predicts that the relative abundance of each α-chain complex, and their relative affinity for 

the γ-chain, are key parameters determining each cell’s sensitivity to a cytokine.

In a related single-cell study, Voisinne et al. showed that weakly activated CD8+ T cells can 

be co-opted to proliferate by paracrine signals from strongly activated T cells in their 

microenvironment [83]. Variability between single cells in the abundance of receptors or 

other signaling regulators lead to cell-specific thresholds for antigen discrimination, and 

even though some cell subpopulations were insensitive to low quality or low quantity of 

antigen in isolation, they could still become activated when grown in a mixed-culture. Using 

a hybrid deterministic/stochastic framework to model single-cell responses, an IL-2-

mediated positive feedback loop was shown to provide additional PI3K activation sufficient 
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for cell cycle entry in some cells despite weak TCR activation. Their experiments and model 

suggest that IL-2 secreted by subpopulations of strongly responding cells provide a 

synergistic signal, effectively reducing the threshold of activation for weak responders in 

their vicinity.

The system used a co-culture of transgenic cells, and one may ask: Is natural cell-to-cell 

variability in an isogenic system sufficient for ‘sender’ and ‘responder’ cells to 

simultaneously co-exist in the same culture? This question is partially answered in another 

study of monocyte-derived cells that compares cytokine secretion between isolated single 

cells and cell populations [84]. Using a microwell-based culture system to multiplex 

measurements of cytokines, Xue et al. showed that paracrine signals within a cell population 

contribute significantly to the LPS-stimulated secretome, and are attenuated when cells are 

grown in isolation. By developing a Graphical Gaussian Model of the extracellular 

regulatory network, they identified critical paracrine dependencies that differentiate cytokine 

secretion profiles for cell populations and isolated single cells. The distributions of single 

cell cytokine secretion also revealed significant cell-to-cell variability. For the case of TNF, 

the top 5% of TNF-secreting single cells were estimated to account for 60% of total TNF 

secretion, indicating the presence of a small population of ‘high TNF-producing cells’ that 

may share paracrine signals with nearby cells to amplify the local response. Together, these 

observations suggest that heterogeneity may be favored by the immune system, to fine-tune 

cell behaviors through communicating subpopulations of ‘sender’ and ‘responder’ cells that 

share noisy signals.

Patil et al. [85] examined IFN-β production by DC infected with Newcastle disease virus 

(NDV) in order to determine the source of observed cell-to-cell variability. In this case they 

counted the molecules of Ifnb1 and NDV RNA in individual cells to quantitate cytokine 

production. They found that fewer than 35% of NDV-infected cells produced Ifnb1 RNA at 

early time points and that this increased over time. In addition, there was no correlation 

between the levels of NDV RNA and Ifnb1 RNA in the cells. This was in contrast to LPS 

treatment when the majority of DC produced Ifnb1 at the early time point. The 

computational approach of stochastic feature screening [86] was used to characterize the 

factors driving this cell to cell variability. The stochastic features screened included the 

infectivity of the cell, whether an infected cell would respond. Cell-to-cell variability in the 

amount of Ifnb1 RNA produced and the time for the response to be initiated. Results of 

propagation simulations suggested that all four features were needed to reproduce the 

experimental variability in Ifnb1 expression after NDV infection, but not for the LPS 

response [85].

In response to cytokines and other environmental stimuli, cells must precisely coordinate 

spatiotemporal dynamics of signal transduction networks. For many signaling systems, 

specificity of a stimulus is encoded through dynamic ‘features’ of activation or subcellular 

localization for signaling mediators, such as time-varying changes in their amplitude, 

duration, or frequency [87,88]. Live-cell imaging experiments using cells that express 

fluorescent biosensors have revealed many principles of information encoding and decoding 

in single cells that would be impossible to observe using population-level assays. For 

example, dynamic ‘features’ for pulses of activated ERK encode responses to extracellular 
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EGF and NGF that regulate cellular decisions to proliferate or differentiate [89,90]. 

Stochastic variability between cells in protein expression leads to differences in the rate and 

timing of caspase activation in cellular responses to TRAIL, leading to cell-to-cell variability 

in cell death and a phenomenon called fractional killing [91,92]. Live-cell data were also 

essential to develop temporally resolved models of the canonical NF-κB pathway, leading to 

detailed understanding of critical feedback motifs that regulate inflammatory signal 

transduction [26,80,93,94]. In a related study, quantitative single-cell methods that 

simultaneously measure time courses for nuclear localization of NF-κB were combined with 

gene expression in the same cell to determine how the transcriptional system decodes NF-

κB dynamics [95]. The NF-κB transcriptional system was shown to be capable of fold-

change detection, and some genes showed qualitative differences in their response to the 

same ‘feature’ of NF-κB dynamics. By adapting an ODE-based model, a type 1 incoherent 

feed-forward network motif in the NF-κB system was found to be essential for fold-change 

detection. The model predicts that changes in the cellular abundance of proteins that 

compete for binding to NF-κB promoters can tune diverse patterns of gene expression in 

response to inflammatory cytokines. Further efforts to integrate dynamics with other single-

cell assays, such as combined measurement of genome and transcriptome in the same cell 

[96], will undoubtedly lead to more sophisticated models of single-cell behavior with greater 

predictive capabilities.

