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SUMMARY

Binocular stereopsis is one of the primary cues for
three-dimensional (3D) vision in species ranging
from insects to primates. Understanding how the
brain extracts depth from two different retinal images
represents a tractable challenge in sensory neurosci-
ence that has so far evaded full explanation. Central to
current thinking is the idea that the brain needs to
identify matching features in the two retinal images
(i.e., solving the ‘‘stereoscopic correspondence prob-
lem’’) so that the depth of objects in the world can be
triangulated. Although intuitive, this approach fails to
account for key physiological and perceptual obser-
vations. We show that formulating the problem to
identify ‘‘correctmatches’’ is suboptimal andpropose
an alternative, based on optimal information encod-
ing, thatmixesdisparitydetectionwith ‘‘proscription’’:
exploiting dissimilar features to provide evidence
against unlikely interpretations. We demonstrate the
role of these ‘‘what not’’ responses in a neural network
optimized to extract depth in natural images. The
network combines information for and against the
likely depth structure of the viewed scene, naturally
reproducing key characteristics of both neural re-
sponses and perceptual interpretations. We capture
the encoding and readout computations of the
network in simple analytical form and derive a binoc-
ular likelihood model that provides a unified account
of long-standingpuzzles in 3Dvision at the physiolog-
ical and perceptual levels. We suggest that marrying
detectionwith proscription provides an effective cod-
ing strategy for sensory estimation that may be useful
for diverse feature domains (e.g., motion) and multi-
sensory integration.

INTRODUCTION

Geometry dictates that a three-dimensional (3D) object viewed

from the two eyes will (1) project features to different positions

on the two retinae and (2) render certain portions visible to only

one eye due to occlusion at the object’s contours [1]. Computa-

tional [2–4] and neurophysiological [5] investigations over the

past 50 years have focused almost exclusively on positional dif-

ferences (1), as partial occlusions (2) are regarded as excessively

under-constrained. Under this intuitive approach, by registering
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the positional difference of the same feature in the two eyes

(binocular disparity), the brain could triangulate to infer the ob-

ject’s 3D structure. Thus, while the genesis of binocular infor-

mation lies in image differences, current understanding at the

computational and neural levels stresses the centrality of identi-

fying similarities between the eyes to extract depth.

Within this framework, the fundamental challenge of stereop-

sis is described as solving the ‘‘correspondence problem’’ [2–4]

whereby images of the same real-world feature are matched be-

tween the eyes. This is problematic because of ‘‘false matches,’’

i.e., correspondences that conflate signals originating from

different locations in 3D space. The principal means of identi-

fying corresponding features is to consider a range of potential

disparities and select the offset that maximizes similarity be-

tween the eyes. This is captured computationally by the peak

local cross-correlation. Howmight this be achieved by the brain?

Current understanding is provided by the disparity energy model

of V1 neurons [6–8], in which binocular simple cells with disparity

preference, dpref , are combined by a complex cell preferring

the same disparity (Figure 1A). Using a population of cells with

different dpref , the brain could select the most active neuron to

estimate depth.

However, from the perspective of finding correct matches, it is

puzzling that many V1 neurons sense different things in the two

eyes [9–11]. In particular, while binocular neurons can have recep-

tive fields offset in location (position disparity), they often have

different receptive field profiles in the two eyes (phase disparity)

(Figure 1B). The surprising implication is that phase neurons

respondmaximally to images that donot relate to a single physical

feature in the world [12]. What are such responses for?

Here we suggest that V1 neurons should be understood as us-

ing a coding strategy designed to reduce uncertainty about the

depth of the viewed scene. This involves the brain using both

similar and dissimilar image features to infer depth. We show

that long-standing puzzles in binocular vision at the physiological

and perceptual levels can be understood by mixing feature

detection with ‘‘proscription.’’ Specifically, by sensing dissimilar

features, the brain gains valuable information that drives sup-

pression of unlikely interpretations of the scene. Our approach

explains challenges to the standard treatment of disparity (1)

and, importantly, also accounts for partial occlusions (2) that

have long evaded explanation because of their incompatibility

with registering depth based on peak cross-correlation.

RESULTS

We start by considering known properties of binocular neurons

from a statistical perspective [13], to demonstrate that properties

that have long seemed puzzling in fact suggest optimal coding.
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Figure 1. Disparity Encoding and Shannon Information

(A) The canonical disparity energy model. Simple and complex units have the

same preferred disparity, dpref .

