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SUMMARY

In mammalian females, germ cells remain arrested
as primordial follicles. Resumption of meiosis is
heralded by germinal vesicle breakdown, condensa-
tion of chromosomes, and their eventual alignment
on metaphase plates. At the first meiotic division,
anaphase-promoting complex/cyclosome associ-
ated with Cdc20 (APC/CCdc20) activates separase
and thereby destroys cohesion along chromosome
arms. Because cohesion around centromeres is
protected by shugoshin-2, sister chromatids remain
attached through centromeric/pericentromeric co-
hesin. We show here that, by promoting proteolysis
of cyclins and Cdc25B at the germinal vesicle (GV)
stage, APC/C associated with the Cdh1 protein
(APC/CCdh1) delays the increase in Cdk1 activity,
leading to germinal vesicle breakdown (GVBD).
More surprisingly, by moderating the rate at which
Cdk1 is activated following GVBD, APC/CCdh1 cre-
ates conditions necessary for the removal of shu-
goshin-2 from chromosome arms by the Aurora
B/C kinase, an event crucial for the efficient resolu-
tion of chiasmata.

INTRODUCTION

In mitotic cells, each round of chromosome segregation is

preceded by DNA replication, and as a result, chromosome

numbers remain constant during cell proliferation. Meiosis, in

contrast, involves two rounds of chromosome segregation

(meiosis I and II) following only a single round of DNA replication

and therefore produces haploid gametes with only a single set of

chromosomes from diploid germ cells containing complete sets

of both paternal and maternal chromosomes [1].
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Another major difference occurs specifically in female germ

cells in vertebrates, including all mammals. In mitotic cells, there

is usually only a short gap (known asG2) between the completion

of DNA replication and the onset of chromosome segregation,

which is initiated by a rapid rise in Cdk1 kinase activity. In female

mammals, DNA replication and the recombination between non-

sister homologous chromatids that creates bivalent chromo-

somes is completed by the time of birth, but chromosome segre-

gation only takes place periodically upon sexual maturation,

which may be many years later [1].

Thus, following recombination, primordial germ cells sur-

rounded by a single layer of supporting follicular cells arrest for

extended periods of time in prophase of meiosis I with low levels

of Cdk1 activity associated with mitotic cyclins. These primordial

follicles enter a period of growth to become prophase arrested

(the germinal vesicle [GV] stage) oocytes but can only resume

meiosis and enter prometaphase I when activated by luteinizing

hormone [2] or when released from follicular cells in vitro [3]. As

occurs during mitosis, a rise in Cdk1 activity accompanies entry

into prometaphase I [4], but curiously this rise is not as abrupt as

in mitotic cells [5–7].

Two processes regulate Cdk1 activity during the prophase I

arrest of oocytes: association with cyclins and phosphorylation

by theWee1 protein kinase [8, 9]. The latter inhibits Cdk1 activity,

even during their growth phase [8]. Its eventual reversal by the

phosphatase Cdc25B accompanies and is required for germinal

vesicle breakdown (GVBD) and the onset of chromosome

condensation [10]. Cdk1 is, however, only active when bound

to cyclins, whose abundance is therefore also a crucial factor

[11]. A key determinant of their levels is the rate of degradation,

a process controlled through ubiquitinylation by the anaphase-

promoting complex or cyclosome (APC/C) [12–14]. A major in-

crease in the rate of degradation mediated by APC/C associated

with its activator Cdc20 (APC/CCdc20) takes place when all biva-

lents co-orient on the meiotic spindle, which turns off production

of the inhibitory mitotic checkpoint complex (MCC) [15]. This

leads to a drop in Cdk1 activity and in the levels of securin,
ors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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events that lead to activation of separase and thereby cleavage

of cohesin holding bivalent chromosomes together [16–18].

Less well understood is the role of other Cdc20-like

APC/C activator proteins. Best characterized is the role of

S. cerevisiae’s Ama1 [19]. This meiosis-specific WD40 protein

generates a form of the APC/C (APC/CAma1) that helps maintain

a prophase-like state by preventing premature accumulation of

B-type cyclins and a transcription factor that promotes expres-

sion ofmitotic cyclins [20]. An analogous formof regulation exists

in mammals, where APC/CCdh1 degrades cyclin B during pro-

phase I arrest, blocking entry into metaphase I [21, 22]. Recent

work has shown that APC/CCdh1 also has a key role inmaintaining

the prolonged prophase arrest of primordial follicles [23], though

how it does so remains unclear, as is the interplay between cyclin

degradation and Wee1-mediated Cdk1 phosphorylation.

What is clear is that Cdk1 activation is essential for GVBD,

chromosome condensation, and the alignment of bivalents on

meiotic spindles [4, 6, 24]. During this process, the Aurora B ki-

nase eliminates kinetochore-microtubule attachments that fail

to give rise to tension, whereas the spindle assembly checkpoint

(SAC) prevents premature activation of APC/CCdc20 [25–27].

Only when all bivalents have co-oriented, with maternal and

paternal kinetochores pulled in opposite directions, is produc-

tion of the MCC switched off [28]. This induces destruction of

B-type cyclins and securin by APC/CCdc20 and thereby activation

of separase, which triggers the resolution of chiasmata by

cleaving cohesin’s Rec8 subunit along chromosome arms

[17, 29, 30]. Crucially, cohesin in the vicinity of centromeres is

protected from separase during meiosis I by protein phospha-

tase 2A (PP2A) bound to the shugoshin-like protein 2 (Sgol2)

[31]. By holding chromatids together after meiosis I, centromeric

cohesion ensures that dyads and not individual chromatids are

generated at meiosis I, which makes possible the bi-orientation

of sister kinetochores during meiosis II [32]. Subsequent

destruction of centromeric cohesion when separase is re-acti-

vated upon fertilization triggers the eventual disjunction of indi-

vidual chromatids and the creation of haploid gametes.

Using female-germ-cell-specific Cdh1 [33], Apc2 [34], and

Cdc20 [35] knockouts, we show here that APC/CCdh1 ensures

that meiotic resumption is triggered by and/or accompanied by
Figure 1. By Maintaining Low Levels of Cdc25B and Cyclin B1, the APC
and Ensures a Gradual Increase in Cdk1 Activity after GVBD

(A) Oocytes harvested from Cdh1f/f and Cdh1f/f Gdf9-iCre ovaries in the presenc

GVBD rates for each of the indicated genotypes are plotted as a percentage of

females used is indicated (n).

(B) GV-stage oocytes harvested in the presence of IBMX were released into the M

microscope. Microinjections were performed at GV stage in the presence of IBM

(C and D) GV-stage oocytes harvested from ovaries isolated from 4-week-old fem

loading control. One hundred twenty GV-stage oocytes were pooled for each lan

(E) Fully grown GV-arrested oocytes were immunoblotted for phospho-Cdk1 (Ty

(F) GV-stage oocytes harvested from the indicated genotypes were imaged for

indicated (n).

(G and H) Cdk1 kinase activity was estimated using in vitro phosphorylation of his

Zp3Cre, and Cdc20f/f Zp3Cremicroinjected with D90-cyclin B1 (H) ovaries at GV

and histone H1. Samples were resolved on SDS-PAGE gels, and incorporated ra

(I) GV-stage oocytes from each of the indicated genotypes depicted were immu

control. Extracts from Apc2f/f and Apc2f/f Zp3Cre were also immunoblotted for cy

were loaded. Except for the Cdh1 Gdf9-iCre knockout and control ovaries, whic

follicles, ovaries from all other crosses were isolated at 6 weeks post-birth.

For Apc2 knockout results, see Figure S1.
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only a modest increase in Cdk1 activity. This creates a window

followingGVBDduringwhich the Aurora B/C kinase can promote

removal of Sgol2 from chromosome arms and its accumulation

at centromeres. By jeopardizing the resolution of chiasmata, a

lack of APC/CCdh1 greatly increases non-disjunction at the first

meiotic division. Our finding challenges the preconception that

a step change inCdk1activity is sufficient to orchestrate chromo-

some segregation when cells enter M phase [36] but rather re-

veals that a gradual increase in Cdk1 activity ensures balanced

segregation of chromosomes at the first meiotic division.