6. Clinical applications of modeling approaches

Cytokines contribute to the pathogenesis of many diseases including autoimmune [4], 

inflammatory [5] and allergic [97] diseases. Several new therapeutics for these diseases 

target cytokines and have shown promise in a wide variety of conditions [6,7]. While these 

new therapies are proving successful in many patients there are still questions concerning 

who would best respond to the therapy and what is the best regimen for delivery. Several 

recent studies have examined these questions [98–104]. In a study of patients with asthma 

bipartite network analysis of patients and cytokines allowed the assignment of specific 

pathogenic mechanisms and cytokines to particular clinical subgroups [102]. Bipartite 

networks use two sets of nodes and the edges can only connect nodes from different sets. In 

this study [105] data from the measurement of 18 cytokines in bronchoalveolar lavage fluid 

in 83 asthma patients was visualized using a bipartite network created with the Kamada–

Kawai algorithm [106]. This analysis revealed three main clusters of patients that could be 

distinguished by cytokine pattern and also clinical parameters. These corresponded to a 

patient cluster with high levels of Th2 cytokines, a cluster with high Th2 and innate 

cytokines and a third cluster with low cytokine levels. The third cluster also identified 

patients with more preserved lung function. Interestingly, this classification does not match 

the standard clinical classification of severe versus nonsevere asthma. These results suggest 

that novel approaches to classify clinical conditions using modeling and cytokine profiles 

will provide novel insights important for patient management and disease pathogenesis.

Models have been used to determine optimal dosage and timing of cytokine-targeted 

treatments in various settings. In one study an ODE model was used to optimize the 

treatment protocol of IL-21 given as an anti-tumor therapeutic [98], demonstrating that 

lower doses given twice a day just as effective and less toxic than higher doses given once a 
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day [98]. Another model examined the tumor-promoting effects of IL-35 [107] and also 

studied the effects of administering an anti-IL-35 reagent as a therapeutic. This study 

suggested that continuous administration of the anti-IL-35 would be most efficacious in 

reducing the tumor load [107]. Another therapeutic approach in cancer has been the 

coupling of inflammatory cytokines, such as IL-2, to antibodies specific for tumor-

associated antigens; so called immunocytokines [108]. A recent study [104] found that the 

immunocytokines did not necessarily accumulate in the tumor but rather bound to IL-2R 

positive cells. This, however, did not appear to impede the therapeutic effect. An ODE 

model examining the effect of immunocytokine size on biodistribution revealed that the 

while small immunocytokines are more rapidly cleared from the blood they accumulate 

better in the tumor and thus have increased effectiveness [104].

Another study has examined the development of resistance to IFN treatment in patients 

infected with HCV [101]. A detailed ODE model of the IFN signaling pathway and viral 

kinetics revealed a mechanism by which HCV subverts the IFN response thus allowing for 

viral persistence and resistance to further IFN treatment. The study further showed that 

direct-acting anti-virals can over-come this state allowing for the virus to be cleared, and this 

has shown promise clinically [101].

7. Conclusions

Computational modeling of cytokine networks is being increasingly integrated into studies 

of cytokine mechanisms and network dynamics. Mechanistic models have been used to 

identify novel interactions and to optimize therapeutic protocols. Data-driven models have 

been used to find novel components and interactions in large cytokine networks and 

signaling pathways. Studies at the single-cell level demonstrate how the immune system 

harnesses heterogeneity to achieve optimal function. These studies are likely to bring new 

insights to the field and will aid in the development and optimization of new cytokine-based 

therapies in a wide variety of diseases.
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Fig. 1. 
Modeling approaches used to study cytokine interactions. Two main modeling approaches 

are used; knowledge-based approaches that may utilize Boolean logic, ordinary differential 

equations (ODE) or rule-based techniques or data-driven approaches in which large 

experimental datasets are analyzed using principal component analysis (PCA), network or 

information theory. This is an iterative process with experimental data used to create and 
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validate models, models analyzed to generate predictions which are then tested in further 

experiments.
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