(B) Simple cells encode disparity using differences in receptive field: position

(position disparity), structure (phase disparity), or both (hybrid).

(C) Mean response of model simple units to 100,000 stereograms (top) and

the corresponding Shannon information (bottom). Pink versus yellow series

contrast pure position versus phase (p / 2) encoding, both with dpref = 4.

Considering units between pure position and pure phase encoding produces a

graceful morphing in the shapes of the curves.

(D) Shannon information for a small population (N = 5) of simple units with

position, phase, or hybrid sensors. (Computing Shannon information for larger

populations was computationally prohibitive.) Error bars show SD over 1,000

populations with randomly distributed phase and/or position shifts. Horizontal

lines depict the upper limit on information determined by a population with

uniformly spaced units.
Position-disparity units (Figure 1B, purple) are easily understood

from the traditional perspective: a viewed object will project its

features to different locations on the two retinae, so a binocular

unit could simply offset the receptive field location for the

two eyes. Phase-disparity units (Figure 1B, orange), by contrast,

have a different receptive field structure in the two eyes. This

means they respond best to stimulation that could not originate

from a single physical feature in the world. We contrasted phase

and position encoding by computing Shannon information [13]

as a function of stimulus disparity (see STAR Methods), where

simple units were modeled as linear filters followed by a rectified

squaring non-linearity [6]. Because of the larger change in firing

of the phase units, they provide more information about the

viewed stimulus than position units (Figure 1C). Importantly,

the peak information provided by a phase unit is not at the tradi-

tionally labeled dpref (i.e., peak firing rate), meaning that the

disparity energy model’s architecture (Figure 1A) of collating sig-
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nals from units with the same dpref is likely to be suboptimal. We

then examined encoding in a small population of simple units

with position, phase, or hybrid receptive fields. We found that

hybrid encoding (i.e., combined phase and position shifts;

Figure 1B) conveys more information than either pure phase or

position encoding (Figure 1D). This suggests that the abundance

of hybrid selectivity in V1 neurons [9–11] may relate to optimal

encoding.

To test the idea that V1 neurons are optimized to extract

binocular information, we developed a model system shaped

by exposure to natural images. We implemented a binocular

neural network (BNN; Figure 2A) consisting of a bank of linear fil-

ters followed by a rectifying non-linearity. These ‘‘simple units’’

were then pooled and read out by an output layer (‘‘complex

units’’). The binocular receptive fields and readout weights

were optimized by supervised training on a near-versus-far

depth discrimination task using patches from natural images

(Figure S1). Thereafter, the BNN classified depth in novel images

with high accuracy (A = 99.23%).

Optimization with Natural Images Produces Units that
Resemble Neurons
The optimized structure of the BNN resembled known properties

of simple and complex neurons in three main respects. First,

simple units’ receptive fields were approximated by Gabor

functions (Figure 2B) that exploit hybrid encoding (Figure 2C;

Figure S2) [9–11] with physiologically plausible spatial fre-

quency bandwidths (mean = 2.3 octaves). Second, like V1

neurons, the BNN supported excellent decoding of depth in

correlated random dot stereogram (cRDS) stimuli (Figure 3A)

(A = 99.93%; CI95% = 99.87%, 99.98%) that are traditionally

used in the laboratory, despite being trained exclusively on nat-

ural images. Third, we tested the BNN with anticorrelated stimuli

(aRDS) where disparity is depicted such that a dark dot in one

eye corresponds to a bright dot in the other (Figure 3A). Like

V1 complex cells [6, 15, 16], disparity tuning was inverted and

attenuated (Figure 3B), causing systematic mispredictions of

the stimulus depth (A = 8.83%; CI95% = 7.62%, 9.03%).

V1 complex cell attenuation for aRDS is not explained by

the canonical energy model, necessitating extensions that

have posited additional non-linear stages [16–19]. However,

the BNN naturally exhibited attenuation: by computing the ratio

of responses to aRDS versus cRDS, we found striking parallels

to V1 neurons [15, 16] (Figure 3C). There was a divergence be-

tween the two comparison physiological datasets for low ampli-

tude ratios, with our model closer to Samonds et al. [16]. We

speculate that this relates to the disparity selectivity of the

sampled neurons: Cumming and Parker [15] recorded closer to

the fovea, where sharper disparity tuning functions might be

expected. Accordingly, we observed greater attenuation (i.e.,

lower amplitude ratios) when the BNN was trained on multiway

classifications (e.g., seven output units, rather than two), which

produced more sharply tuned disparity responses (Figure S3).