RESULTS

By Destroying Cyclins and Cdc25B, APC/CCdh1

Orchestrates a Gradual Increase in Cdk1 Activity
after GVBD
Cdh1 knockdown at the GV stage increases non-disjunction of

chromosomes at the first meiotic division [37]. However, at the

metaphase to anaphase transition, APC/C conjugates with

Cdc20 (APC/CCdc20) to activate separase and bring about segre-

gation of chromosomes [29]. Therefore, to investigate the role

of APC/CCdh1 at the first meiotic division, we deleted Apc2

and Cdh1 specifically from germ cells by crossing Apc2f/f and

Cdh1f/f females with transgenic males expressing Cre recombi-

nase under either growth-differentiation-factor-9-promoter-

mediated promoter (Gdf9-iCre), expressed in all oocytes from

day 3 after birth [38], or zona pellucida 3 promoter (Zp3-Cre), ex-

pressed only after oocytes enter the growth phase. As in the case

ofApc2f/fZp3Cre andCdc20f/f Zp3Cre [26, 29],Apc2f/f Gdf9-iCre

females were completely infertile. In contrast, Cdh1f/f Gdf9-iCre

females produced a litter at 6–12 weeks, albeit one with fewer

pups than littermate controls. Despite this early fertility, all

Cdh1f/f Gdf9-iCre females were infertile by early adulthood (i.e.,

after 12 or 13 weeks) and had atrophied ovaries. Crucially, pri-

mordial follicles were rapidly depleted (unpublished data).

Even though the conditional Cdh1 knockout females quickly

exhausted the primordial follicles, they still produced a few fully

mature oocytes until about 7 weeks post-birth, though about

one-third of those had undergone GVBD and resumed meiosis

in vivo (Figure 1A). Even in the oocytes arrested at the GV stage
/CCdh1 Maintains GV Arrest, Prevents Premature Entry into Meiosis,

e of IBMX that had already resumed meiosis upon isolation were quantified.

the total oocytes observed. Mean and SDs are displayed, and the number of

16 medium. The kinetics of GVBD was captured using a time-lapsed confocal

X. The number of oocytes analyzed is indicated (n).

ales were immunoblotted for cyclin B1 (C) and Cdc25B (D). Actin was used as

e.

r15) and Cdk1. For each lane, 120 GV-stage oocytes were pooled.

18 hr. The kinetics of GVBD is displayed. The number of oocytes imaged is

tone H1. Oocytes from Cdh1f/f and Cdh1f/f Gdf9-iCre (G) and Cdc20f/f,Cdc20f/f

, GVBD, and 20 and 40 min post-GVBD were incubated with radiolabeled ATP

dioactivity was imaged.

noblotted for Cdh1 or Apc2 to confirm depletion. Actin was used as a loading

clin B1 and Cdc2-Y15P. For each lane, cell lysates from 120 GV-stage oocytes

h were isolated at 4 weeks post-birth due to rapid depletion of the primordial



by IBMX in vitro, onset of GVBD upon release was accelerated

and more efficient when Cdh1 was depleted (Figure 1B). The

fact that microinjection of Cdh1 mRNA into GV oocytes had

the opposite effect implies that the APC/CCdh1 is actively

engaged in destroying substrates that promote GVBD in fully

grown GV-arrested oocytes (Figure 1B).

Western blot analysis of cell lysates from the fully mature GV

stage oocytes revealed that both cyclin B1 and Cdc25B were

elevated in oocytes lacking Cdh1 (Figures 1C and 1D). These

increases were accompanied by an increase in Cdk1-Y15P (Fig-

ure 1E), suggesting that many, but not all, excess cyclin B/Cdk1

complexes may be inhibited by Wee1-mediated Y15 phosphor-

ylation. Furthermore, simultaneous depletion of Cdc25B in Cdh1

knockout ovaries greatly reduced and delayed GVBD in vitro

(Figure 1F), suggesting that loss of Cdh1 accelerates GVBD by

elevating Cdk1 activity.

To investigate the consequences of this enlarged pool of latent

Cdk1, wemeasured its kinase activity in oocytes followingGVBD

in vitro, comparing those from Cdh1f/f and Cdh1f/f Gdf9-iCre fe-

males. This revealed that Cdh1 depletion increased by several-

fold the rise in Cdk1 activity following GVBD. In control oocytes,

only a modest increase in Cdk1 activity accompanies GVBD and

levels continue to rise gradually (Figure 1G) [5–7]. In contrast, in

Cdh1-depleted oocytes Cdk1 activity increases precipitously at

GVBD and remains high (Figure 1G). Greater stability of cyclin B1

is presumably responsible for this phenomenon, as it can be re-

produced merely by injecting oocytes lacking Cdc20 with mRNA

encoding a non-degradable form of cyclin B1 (D90-cyclin B1;

Figure 1H).

Studying the consequences of this major change in Cdk1 dy-

namics is greatly complicated by the depletion of primordial

follicles in Cdh1f/f Gdf9-iCre females, which therefore produce

insufficient numbers of oocytes to study. To alleviate this prob-

lem, we used a different Cre-expressing transgene, namely

Zp3Cre,whichexpressesCre from theZonapellucida3promoter

only after commencement of the oocyte’s growingphase [38, 39].

We assumed that the depletion of primordial follicles observed in

Cdh1f/f Gdf9-iCre females is a developmental-stage-specific

process and would not take place when Cdh1 is depleted solely

during the growing phase. Unfortunately, oocytes from Cdh1f/f

Zp3Cre females still contain high levels of Cdh1 (Figure 1I), sug-

gesting that its mRNA and/or protein is stable during the growing

phase, even though this lasts over 2 weeks.

To circumvent our inability to deplete Cdh1 solely during the

oocyte’s growing phase, we tested whether depletion of a core

subunit of the APC/C, namely Apc2, would achieve the same

goal. The gene products of the Apc2 gene are more unstable

than those of Cdh1, and western blotting revealed little or no

Apc2 protein in GV-stage oocytes from Apc2f/f Zp3Cre oocytes

(Figure 1I). Indeed, it has already been established that these oo-

cytes cannot destroy securin and cannot therefore undergo

meiosis I [26]. Because APC/CCdc20 has little or no role until the

onset of cyclin B1 and securin proteolysis shortly before the first

meiotic division and because Cdc20 and Cdh1 appear to be the

sole accessory APC/C factors in mammals, Apc2 depletion

should phenocopy that of Cdh1. Consistent with this notion, oo-

cytes from Apc2f/f Zp3Cre females contained high levels of cy-

clin B1 and Cdk1-Y15P at GV stage (Figure 1I). They also had

a higher fraction of oocytes that had already undergone GVBD
upon isolation (Figure S1A). Moreover, entry into meiosis was

accelerated after release from IBMX arrest and oocytes resumed

meiosis with persistently high Cdk1 activity (Figures S1B

and S1C), comparable to that observed in oocytes from Cdh1f/f

Gdf9-iCre females. Because no such effect is observed in

oocytes from Cdc20f/f Zp3Cre females (Figure 1H), we assume

that their high Cdk1 activity is due exclusively to loss of

APC/CCdh1 activity.

Destruction of Cyclins by APC/CCdh1 Facilitates
Removal of Sgol2 from Chromosome Arms
A curious aspect of chromosome behavior during meiosis I is the

localization of the Sgol2 along the arms of bivalent chromo-

somes after post-GVBD [31, 40]. Sgol2’s relative abundance

at arms declines, and it accumulates in the vicinity of kineto-

chores by the time bivalents co-orient on meiosis I spindles

(metaphase I; Figures 2 and S2). To observe these changes in

living cells, we imaged chromosomes using time-lapse confocal

microscopy following microinjection of mRNAs encoding a GFP-

tagged version of Sgol2 into sgol2D/D and Cdc20f/f Zp3Cre oo-

cytes, which arrest in metaphase I (Figures 2A, 3A, and S2A).

Like endogenous Sgol2, GFP-tagged Sgol2 initially localized

along the arms of bivalents. Its subsequent restriction to kineto-

chores (a process complete between 4 and 8 hr post-GVBD)

was accompanied by a decline in its abundance on chromosome

arms (Figures 2, 3A, 3B, S2A, and S2B). Association with

kinetochores also declined after 8 hr, that is, during the period

they arrest in metaphase I due to loss of APC/CCdc20 activity

(Figures 3A, 3B, and S2C). Similar results were observed with

Separasef/f Zp3Cre oocytes (data not shown).

Surprisingly, GFP-tagged Sgol2 behaved very differently

in oocytes lacking Apc2; it persisted on chromosome arms

throughout the time course, even 14 hr post-GVBD, by which

time it was no longer associated with kinetochores (Figures 3A

and 3B). Similar results were observed in Cdh1-depleted oo-

cytes arrested in metaphase I by microinjection of Mad2

mRNA (Figures S3A and S3B). Microinjection of D90-cyclin B1

mRNA at GV stage into Cdc20 knockout oocytes also caused

retention of Sgol2 on chromosome arms, suggesting that reten-

tion in oocytes lacking Apc2 is due to their elevated Cdk1 activ-

ity. Retention of Sgol2 on chromosome arms 14 hr post-GVBD

in Apc2-depleted, but not Cdc20-depleted, oocytes was also

observed using immunofluorescence staining of endogenous

Sgol2 on chromosome spreads (Figures 3C and 3D). Thus,

persistent hyper-activation of Cdk1 at GVBD is accompanied

by a failure several hours later in dissociation of Sgol2 from chro-

mosome arms.

Phosphorylation of Sgol2 by Aurora B/C Kinase
Is Essential for Sgol2’s Dissociation from
Chromosome Arms
We have previously reported that microinjection of mRNAs

encoding a mutant version of Sgol2 missing Aurora B/C phos-

phorylation sites (T521A T600A) within two of the four tandem

‘‘Sgol2’’ repeats located between the N-terminal PP2A binding

coiled coil and a C-terminal domain involved in centromere

recruitment increasedPP2A recruitment on the arms (FigureS4A)

[31]. Further analysis revealed that the mutant Sgol2 greatly hin-

ders the resolution of chiasmata and thereby causes appreciable
Current Biology 27, 1462–1476, May 22, 2017 1465
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Figure 2. Following GVBD, Sgol2 Localizes on the Chromosome Arms and Kinetochores, and It Gradually Concentrates on Kinetochores

during Late Metaphase

(A) GV-stage oocytes harvested from Sgol2-deleted females were microinjected in M2 medium supplemented with IBMX with mRNA encoding GFP-Sgol2 and

H2B-mCherry. After 1 hr of incubation, oocytes were released, and time-lapse confocal microscope images were captured for 12–14 hr following GVBD.

Representative Z-projected images are displayed.

(B) GV-stage oocytes harvested from wild-type control females were cultured for 2, 4, and 6 hr following GVBD. Chromosome spreads prepared at the indicated

times following GVBD were stained for DNA (blue), Sgol2 (red), and CREST (green).

See also Figure S2.
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levels of non-disjunction at the first meiotic division. In contrast,

even high levels of wild-type Sgol2 mRNA have little effect (Fig-

ures 4A and S4B) [31]. Live imaging of Cdc20f/f Zp3Cre oocytes

microinjected with wild-type or T521A T600A mutant GFP-

tagged Sgol2 mRNAs revealed that the latter, but not the former,

persisted on chromosome arms, even after 14 hr, which is long

after Cdc20 depletion will have prevented the oocytes from un-

dergoing the first meiotic division (Figures 4B and 4C). Consis-

tent with the notion that phosphorylation of T521 and T600 by

Aurora B/C kinases is necessary for Sgol2’s dissociation from

chromosome arms, incubation of Cdc20f/f Zp3Cre oocytes

with AZD1152, a specific Aurora B/C inhibitor, had a similar ef-

fect (Figures 4B and 4C).

APC/CCdh1 Facilitates Aurora B/C Kinase-Dependent
Phosphorylation of Sgol2
To test whether retention of Sgol2 on chromosome arms in oo-

cytes lacking Apc2 is caused by its reduced phosphorylation,

we stained chromosome spreads using an antibody specific

for T521 phosphorylation [41]. This revealed that oocytes from

Apc2f/f Zp3Cre females had lower levels of Sgol2 T521 phos-

phorylation along chromosome arms than those from Apc2f/f lit-

termates at 4 hr post-GVBD (Figure 5A). MCAK’s recruitment to

kinetochores, another event known to depend on Sgol2’s phos-

phorylation by Aurora B/C, was also reduced in oocytes lacking

Apc2 (Figure 5B), despite normal levels of this kinase on chro-

mosome arms (Figure 5C). As in the case of oocytes expressing

T521A T600A Sgol2 instead of wild-type, the reduction in MCAK

at kinetochores was accompanied by stretching of bivalent chro-

mosomes during metaphase in oocytes from Apc2f/f Zp3Cre fe-

males, but not those from Apc2f/f littermates or Cdc20f/f Zp3Cre

females (Figure 5D), giving rise to greater distances between

maternal and paternal kinetochores in Apc2-deficient oocytes.

Likewise, depletion of Apc2, but not that of Cdc20, caused chro-

mosomes to enter the ball phase and to co-orient their kineto-

chores earlier than wild-type (Figure 5D), as has been found in

oocytes expressing high levels of Sgol2 with low Aurora B/C ki-

nase activity [31]. Importantly, similar results were observed in

oocytes from Cdc20f/f Zp3Cre females microinjected with D90-

cyclinB1 mRNA (Figure S5). On the basis of these observations,

we suggest that Sgol2’s dissociation from chromosome arms in

response to its phosphorylation by Aurora B/C kinase needs

APC/CCdh1 to prevent a precipitous rise in Cdk1 activity at the

onset of GVBD.
Figure 3. Entry into Meiosis with High Cdk1 Activity Prevents Remova

(A) GV-arrested oocytes harvested from Apc2f/f Zp3Cre and Cdc20f/f Zp3Cremic

mCherry (red) or co-injected with GFP-Sgol2 (green), H2B-mCherry (red), andD90

oocytes were released in IBMX-free M16 medium, and a time-lapse confocal mi

microscopy images are displayed. Chromosomes and Sgol2 were visualized usin

relative to the time of GVBD. The scale bar represents 10 mm.

(B) GFP-Sgol2 intensity signal on chromosome arms at 14 hr was normalized by th

Normalized intensity values of GFP-Sgol2 signal from Cdc20f/f Zp3Crewas comp

Cdc20f/f Zp3Cre microinjected with D90-cyclin B1 mRNA (p < 0.0001). Mean and

Figures S2 and S3.

(C) GV-arrested oocytes from Apc2f/f Zp3Cre and Cdc20f/f Zp3Cre ovaries we

Chromosome spreads were stained with DAPI (blue), anti-Sgol2 (red), and CRES

(D) Fluorescence intensity ratios of Sgol2 on arms and CREST at kinetochores we

more Sgol2 on chromosome arms at 14 hr post-GVBD (p < 0.0001). Upper and lo

examined is indicated (n).
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APC/CCdh1-Dependent Removal of Sgol2 from
Chromosome Arms Prevents Chromosome
Missegregation at the First Meiotic Division
Sgol2 protects centromeric cohesion at the first meiotic division

by preventing cleavage of Rec8 at this location [31, 32]. Reten-

tion of Sgol2 on chromosome arms due to the T521A T600A

mutations hinders chiasmata resolution and is accompanied

by non-disjunction at meiosis I (Figure 4A). Similarly, loss of

Cdh1 is associated with chromosome missegregation at the

first meiotic division [37, 42]. Mislocalization of Sgol2 in oocytes

lacking either Apc2 or Cdh1 might therefore be expected to

have a similar effect. This is difficult to address in the case of

Cdh1f/f Gdf9-iCre females because of their ovarian failure and

impossible to measure in the case of Apc2f/f Zp3Cre females

because a lack of APC/CCdc20 activity causes arrest in

metaphase I. However, microinjection of Apc2 mRNA into

Apc2f/f Zp3Cre oocytes should restore APC/CCdc20 and thereby

anaphase. If mRNAs are injected after GVBD, then the high

levels of Cdk1 activity due to the lack of APC/CCdh1 will prevent

any activity due to this form of the APC/C and meiosis will pro-

ceed with APC/CCdc20 alone. If, however, mRNAs are injected

at the GV stage, then they should restore both APC/CCdh1 and

APC/CCdc20 activity and meiosis I should take place normally.