Together, these results show that inversion and attenuation for

anticorrelation appear in a system optimized to process depth

in natural images.

The traditional account of aRDS is that they simulate ‘‘false

matches’’ that the brain discards to solve the correspondence

problem [20, 21]. An alternative possibility, however, is that
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Figure 2. The Binocular Neural Network

(A) Network architecture: left and right images are

filtered by simple units (28 binocular convolutional

kernels), linearly rectified, and then read out by two

output units. The form of the (1) receptive fields and

(2) readout weights was determined through back-

propagation optimization on near versus far depth

discrimination using patches from stereoscopic

natural images (from [14]). The network learned

21,254 parameters through exposure to 32,300

image pairs.

(B) The BNN’s optimized receptive fields resem-

bled Gabor functions (mean explained variance

by fitting Gabors to the 28 binocular receptive

fields was R2 = 0.95, SD = 0.049) and V1 receptive

fields [9].

(C) Summary of position and phase encoding by

the simple units; representative units from (B) are

indicated in colors. Note that very few units show

pure position or phase offsets.

See also Figure S1 and Figure S2.
aRDS responses reflect a computational mechanism for extract-

ing depth. To test this idea, we interrogated the BNN by ordering

simple units by their readout weights (Figure 3D) and then visu-

alizing the activity evoked by different stimulus types (Figure 3E).

The weighted readout of simple unit activity defines the overall

excitatory and suppressive drive to complex units in the network.

We found that presenting aRDS led to a striking increase in the

activity of the non-preferred simple units, while the activity of

the preferred units was more or less unchanged. The conse-

quence of this is that when this activity is read out, it causes

increased suppression at the preferred disparity (Figure 3F).

This changed the net drive to the complex unit from excitation

to suppression (inversion), while the comparatively smaller differ-

ence between the excitatory and suppressive drives for aRDS

produced a reduced amplitude (attenuation). Thus, attenuation

and inversion can be understood based on changing the balance

of excitation and suppression, without necessitating additional

processing stages.

To ensure that these parallels between the BNN and neuro-

physiology were not incidental, we tested whether the BNN pro-

duces outputs that are well matched to the input stimuli. We

used an optimization procedure that started with random noise

input images and iteratively adjusted the images such that the

activity of a given complex unit was maximized (Figure 4A).

Following optimization, the stimuli that best activated the com-

plex units resembled a contrast edge horizontally translated be-

tween the eyes (Figure 4B). Thus, the BNN is optimized for the

translation of visual features that results from binocular viewing

geometry [1]. Importantly, this is achieved using simple units

that respond predominantly to different features in the two

eyes (Figure 2B), which are traditionally understood as ‘‘false’’

matches (i.e., features that do not correspond to the same phys-

ical real-world object). In other words, the BNN extracts depth
Current
structure without explicitly ‘‘solving the

correspondence problem.’’

To strengthen this conclusion, we

examined the consequences of ‘‘lesion-

ing’’ the BNNby removing 25%of its units.
In particular, we removed units with near-zero phase disparities

(i.e., the seven units within ± ðp=4Þ of zero phase offset) that are

therefore best described as position disparity units that sense

similar features in the two eyes. First, we considered decoding

performance and found no effect on accuracy (APos = 99.97%,

CI95% = 99.92%, 100%; p = 0.76; Figure S2D). To situate this

null result in the context of arbitrarily removing one-quarter of

the units, we also computed decoding performance when we

randomly removed seven simple units. In this case, decoding

performance dropped considerably (Figure S2D), and there

was only 3.8% chance of obtaining a value greater than APos.

This suggests that the pure position units contribute little to regis-

tering the binocular information by the BNN: they are given little

weight, so removing them has little effect relative to removing

phaseor hybrid units. Second,wecomputed theoptimal stimulus

for the lesioned BNN (Figure 4C), finding little change relative to

the uncompromised network. This null result was not inevitable:

removing other simple units resulted in unrealistic images (Fig-

ure 4D). Together, these results indicate that the BNN does not

critically depend on binocularly matched features.