Aneuploidy measured following the first meiotic division was

observed in 12% of Apc2f/f oocytes (controls) and in 13% of

Apc2f/f Zp3Cre oocytes injected with Apc2 mRNA at the GV

stage. In contrast, 40% of Apc2f/f Zp3Cre oocytes produced

aneuploid eggs when Apc2 mRNA was injected 3 or 4 hr

post-GVBD. Features unique to these oocytes were mislocaliza-

tion of Sgol2, fusion at non-centromeric locations, and preco-

cious splitting of sister centromeres, which often resulted in for-

mation of single chromatids at first meiotic division (Figure 6A).

Cdh1f/f Gdf9-iCre oocytes exhibited a similar set of phenotypes

(Figure 6B), confirming that they are caused by a lack of

APC/CCdh1 activity. Importantly, chromosomes with fusions be-

tween non-centromeric regions were rarely if ever produced

when Apc2 mRNA was injected into Apc2f/f Zp3Cre sgol2D/D

double-knockout oocytes at the prometaphase stage (Fig-

ure 6C), implying that this phenotype is caused by the abnormal

behavior of Sgol2. As expected, these double-mutant oocytes

exhibited the high rates of aneuploidy (25%) characteristic of

single sgol2D/D mutant oocytes (20%) as well as formation of

single chromatids due to the lack of any retention of centro-

meric cohesion (Figure 6C).
l on Sgol2 from Chromosome Arms

e (first and second rows) were microinjected with GFP-Sgol2 (green) and H2B-

-cyclin B1mRNA (third row). After 1 hr in IBMX-containingmedia, microinjected

croscopy movie was started. Representative Z-projected time-lapse confocal

g H2B-mCherry (red) and GFP-Sgol2 (green), respectively. Times displayed are

e GFP-Sgol2 signal intensity on chromosome arms at the prometaphase stage.

ared to normalized GFP-Sgol2 intensities from Apc2f/f Zp3Cre (p < 0.0001) and

SDs are displayed. The number of oocytes studied is indicated (n). See also

re released into IBMX-free medium and cultured for 14 hr following GVBD.

T (green).

re compared. Compared to Cdc20f/f Zp3Cre oocytes, Apc2f/f Zp3Cre retained

wer bars indicate 95th and 5th percentiles, respectively. The number of oocytes
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Figure 4. Removal of Sgol2 from Chromosome Arms Requires Aurora-B/C-Mediated Phosphorylation of Sgol2

(A) GV-arrested oocytes harvested from sgol2D/D were microinjected with wild-type Sgol2 or T521AT600A Sgol2 mRNA in IBMX-containing media. After 1 hr in

IBMX-containing media, oocytes were cultured in M16 medium for 12 hr following GVBD. Chromosome spreads were performed on oocytes that had extruded a

polar body and were stained for DAPI (blue), CREST (green), and anti-Sgol2 (red). See also Figure S4.

(B) GV-arrested oocytes harvested from Cdc20f/f Zp3Cremice were microinjected with GFP-Sgol2 (green) and H2B-mCherry (red) mRNA (first row) or with GFP-

T521AT600A-Sgol2 (green) and H2B-mCherry (red) mRNA (second row). To test whether the Aurora B/C kinase is required for the removal of Sgol2 from

chromosome arms, oocytes were cultured in M16 medium supplemented with AZD1152 (100 nM; third row). Representative Z-projected, time-lapse confocal

microscope images are displayed. Times displayed are relative to the GVBD. The scale bar represents 10 mm.

(C) GFP-Sgol2 intensity on chromosome arms at 14 hr was normalized by GFP-Sgol2 intensity on chromosome arms at the prometaphase stage. Cdc20

knockout oocytes retained higher levels of GFP-T521A T600A Sgol2 (p < 0.0001) and wild-type GFP-Sgol2 when cultured with Aurora inhibitor (AZD1152;

p < 0.0001). Mean and SDs are displayed, and the number of oocytes evaluated is indicated (n).
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Mathematical Model of Meiotic Entry
To explore the consequences of the interplay between

APC/CCdh1-dependent cyclin degradation and the Cdk1 phos-

phorylation switch, we created a simple mathematical model

(Figure 7A) and analyzed the qualitative dynamics of the system.

The steady-state activity of APC/CCdh1 (red curve, Figure 7B)

is a sigmoidal decreasing function of cyclin B/Cdk1 because

Cdk1 phosphorylation inhibits Cdh1 binding to APC/C [43].

The steady-state activity of Cdk1 (blue curve, Figure 7B) is

initially bistable with respect to Cdh1 as a result of double-nega-

tive/positive feedback loops between Wee1/Cdc25 and Cdk1.

The Cdk1 and Cdh1 steady-state curves intersect to give two

stable steady states for the entire system (filled circles): a

high-Cdh1, low-Cdk1 GV arrest state (top left) is separated

from a low-Cdh1, high-Cdk1 prometaphase state (bottom right)

by an intermediate unstable steady state (open circle), which

acts as an energy barrier, preventing transition from GV arrest

into prometaphase.

Partial inactivation of inhibitory Cdk1 phosphorylation by

PDE3A-mediated PKA inhibition [8, 44–46] upon meiotic

resumption shifts the Cdk1 steady-state curve upward, elimi-

nating the GV-arrested state (Figure 7C). The system therefore

becomes irreversibly committed toward the other stable ‘‘attrac-

tor’’ in the bottom right corner with high Cdk1 and lowAPC/CCdh1

activities, corresponding to prometaphase.

Time course simulations (Figure 7D) show that, at GVBD, an

initial rapid fall inWee1 and rise in Cdc25 activity allows Cdk1 ac-

tivity to increase almost to the level of total CycB, as inhibitory

tyrosine phosphorylation is lost. However, accumulation of cy-

clin B and Cdc25B is initially slow, because APC/CCdh1 remains

active and continues to delay the transition into prometaphase

until it becomes gradually inactivated by cyclin B/Cdk1. There-

fore, in contrast to mitosis, inactivation of Cdk1 inhibitory phos-

phorylation before APC/CCdh1 provides a gradual increase

of cyclin B and Cdk1 activity during meiotic resumption. In the

absence of APC/CCdh1, Cdk1 activation becomes fast and

similar to mitosis, because inhibitory phosphorylation is the

only factor holding back Cdk1 activation (Figure S6).