But how does the BNN extract depth using mismatches, and

why should it respond to anticorrelated features? Under the

traditional approach, this is a puzzle: a physical object at a given

depth would not elicit a bright feature in one eye and a dark

feature in the other. However, as we have seen, anticorrelation

at the preferred disparity of a complex cell leads to strong

suppression. This suggests a role for proscription: by sensing

dissimilar features, the brain extracts valuable information about

unlikely interpretations.

The BNN Accounts for Unexplained Perceptual Results
If proscription has a perceptual correlate, then stereopsis should

be affected by the availability of dissimilar features in the scene,
Biology 27, 1403–1412, May 22, 2017 1405
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Figure 3. BNN Response to Correlated and Anticorrelated Random-Dot Stereograms

(A) Cartoons of correlated (cRDS, green) and anticorrelated (aRDS, pink) dot patterns with red-green anaglyph demonstrations.

(B) Complex unit’s disparity tuning curve for cRDS versus aRDS; shaded area shows CI95%.

(C) Distribution of amplitude ratios for cRDS versus aRDS for the BNN (gray histogram; 5,000 resamples) and macaque V1 neurons. Amplitude ratios were

determined based on Gabor fits (average explained variance, R2 = 0.945).

(D) Representation of the weighted readout of the simple units. Units are ordered by their readout weight, with far-preferred units at the top.

(E) Mean activity for simple units in response to cRDS and aRDS.

(F) Summary of excitatory (red) and suppressive (blue) drive to the output units for cRDS versus aRDS. This represents the sum of the weighted simple unit activity

split into the excitatory (positive weights) and suppressive (negative weights) components. Error bars (barely visible) indicate CI95%.

See also Figure S3.
an idea we now explore. First, seeing depth should be easier

when there is more potential for anticorrelation at the incorrect

disparity. This logic naturally explains a long-standing puzzle

from the psychophysical literature [22, 23] that demonstrated

better judgments for stimuli comprising dark and bright dots

(mixed polarity) compared to only dark or only bright dots (single

polarity) (Figure 5A). This result is difficult to accommodate

within the disparity energy model because correlation is largely

unaffected by differences in the mean or amplitude of the input

signals [23].

We assessed the BNN’s performance on mixed- versus sin-

gle-polarity stereograms (Figure 5B), finding a benefit for mixed

stimuli that was very closely matched to published psychophys-

ical data [22, 23] (Figure 5C). What causes this improvement?

As reviewed above, the network depends on the activity of the

simple units moderated by readout weights. Presenting mixed-

versus single-polarity stimuli increases the simple unit activity,

in turn changing the excitatory and suppressive drives to com-

plex units. We found that mixed stimuli produce greater excita-

tion for the preferred output unit and increased suppression to

the non-preferred unit (Figure 5D).

We carried out a number of controls to ensure that the

BNN’s performance was not artifactual. In particular, contrasting

mixed- versus single-polarity stereograms is complicated by

low-level stimulus changes (e.g., overall luminance or stimulus

intensity range) that could act as covariates that underlie perfor-

mance [23]. We directly manipulated covariate properties (Fig-

ure S4), finding that the benefit for mixed stimuli persisted in all

cases. We also tested the specificity of this result to the BNN’s

non-linearity [23]. Changing the nonlinearity to an unrectified

squaring operation did not change the result (Figure S4). These

controls indicate that the improvement for mixed stimuli general-
1406 Current Biology 27, 1403–1412, May 22, 2017
izes over perturbations of the stimuli and network architecture.

These results suggest that performance improves for the mixed

stimuli because of the opportunity to gain stronger evidence for

the true disparity in conjunction with using mismatched features

(i.e., dark-to-bright correspondences) as evidence against the

incorrect disparity (i.e., proscription). This could be implemented

in vivo using suppressive inputs to V1 neurons [24].

A second line of evidence in favor of proscription comes

from considering situations regarded as too difficult for accounts

of stereopsis based on peak correlation. Under natural viewing,

certain features are visible tooneeyebut not theother (Figure6A).

Thebrain exploits suchunpaired elements, ‘‘daVinci stereopsis,’’

to support depthperception [25, 26]. However, these stimuli pose

a severe challenge to traditional stereo algorithms because there

are no matching features [27]. We tested the BNN on a stimulus

with unpaired features around a zero-disparity target (Figure 6B).

Because the target was not displaced in depth, there are no

binocular corresponding features to compute the depth relation-

ship. However, the BNN predicted the ordinal depth structure

experienced by observers for the edge regions (Figure 6B), and

this result generalized to stimuli with different luminance config-

urations (Figure S5). The BNN thus extracts critical signals that

may provide the foundation for a full perceptual interpretation

when used in conjunction with processes such as figure-ground

segmentation at further stages of visual processing [28, 29].