Our model suggests that the regulatory mechanisms control-

ling cyclin B degradation and Cdk1 activation have different

physiological functions during meiotic progression. Partial inac-

tivation of inhibitory Cdk1 phosphorylation results in a small

increase in Cdk1 activity, which initiates the slow process of
Figure 5. Aurora-B/C-Dependent Phosphorylation of Sgol2 Is Reduce

Reduced and Inter-kinetochore Distance Is Increased in Apc2 Knocko

(A) GV-stage oocytes harvested from Apc2f/f and Apc2f/f Zp3Cre ovaries were cu

(blue), anti-T521p-Sgol2 (red), and CREST (green). Fluorescence intensity ratio

compared (p < 0.0001). Mean and SDs are displayed, and the number of oocyte

(B) Chromosome spreads were prepared at 4 hr post-GVBD. Slides were stained f

MCAK and CREST at kinetochores were compared (p < 0.0001). Mean and SDs

(C) Oocytes were cultured for 4 hr following GVBD in IBMX-free medium. Chromo

(red). Fluorescence intensity ratios of Aurora C on chromosome arms and CRE

(p = 0.548). Mean and SDs are displayed, and the number of oocytes evaluated

(D) Oocytes harvested at GV stage from Apc2f/f, Cdc20f/f Zp3Cre, and Apc2f/f Z

mosomes and EB3-GFP (green) to visualize microtubules. Z-projected (12 Z slice

(E) Ratios of chromosome length normalized by spindle length were calculated f

were compared to normalized chromosome lengths from Cdc20f/f Zp3Cre (p = 0

number of oocytes observed is indicated (n).

See also Figure S5.
Cdh1 inactivation and cyclin B accumulation. Once Cdh1 has

fallen below a threshold level, cyclin B rapidly accumulates, lead-

ing to full Cdk1 activation. In this model, partial inactivation of

inhibitory phosphorylation acts as a spark, which initiates a

slow-burning fuse of cyclin B accumulation, eventually leading

to full Cdk1 activity.

DISCUSSION

Ubiquitinylation, and hence degradation, of proteins by the

APC/C depends on their recruitment by a pair of related WD40

repeat proteins called Cdc20 and Cdh1. In addition to having

different substrate specificities, Cdc20 and Cdh1 are active at

different stages of the cell cycle. Whereas APC/C containing

Cdc20 (APC/CCdc20) is active following activation of Cdk1 by

the mitotic cyclins A and B, APC/C containing Cdh1 (APC/CCdh1)

is usually only active following inactivation of Cdk1 through the

destruction of cyclins A and B at the hands of APC/CCdc20 at

the onset of anaphase [47]. APC/CCdh1 remains active for most

of the subsequent G1 period and prevents accumulation of fac-

tors that promote the onset of S phase [48, 49]. Its activity is

restricted during G2 and M phases by two mechanisms, namely

phosphorylation by Cdk1 and accumulation of an inhibitory

chaperone called EMI1 [43, 48, 50, 51]. This inactivity is crucial

for the accumulation of mitotic cyclins and hence for entry

into M phase. In certain cell types, precocious activation of

APC/CCdh1 during G2 phase prevents the accumulation of

mitotic cyclins after S phase and thereby has a key role in

orchestrating endoreplication instead of mitosis [33, 52, 53].

In mammalian meiosis, APC/CCdh1 regulates levels of cyclins

and Cdc25B and thereby delays entry of immature oocytes

into meiosis. Because Cdk1 activation requires both binding

of cyclins and the Cdc25B-dependent removal of Cdk1 phos-

phorylation, then how does a wild-type oocyte finally escape

APC/CCdh1-dependent G2 arrest? The G2/M transition of mitotic

cells, which is equivalent to GVBD in oocytes, has hitherto been

thought to be triggered by a rapid rise in Cdk1 activity brought

about by switch-like inactivation of inhibitory Cdk1 phosphoryla-

tion [36, 54]. However, unlike GV-arrested oocytes, mitotic G2

cells have high cyclin B levels because APC/CCdh1 is switched

off much earlier in the cycle (at the G1/S transition) by Cdk phos-

phorylation [48]. Because during the corresponding GV stage of

meiosis both APC/CCdh1 and the Cdk1 phosphorylation are
d in Apc2 Knockout Oocytes; Consequently, MCAK Localization Is

ut Oocytes

ltured for 4 hr following GVBD. Chromosome spreads were stained with DAPI

s of T521p-Sgol2 on chromosome arms and CREST at kinetochores were

s examined is indicated (n).

or DNA (blue), MCAK (red), and CREST (green). Fluorescence intensity ratios of

are displayed, and the number of oocytes examined is indicated (n).

some spreads were stained with DAPI (blue), CREST (green), and anti-Aurora C

ST at kinetochores from Apc2f/f and Apc2f/f Zp3Cre oocytes were compared

is indicated (n).

p3Cre females were microinjected with H2B-mCherry (red) to visualize chro-

s acquired 1.5 mm apart), time-lapsed live-cell confocal images are displayed.

or metaphase I stage oocytes. Normalized chromosome lengths from Apc2f/f

.2214) and Apc2f/f Zp3Cre (p < 0.0001). Mean and SDs are displayed, and the
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Figure 7. A Model for Meiotic Activation in Mouse Oocytes

(A) Model wiring diagram showing interactions between components. Cdk1:CycB activity in early meiosis is determined by APC/CCdh1-mediated CycB

degradation and inhibitory phosphorylation of Cdk1 by Wee1, counteracted by Cdc25. Cdk1 inhibits Wee1 and Cdh1 and activates Cdc25, creating positive/

double-negative feedback loops. Cdh1 also promotes Cdc25 degradation.

(B and C) Phase-plane analysis of the meiotic control network. The steady-state activities (nullclines) of Cdh1 as a function of Cdk1 (red) and Cdk1 as a function of

Cdh1 (blue) are plotted for wild-type oocytes at GV arrest (B) and after release from IBMX (C). By definition, intersections of these curves correspond to stable

(black circle) or unstable (empty circle) steady states of the whole system. The stable steady state in the upper left corner of (B) corresponds to GV arrest, whereas

the one in the bottom right corner corresponds to prometaphase I. At meiotic resumption (C), the upper steady state is lost, leaving only the prometaphase state.

The resulting transition to the prometaphase state occurs along a trajectory indicated by the dashed arrow.

(D) Time course simulation of the transition described in (C). Species names correspond to the active form of the specified component: i.e., Cdk1 is the number of

active (unphosphorylated) CycB:Cdk1 complexes and Cdc25 is the level of active, phosphorylated Cdc25. CycBT is the total of both free and Cdk1-bound CycB

pools.

Detailed analysis of Cdh1, Cdc25B, and Cdh1 Cdc25B double knockout is presented in Figure S6.
regulating Cdk1 activity, complete activation of Cdk1 activity

during meiosis requires inactivation of both of these inhibitions.

The second function of APC/CCdh1 revealed by our studies is

equally surprising. APC/CCdh1 ensures that activation of Cdk1

accompanying GVBD is gradual not abrupt. It is also crucial for
Figure 6. Retention of Sgol2 onChromosomeArms during Anaphase I C

Cdh1 Knockout Oocytes

(A) Apc2f/f and Apc2f/f Zp3Cre oocytes were harvested in IBMX-containing media.

Apc2 mRNA either at GV stage or after 3 or 4 hr post-GVBD. Oocytes were cultur

oocytes that had extruded a polar body. Slides were stained with DAPI (blue), CR

aneuploidy in each group. The number of oocytes examined is indicated (n).

(B) Oocytes harvested from the Cdh1f/f and Cdh1f/f Gdf9-iCre ovaries were culture

microinjected with Cdh1 mRNA at the GV stage. Oocytes were matured in the M

had extruded the first polar body, were stained with DAPI (blue), CREST (green), a

oocytes analyzed is indicated by n.