Finally, we tested the BNN on the classic ‘‘wallpaper illusion’’

[30], in which periodic patterns yield ambiguous depth percepts.

When disparity matches were ambiguous, the disparity-sign

map did not identify a clear depth edge (Figure 6C). However,

by manipulating the background luminance to bias matching

[27], we found that the BNN predicted the perceptual interpreta-

tion of the stereograms in the edge regions. This was achieved



A

B

C D

Figure 4. The BNN Is Optimized for the Translation of Image Fea-

tures that Arises from the Geometry of Binocular Viewing

(A) Computing the optimal stimulus for a complex unit. Starting with random

noise inputs, the algorithm computed the gradient of complex unit activity with

respect to the input images. It iteratively adjusted the inputs to maximize the

complex unit’s activity.

(B) Snapshots of three iterations during optimization: a consistent on-off

pattern emerges in the left and right eyes, horizontally translated to match the

preferred disparity of the unit.

(C) This pattern remains when ‘‘lesioning’’ the BNN of 25% of the simple units

that use position encoding.

(D) Removing highly weighted hybrid units leads to input images that are

unrealistic.
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Figure 5. The BNN Mirrors Properties of Human Stereopsis

(A) Mixed- versus single-polarity stereograms. Single-polarity stereograms

were either all dark or all bright. The task was to discriminate the step

arrangement of the stereogram. Anaglyphs were designed for red filter over

right eye.

(B) Proportion of correct choices of the model after 1,000 trials.

(C) Efficiency ratio for mixed versus single stimuli measured psychophysically

[22] and for the BNN. (Note: the BNN was optimized on natural images, not on

random dot stereograms.)

(D) Difference between mixed and single stimuli in terms of the excitatory

versus suppressive drive to the non-preferred output unit. Error bars indicate

CI95%.

See also Figure S4.
by changing the net excitatory-suppressive drive at the half-

occluded regions, where disambiguation occurs (Figure 6D).

This is compatible with early processing of half-occluded edge

regions in V1, providing an initial basis for subsequent depth

interpolation supported by extrastriate cortex [31] or via recur-

rent connectivity within V1.

Together, these results indicate that, without being trained on

such displays, the BNN’s combination of detection and proscrip-

tionprovides anatural foundation for typical percepts. The simple

units of the BNN exploit receptive fields that capture a continuum

of similarities and differences between the binocular images,

contrasting with the standard approach to binocular vision that

emphasized the importance of correct matches. Although indi-

vidual units in the BNN are not specialized to identify the same

feature in the two images, the aggregate readout activity clas-

sifies depth with high accuracy, and complex units respond

best to physically realistic displacements of a single object.

Detection and Proscription Combine to Facilitate
Sensory Estimation
We have seen that the BNN generalizes well from its training

set and accounts for both neurophysiological and perceptual

phenomena. However, the network’s multiple parameters may

act as a barrier to a detailed understanding of its operation.
We therefore sought to explain the BNN’s behavior in theoretical

terms by deriving a low-parameter closed-form model that cap-

tures its key characteristics. Our starting point was to observe

that a low-dimensional rule relates the BNN’s simple units and

their readout: weights are proportional to the cross-correlogram

between the (left and right) receptive fields (R = 0.89; p < 0.001)

(Figure S6).

The key intuition behind this relationship is that receptive fields

capturing a positive correlation at disparity di (i.e., the lag of the

cross-correlogram) should be read out by a complex unit with

preferred disparity di using a positive (i.e., excitatory) weight.

Conversely, if the simple unit captures a negative correlation at

disparity di, the complex unit should read out its activity using

a negative (suppressive) weight. In other words, the same simple

units can be read out with detection or proscription to provide a

population-based estimate of the depth of the viewed scene.

We show formally (see STAR Methods) that using weights

determined by the cross-correlogram of the left and right

receptive fields is optimal under reasonable assumptions and

propose a binocular likelihoodmodel (BLM) captured by a simple

equation,

logLðdÞ=
XN
i = 1

riðWL+WRÞi½d�:

This relationship states that the activity of a complex unit that

prefers a given disparity d (expressed as a log likelihood, LðdÞ) is
Current Biology 27, 1403–1412, May 22, 2017 1407



Figure 7. Binocular Likelihood Model

Input images are processed by a population of simple units that perform linear

filtering followed by nonlinear rectification. The activity of a given simple unit (ri)

is read out bymultiple complex units. A simple unit’s readout weights vary over

complex units, where the readout weight is defined by the cross-correlation of

the simple unit’s left and right receptive fields. The activity of the population of

complex cells encodes the likelihood function for stimulus disparity. See also

Figure S6 and Figure S7.
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Figure 6. The BNN Can Predict Depth Order When Disparity Is Ill

Defined or Ambiguous

(A) Illustration of occlusion around the edges of objects.

(B) da Vinci stereopsis. Left: illustration of half-occlusions (black flanks) pro-

duced by viewing geometry; center: da Vinci stereograms for cross-eyed

fusion; right: depth map from the BNN.

(C) Wallpaper illusion. Top: ambiguous pattern. The vertical stripes can

be matched by a nasal or temporal shift, making both near and far global

matches valid. Cross-eyed fusion allows the reader to experience alternation.

The BNN does not detect a clear depth. Bottom: biasing perception by

changing background luminance leads to a concomitant shift in the BNN’s

interpretation.

(D) The net drive between excitation and suppression that underlies the shift in

prediction, contrasting the ambiguous case and disambiguated case.

Note: for all of these examples, it is clear that the BNN has not ‘‘reproduced’’

the percept; rather, the network provides key signals that may provide the

foundations for typical percepts. See also Figure S5.
given by a weighted sum of simple unit activity, ri. The weights

correspond to the cross-correlation, ðWL+WRÞi, between the

left and right receptive fields of simple unit i at disparity d (Fig-

ure 7). To demonstrate the model, we implemented an instantia-

tion that produces disparity tuning curves for correlated and
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anticorrelated RDS that closely resemble V1 complex cells (Fig-

ure S7). This instantiation included a single spatial frequency

channel, so the model does not require pooling across spatial

scales to exhibit attenuation for aRDS. The model’s key param-

eters are simply the receptive fields of the input units. This sug-

gests that a fixed, stimulus-independent architecture explains

key binocular phenomena, possibly without supervised learning.

DISCUSSION

Traditional understanding of stereopsis at the computational,

neural, and perceptual levels has focused on the idea that

peak correlation should be used to identify similar features and

discard false matches. The logic underlying this approach is

based on inverting the geometry that maps objects at different

locations in space onto different portions of the two retinae.

However, here we show that envisaging neurons as units that

match up the features of objects in the world fails to account

for known properties of neurons and overemphasizes the role

of similarity in a system whose fundamental benefit lies in differ-

ences between the images sensed by the two eyes.

We demonstrate that V1 neurons have properties ideally

suited to extract binocular information, rather than simply

searching for matching features. We formalize a binocular likeli-

hood model that provides a unifying account for previously puz-

zling properties of V1 neurons as well as perceptual phenomena

that challenge the standard approach. This model highlights

the interplay between feature detection and proscription for

perceptual inference. This mix of evidence for and against likely



interpretations may represent a general strategy for perceptual

integration both within and between sensory modalities.

Understanding the Functional Role of Sensory Neurons
Understanding the coding strategies of sensory neurons repre-

sents a long-standing challenge. A historically pervasive idea is

that sensory neurons act as ‘‘feature detectors,’’ signaling evi-

dence for the occurrence of a particular feature in the environ-

ment [32, 33]. For instance, orientation-selective neurons could

indicate the presence of a particular tilted edge in a visual display

[34]. It has long been recognized that natural images shape this

selectivity [35, 36], with neural responses optimized for efficient

representation of the statistical regularities of the environment

[37, 38].

Here we take the approach of quantifying the information

conveyed by early sensory neurons that are sensitive to binoc-

ular disparity using information analysis, and then implementing

a neural network optimized by exposure to natural images. This

provides insight into the functional purposes of disparity repre-

sentations at the neural and perceptual levels. Our findings on

the utility of hybrid receptive fields for disparity encoding are

consistent with work that used dimensionality reduction to

estimate the optimal disparity filters [39]. In particular, our obser-

vation that hybrid units capture greater Shannon information is

consistent with the idea that hybrid encoding maximizes

disparity estimation accuracy. Moreover, hybrid receptive fields

are suggested to minimize the statistical redundancy of binoc-

ular responses [40–42], suggesting an additional factor driving

the brain’s use of hybrid units.