(C) Oocytes harvested at the GV stage from Apc2f/f Zp3Cre sgol2D/D females were

were prepared from metaphase II stage oocytes from sgol2D/D, and Apc2f/f Zp

CREST (green), and anti-Sgol2 (red). The incidence of aneuploidy was quantified
the subsequent dissociation of Sgol2 from the arms of bivalent

chromosomes, a process important for their efficient conversion

to dyad chromosomes at the first meiotic division. Because

persistence of Sgol2 on the arms of bivalent chromosomes

is also observed in oocytes injected with mRNA encoding
auses Abnormal Attachments and Increases Aneuploidy inApc2 and

To prevent metaphase arrest, Apc2f/f Zp3Cre oocytes were microinjected with

ed for 12–14 hr following GVBD, and chromosome spreads were performed on

EST (green), and anti-Sgol2 (red). Stacked bar plot indicates the incidence of

d in medium supplemented with IBMX. A group of Cdh1-deleted oocytes were

16 medium for up to 12 hr. Chromosome spreads, prepared from oocytes that

nd anti-Sgol2 (red). The frequency of aneuploidy was quantified. The number of

microinjected at 3 or 4 hr post-GVBD with Apc2 mRNA. Chromosome spreads

3Cre sgol2D/D microinjected with Apc2 mRNA were stained with DAPI (blue),

. The number of oocytes studied is indicated (n).
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non-degradable cyclin B1 (D90), we suggest that this phenotype

is caused by persistent hyper-activation of Cdk1 at GVBD

caused by excessive accumulation of cyclin B and not of

some other target protein. Nonetheless, we cannot at present

exclude the possibility that D90-cyclin B1 exerts its effect on

Sgol2 removal from chromosome arms by inactivating Cdh1

and thereby blocking degradation of some other key target of

APC/CCdh1.

If we are correct that excessive accumulation of cyclin B

prior to GVBD is responsible for the subsequent failure of

Sgol2 to dissociate from chromosome arms in oocytes lacking

APC/CCdh1, then the implication is that the precise kinetics of

Cdk1 activation at GVBD are vital for orchestrating the success-

ful segregation of chromosomes at meiosis I. The level of Cdk1

activity rises only gradually during the first few hours following

GVBD in wild-type oocytes [5–7] but jumps immediately to

maximal levels in the absence of APC/CCdh1, and we surmise

that the window of moderate Cdk1 activity that normally follows

GVBD is crucial for Sgol2’s removal from chromosome arms.

Aurora-B-mediated phosphorylation promotes Sgol1, a

mitotic paralog of Sgol2, translocation from chromosome arms

[55], suggesting that the removal of Sgol2 from chromosome

arms might be independent of Sgol2’s interaction with MCAK

as Sgol1 does not bind to this motor protein. Moreover, it sug-

gests that Sgol2’s removal might depend directly on its phos-

phorylation by Aurora B/C kinases. Howmight excessively rapid

activation of Cdk1 interfere with this process? One possibility is

that the abrupt rise in the Cdk1 activity at GVBD decreases

Aurora B/C kinase activity. Supporting this, we observed the

microinjection of non-degradable cyclin B1 reduced phosphory-

lation of Ser24 on Knl1 (p-Knl1) in wild-type oocytes (data not

shown). However, we are not able to rule out the possibility

that the abrupt rise in Cdk1 activity might directly affect Sgol2’s

interaction with cohesin or other binding partners.

Irrespective of the mechanism, our observations on oocytes

lacking APC/CCdh1 reveal that the association of shugoshins

with chromosomes is under highly complex spatial and temporal

control. In mitotic cells, Sgol1’s association with pericentromeric

sequences is thought to depend on prior recruitment to centro-

meric sequences associated with kinetochores where phos-

phorylation of histone H2A by Bub1 creates a Sgol1 binding

site [56]. A similar phenomenon may pertain also to Sgol2 during

meiosis. However, a third pool of Sgol2 exists in oocytes em-

barking on the first meiotic division, namely one associated

with chromosome arms. Because this pool is also associated

with PP2A, it must be removed by the time cells activate sepa-

rase. Two of the deepest mysteries about shugoshins are why

they undergo these complex localization events and why they

are mediated by such complex regulatory mechanisms.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Centromere Antibodies Davis Lab, Davis, CA, USA 15-234-0001

Cyclin B1 (D5C10) XP� Rabbit mAb #12231 NEB UK 12231S

Cdc25B Antibody NEB UK 9525S

Apc2 Antibody NEB UK 12301S

Purified anti-AURKC mouse monoclonal antibody,

clone 10A7

Bethyl Laboratories A400-022A

Anti-FZR1 antibody Abcam ab3242; RRID: AB_2278688

Actin antibody [ACTN05 (C4)] Abcam ab3280; RRID: AB_303668

Cdc2 Antibody NEB UK 9112S

Phospho-cdc2 (Tyr15) Antibody NEB UK 9111S

anti-Sgol2 This manuscript NA

Anti-phospho T521 Sgol2 Yoshinori Watanabe [41] NA

Anti-MCAK Duane A. Compton [57] NA

Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor Plus 488

Life Technologies (Invitrogen) A32723

Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor Plus 647

Life Technologies (Invitrogen) A32728

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

Life Technologies (Invitrogen) 11034

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor Plus 647

Life Technologies (Invitrogen) A32733

Chemicals, Peptides, and Recombinant Proteins

M2 Medium Sigma M7167-100ml

IBMX Sigma I7018-100mg

1 mL Syringe with needle 26 g x 10mm 1mL (BD 300015),

legacy code SZR-190-050B

Fisher Scientific 11754069

EmbryoMax, mod. M16 Medium, Powdered Miilipores MR-010P-5F

Mineral Oil Sigma M8410-500ml

mMessage mMACHINE T3 Kit Life Technologies (Ambion) AM1348

mMessage mMachine T7 Ultra Kit Life Technologies (Ambion) AM1345

Poly(A) Tailing Kit Life Technologies (Ambion) AM1350

Rneasy Mini Kit (50rxn) QIAGEN 74104

Nuclease-free water Life Technologies (Ambion) AM9938

Poly(vinyl chloride) Sigma 81388

NuPAGE LDS sample buffer 4x Life Technologies (Invitrogen) NP0007

NuPAGE Sample Reducing Agent (10X) Life Technologies (Invitrogen) NP0004

NuPAGE Novex 4%-12% Bis-Tris Gel 1.5 mm, 10 well Life Technologies (Invitrogen) NP0335BOX

NuPAGE Tris-Acetate SDS Running Buffer (20X) Life Technologies (Invitrogen) LA0041

HiMark Pre-Stained High Molecular Weight Protein

Standard

Life Technologies (Invitrogen) LC5699

ECL Prime Western Blotting Detection Reagent Fisher Scientific (GE Heathcare) GZ28980926

Immobilon-P Membrane, PVDF Miilipores IPVH00010

TWEEN 20 Sigma P7949-500ML

PRONASE Protease Merck Chemicals 537088-50KU

Fetal Calf Serum (FCS) Life Technologies (Invitrogen) 10438018

Normal Goat Serum Dako UK Ltd X0907

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Paraformaldehyde Sigma 158127-5G

Kodak Photo-Flo 200 Solution Amazon 1464510

Histone H1 from calf thymus Roche Diagnostics Ltd 10223549001

Gamma 32P dATP - 9.25MBq Perkin Elmer BLU502Z250UC

Experimental Models: Organisms/Strains

Cdh1f/f Marcos Malumbres [33] MGI:3800718

Cdc20f/f Marcos Malumbres [35] MGI:4887480

Cdc25Bf/f Helen Piwnica-Worms (The

Jackson Laboratory) [58]

MGI:4868694

Sgol2 targeted mice Alberto Pendas [32] NA

Apc2f/f Kim Nasmyth [34] MGI:3029825

Zp3Cre Gail Martin (The Jackson

Laboratory) [39]

MGI:2176052

Gdf9-iCre Austin J. Cooney [38] MGI:3056522

Recombinant DNA

pCMV6-GFP-Sgol2 This paper NA

pCMV6-GFP-T521A T600A Sgol2 This paper NA

pGEMHE-EB3-mEGFP Jan Ellenberg [59] NA

pRNA-H2B-mCherry Kim Nasmyth [26] NA

Software and Algorithms

Fiji [60] https://fiji.sc

Autofocus Module [61] http://www.ellenberg.embl.de/index.php/

software/microscopyautomation

T-Coffee [62] http://www.tcoffee.org/Projects/tcoffee/

Belvu program [63] http://sonnhammer.sbc.su.se/Belvu.html

HMMer2 [64] http://hmmer.org

Uniprot database [65] http://www.uniprot.org

XPPAut http://www.math.pitt.edu/�bard/xpp/xpp.html

MATLAB Mathworks http://www.mathworks.com

ZEN Blue/Black Zeiss https://www.zeiss.com/microscopy/us/

products/microscope-software/zen-lite.html

Prism 6.0 GraphPad Software https://www.graphpad.com/scientific-

software/prism/

Other

Corning (430588), 35 mm suspension culture dish Appleton Woods BC146

MULTITEST SLIDE, 15 WELL, 4MM, BLUE

COATING - PREMIUM

MP Biomedicals UK 096041505E

Retransferpipettes, Blaubrand 2mm, firepolished,

ID 108-114 mm

BioMedical Instruments NA

Cover glass Nunc 4 well chambered glass Fisher Scientific TKT-210-030E
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kim

Nasmyth (ashley.nasmyth@bioch.ox.ac.uk). The pGEMHE-EB3-mEGFP plasmid [59] and Cdh1f/f [33], Cdc20f/f [35], Cdc25Bf/f

[58], and Sgol2 targeted lines [32] are covered by MTAs and cannot be transferred by Kim Nasmyth.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Work
Animals were housed at the Biomedical Sciences Building, University of Oxford, and all procedures were approved by a local Ethical

Review Committee and licensed by the Home Office under the Animal (Scientific Procedures) Act 1986.
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Mouse Strains
Generation of theCdh1f/f, Cdc20f/f, Cdc25Bf/f, andApc2f/f targetedmice have been described [33–35, 58] To create germline specific

conditional Cdh1 knockout females, Cdh1f/f females were mated with either Gdf9-iCre or Zp3Cre targeted males [38, 39], and male

F1 offspring of the genotype Cdh1 f/+ Zp3Cre and Cdh1f/+ Gdf9-iCre were crossed with Cdh1f/f females to obtain germ cell specific

conditional knockout females. Similarly, we generated Cdc25f/f Gdf9-iCre, Apc2f/f Zp3Cre and Cdc20f/f Zp3Cre females.

To get Cdh1f/f Cdc25Bf/f Gdf9-iCre females, we crossed Cdh1f/f Gdf9-iCremales with Cdc25Bf/f females to get Cdh1f/+Cdc25Bf/+

Gdf9-iCre males and Cdh1f/+ Cdc25Bf/+ females, which were inter-crossed to get homozygous Cdh1f/f Cdc25Bf/f Gdf9-iCre males

and Cdh1f/f Cdc25Bf/f females. F3 males with genotype Cdh1f/f Cdc25Bf/f Gdf9-iCre were mated to Cdh1f/f Cdc25Bf/f females to

generate females for experiments.

Sgol2 knockout females were generated as previously reported [32]. To create Apc2f/f Zp3Cre sgol2D/ D females, we crossed

Apc2f/f Zp3Cre males with sgol2 D/+ females to get Apc2f/+ Zp3Cre sgol2 D/+ males and Apc2f/+ sgol2 D/+ females. These mice

were then inter-crossed to get Apc2f/f Zp3Cre sgol2 D/+ males and Apc2f/f sgol2 D/+, which were mated to generate Apc2f/f Zp3Cre

sgol2D/ D females.

METHOD DETAILS

Isolation, Culture, and Microinjection of Oocytes
Ovaries excised from 6-12 weeks old female mice were placed in M2 medium (Sigma Aldrich) supplemented with 200 mM IBMX

(Sigma Aldrich). Oocytes released from ovaries with sterile insulin needles were transferred to IBMX-containing M16 medium under

oil and cultured at 37�C and 5%CO2. For microinjections, oocytes were placed in IBMX supplemented M2medium. After an hour of

incubation in M16 supplemented with IBMX, oocytes cultured in IBMX-free M16 medium under oil at 37�C and 5% CO2 for live cell

imaging or chromosome spread analysis.

Preparation of mRNAs for Microinjection
Depending on the promoter on the plasmid DNA, T3 or T7 Ultra mMESSAGE kits (Ambion) were used to generate capped, poly-A tail

containing mRNA. mRNA was purified using an RNase Easy Kit (QIAGEN).

Microinjection of mRNA
About 5-10 pL of in-vitro transcribed mRNA at 0.1 mg/mL in RNase-free water (Ambion) wasmicroinjected into mature oocytes in M2

medium (under oil) using a Pneumatic PicoPump (World Precision Instruments). Microinjected oocytes were cultured in M16medium

supplemented with IBMX for 1 hr to enable sufficient expression of microinjected mRNA. Oocytes were then released into IBMX-free

M16 medium and maintained at 37�C and 5% CO2.

Live Cell Confocal Imaging
For live-cell time-lapse confocal microscopy experiments, oocytes were cultured in a PeCon environmental microscope incubator at

37�C and 5% CO2. Image acquisition was performed using a Zeiss LSM510 META or Zeiss LSM-780 confocal microscope (Zeiss)

confocal microscopes equipped with PC-Apochromat 63x/1.2 NA water immersion and PC-Apochromat 20x/0.8 NA objective

lenses; GFP was detected using a 488-nm excitation wavelength and mCherry with 561-nm excitation wavelength. Image stacks

of 12-16 slices of 1.5 mm were captured every 10-20 min for 14-16 hr. During live-cell imaging, oocytes were tracked using a macro

developed in J. Ellenberg’s laboratory at the EMBL [61].

Chromosome Spreads
Chromosome spreads were prepared using techniques previously described [66]. The zona pellucida was removed through placing

oocytes in M2 medium containing 10 mg/ml Pronase (Sigma Aldrich) for 5-10 min at 37�C. Oocytes were then transferred to an agar

dish containing hypotonic solution (50% Fetal Calf Solution (FCS) in deionised water) for 10 min at 37�C. Subsequently oocytes were

fixed in drops of paraformaldehyde solution (1% paraformaldehyde, 0.15% Triton X-100, 3mM dithiothreitol, pH-adjusted using

NaOH to achieve final pH of 9.2) on a 15-well glass slide (MP Biomedicals) and incubated overnight in a humidified chamber at

room temperature. Slides were then dried for 8-10 hr at room temperature. Slides were subsequently washed twice for 5 min

each first in 0.4% Photoflo (Kodak) and then in Phosphate-Buffered Saline (PBS). Processing for immunostaining consisted of three

10minwashes in blocking solution (PBS containing 2mg/l BSA, 1%Tween 20) before incubatingwith primary antibodies (as reported

below) prepared in blocking solution overnight at 4�C before transfer to 37�C for 1 hr. After three additional 10min washes in blocking

solution, slides were incubated in Alexa 488, 568 and 640 conjugated secondary antibodies (1:500, Invitrogen) in blocking solution for

1-2 hr at room temperature. Slides were then washed three times for 10 min in PBS (1% Tween 20) and 10 min in PBS prior to DAPI

staining.

In this study, we used CREST (1:250; Davis Lab, Davis, CA, USA), rabbit anti-Sgol2 (1:50) (raised against epitope previously

reported [67]), anti-phospho T521 Sgol2 (1:500, gift from Yoshi Watanabe [41]), anti-MCAK (1:500, gift from Duane A Compton

[57]) and anti-Aurora C (1:50, Bethly Laboratories, Montgomery, TX, USA).
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Western Blotting
Fully grown oocytes at the GV stage were washed in PBS/PVA, lysed in SDS sample buffer, boiled at 90�C for 10 min, snap-frozen

and stored at�80�C until further use. For western blotting, samples were thawed on ice and pooled together. Proteins were resolved

on 4%–12%Bis-Tris gels (NuPAGE; Invitrogen) and transferred using a semi-drymethod onto PVDFmembranes (Immobilon-P; Milli-

pore). Following transfer, membranes were blocked for 1 hr at room temperature in blocking solution containing 5% nonfat milk and

0.05% Tween in PBS. After one wash with PBS with 0.05% Tween 20 (PBT), membranes were incubated with antibodies against

Cyclin B1 (1:250, Cell Signaling, 12231), Cdk1 (1:200, Cell Signaling, 9116), Phospho-Cdk1 (Tyr15) (1:200, Cell Signaling, 4539),

Cdc25B (1:250, Cell Signaling, 9525), Cdh1 (1:200, Abcam, ab3242), Apc2 (1:250, Cell Signaling, 12301) or actin (1:500, Abcam,

ab3280) at 4�C for 12 hr. Membranes were washed thrice for 10 min each in PBT solution and incubated with a 1:5000 dilution of

horseradish peroxidase conjugated anti-mouse or anti-rabbit antibodies in blocking solution for 2 hr. Following secondary antibody

incubation, blots were again washed thrice for 10 min each in PBT solution and developed with the ECL system (Pierce ECLWestern

Blotting Substrate) according to the manufacturer’s protocols.

H1 Kinase Assay
Five oocytes at each of the time points were placed in 1.5mL Eppendorf tubes containing 10 mL of kinase assay buffer (50mMTrisHCl

pH7.5, 10 mM Mgcl2, 1mM DTT). After a gentle spin, samples were snap frozen in liquid nitrogen and then stored at �80�C until

further processing.

After removing from �80�C, samples were thawed and centrifuged at 13,000 rpm for 10 min at 4�C. The supernatants were

collected in new 1.5ml tubes at 4�C. 1mM ATP, 2 mg Histone H1, and 10 mCi gamma-ATP in a total volume of 10 mL of kinase assay

buffer was then added to each of the tubes containing the 10 mL oocyte lysates. Samples were subsequently incubated at 37�C for

30 min. The reaction was terminated by adding 7 mL of SDS-PAGE protein sample buffer and boiling the mixture at 100�C for 10 min.

Samples were resolved on 4%–12% Bis-Tris gels (NuPAGE; Invitrogen). After Coomassie staining to visualize the Histone H1, gels

were dried and incorporated radioactivity was measured.

Data Analysis and Plotting
Live cell confocal and chromosome-spread images were imported into Fiji (ImageJ) software [60]. After background subtraction, in-

tensities were calculated using the ImageJ intensity calculation module. Data were then exported to an Excel sheet and after normal-

ization plotted with Prism 6.0 (GraphPad) software.

For spindle length calculations, multiple measurements were calculated from each of the z-projected images at the metaphase

stage. Mean and standard deviations were then plotted using the Prism 6.0 (GraphPad) software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fluorescent intensity ratios and spindle length measurements were compared between cases and controls using the two-tailed un-

paired Student’s t test with a level of 0.05. All quantified data, except Figures 2B, 2F and 7A–7C, are plotted asmean ± SD. Figures 2B

and 2F are cumulative frequency plots and Figures 7A–7C are stacked bar plots. Sample sizes and p values are indicated in the

figures and figure legends. We have used n to designate the number of oocytes analyzed for all figures, except for Figure 1A. In

Figure 1A, n represents the number of females examined. No statistical method was used to predetermine sample size. Statistical

analysis was performed using the Prism 6.0 software.

Computational Protein Sequence Analysis
Alignments were produced with T-Coffee [62], using default parameters, slightly refinedmanually and viewedwith the Belvu program

[63]. Profiles of the alignments, as global hidden Markov models (HMMs), were generated using HMMer2 [64]. Homologous protein

sequences were identified by iterative similarity searcheswith HMMer2 against the Uniprot database [65, 68]. Repeats in Sgol2 family

were identified by iterative similarity searches using HMMer2, including intermediate steps of semi-automatic changes in repeats

boundaries, aiming to maximize the number of consecutive non-overlapping repeats per protein sequence.

Mathematical Model
An ordinary differential equation (ODE) model was developed based on the Novak and Tyson (1993) model [36] for Xenopus oocytes

and embryos, with the following modifications. APC/CCdc20 is replaced by APC/CCdh1, which is inhibited by Cdk1-dependent phos-

phorylation in the same manner as Wee1B. Cdc25B, rather than being present at a constant level, is synthesized at a constant rate

and degraded in an APC/CCdh1-dependent manner. The model is defined by six ordinary differential equations (ODEs), which

describe the interactions between APC/CCdh1, cyclin B/Cdk1,Wee1B and Cdc25B (henceforth referred to in the context of themodel

as Cdh1, Cdk1, Wee1 and Cdc25) and four algebraic conservation equations. For analytical purposes, the model was reduced to a

two-dimensional form by assuming that the activities of Wee1B and Cdc25B, as well as the levels of cyclin B and Cdc25B, are in

pseudo-steady states. This simplified model allowed us to plot phaseplane diagrams showing balance curves of the two dynamic

variables (Cdk1 and Cdh1) and to estimate the steady states of the whole control system.

The default parameter set of the model simulates a wild-type GV-arrested state. To initiate GVBD, the Wee1B activation rate

and Cdc25B inactivation rate were reduced to 20% of their initial value (VaWee = Vi25 = 0.075), to simulate loss of PKA activity.
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To simulate knockout situations, the level of the relevant component was reduced to 5% of its wild-type level. (Cdh1T = 0.05; Cdc25:

ksc25 = 0.0003). We chose not to set these values to 0 to represent the persistence of residual activity in the cell even after disruption

of the targeted gene sequence.

Simulations and phaseplane analysis were performed using the freely available software XPPAut http://www.math.pitt.edu/�bard/

xpp/xpp.html, and plotted in MATLAB. The ‘XPPAut.ode’ file used to run the simulations is given below:

# .ode file for mouse meiosis entry

CycBT’ = ksCycB - (kd1CycB + kd2CycB*Cdh1)*CycBT

Cdk1’ = ksCycB - (kd1CycB + kd2CycB*Cdh1)*Cdk1 - (Vi2CDK*Wee1 + Vi1CDK*Wee1p)*Cdk1 + \

(Va2CDK*Cdc25p + Va1CDK*Cdc25)*Cdk1p

Cdh1’ = VaCdh1*Cdh1p/(JCdh1 + Cdh1p) - ViCdh1*Cdk1*Cdh1/(JCdh1 + Cdh1)

Cdc25T’ = ksc25 - (kd1c25 + kd2c25*Cdh1)*Cdc25T

Cdc25p’ = Va25*Cdk1*Cdc25/(J25 + Cdc25) - Vi25*Cdc25p/(J25 + Cdc25p) - \

(kd1c25 + kd2c25*Cdh1)*Cdc25p

Wee1’ = VaWee*Wee1p/(JWee + Wee1p) - ViWee*Wee1*Cdk1/(JWee + Wee1)

#algebraic mass conservation equations

Cdc25 = Cdc25T - Cdc25p

Wee1p = Wee1T - Wee1

Cdk1p = CycBT - Cdk1

Cdh1p = Cdh1T - Cdh1

#Parameters (for WT GV arrest - note: values have a time unit of mins)

p Va1CDK = 0.015, Va2CDK = 1.5, Vi1CDK = 0.015, Vi2CDK = 0.3

p VaCdh1 = 1.5, ViCdh1 = 6, JCdh1 = 0.15, Cdh1T = 1

p VaWee = 0.375, ViWee = 1.5, Jwee = 0.01, Wee1T = 1

p Va25 = 1.5, Vi25 = 0.375, J25 = 0.01

p ksc25 = 0.015, kd1c25 = 0.015, kd2c25 = 0.15

p ksCycB = 0.015, kd1CycB = 0.015, kd2CycB = 0.075

#Initial Conditions (WT GV arrest)

init CycBT = 0.1701, Cdk1 = 0.04000, Cdh1 = 0.9759, Cdc25p = 0.001675, Wee1 = 0.9981, Cdc25T = 0.09295

# XPP settings

@ XP = t, YP = Cdk1, TOTAL = 480, METH = stiff, XHI = 480, YLO = 0, YHI = 1, BOUND = 1000, dt = 0.1

@ NPLOT = 5, yp1 = CycBT, yp2 = Cdk1, yp3 = Cdh1, yp4 = Cdc25p, yp5 = Wee1

done
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