Understanding the Encoding Properties of the BNN
Previously it was suggested that phase encoding is used to sense

‘‘impossible’’ stimuli. In particular, Read andCumming [12]made

an important proposal that key depth information is conveyed

by positional disparities, with phase disparity used to select

between alternative positional signals in cases of ambiguity.

They suggested that this would filter out ‘‘false’’ matches and

thereby solve the correspondence problem. In contrast, our

model is based on the combination of feature detection and pro-

scription, rather than using mismatches as a veto. As we have

shown, extracting depth structure can be achieved without units

that register pure positional disparities: only 3 of 28 simple units

responded to position offsets without phase offsets (Figure 2B),

and removing units with small phase offsets had little conse-

quence on the performance of the network (Figure 4C).

More generally, it is important to ask why the BNN, optimized

by natural images, uses hybrid encoding for its simple units. The

traditional exposition of binocular vision starts from the conve-

nient geometry of how a small number of isolated points in the

world project into the retinal images sensed by the two eyes.

Models of binocular vision are typically built upon the logic of in-

verting this mapping based on establishing the ‘‘correct’’

matches. However, the BNN suggests that the diet of early visual

neurons consists almost entirely of mismatched features: the

one ‘‘true’’ set of correspondences between the two eyes is en-

gulfed by a preponderance of mismatches.

When interpreting the properties of the BNN, it is important to

recall that the network learned the relationship between specific

inputs (i.e., one natural image set) and the optimization objective
(i.e., a particular discrimination task). Systematically changing

either would change the learned model. Nevertheless, the BNN

generalized to a different stimulus set (random dot patterns)

and had properties mirroring neurophysiology. It is interesting

that the BNN’s receptive fields are vertically oriented. Although

this makes sense when capturing horizontal disparities, real V1

binocular neurons have varied orientation tuning preferences

[9]. This difference may relate to the fact that the BNN is con-

strained to optimize one task (disparity discrimination) while V1

neurons are required to support many. It will be interesting to

test how defining models for multiple objectives (e.g., estimating

the orientation of features tilted in depth) affects encoding prop-

erties. For instance, future workmight test whether units become

specialized for particular functions versus developing joint-

encoding characteristics. This might most straightforwardly be

applied to proscriptive processing for motion estimation (given

the strong computational similarities between disparity and mo-

tion [43]) but may also extend to other feature dimensions.

Relation to the Disparity Energy Model
The disparity energy model [6–8] has long provided the founda-

tion for understanding binocular vision. Although modifications

have been proposed to accommodate a number of electrophys-

iological observations [16, 18, 19], the basic architecture has re-

mained unchanged.Moreover, the link between the implementa-

tion and the computational goal of estimating depth has been left

obscure.

Herewedeveloped an approach that exploits the samecompu-

tationalbuildingblocksas the traditionalmodel (i.e., linearfilters for

binocular summation followedby rectification). However, theBLM

uses a weighted readout scheme, in which activity can be com-

bined via excitatory or suppressive weights onto a population of

complex cells. The main deviations from the traditional model

are (1) the existence of multiple simple cell-like neurons, as

opposed to the quadrature pairs originally proposed, (2) the incor-

poration of variable weights that can be suppressive, and (3) the

complex unit’s use of responses from simple units that do not

have thesamepreferreddisparity (becausesimpleunitsconvey in-

formation aboutmultiple disparities). These characteristics are not

part of the classical energymodel but strongly alignwithmodifica-

tions suggested in light of neurophysiological evidence [18, 24,

44–46].Aswehaveshown,byusingamodel optimized toestimate

depth, readout weights can be derived directly from the model’s

encoding properties. The fact that doing this reproduces proper-

ties of simple and complex cells measured in vivo suggests that

the visual system has been optimized by similar constraints.

The role we demonstrate for proscription is consistent with

evidence that binocular V1 neurons are modulated by excitatory

and suppressive components [24]. That suppression lags behind

excitation by �7 ms [45] suggests that it is initiated at very early

stages of processing. In particular, the proscriptive registration

of dissimilarities could drive suppression of unlikely depths via

inhibitory interneurons. The necessity of an additional synapse

(via interneurons) would impose a small temporal delay, but

this delay is less than would be expected for extrastriate feed-

back. The BLM suggests that the properties of suppressive in-

puts shape the inversion and attenuation of complex cell tuning

curves for aRDS. Where suppressive input is strong, we expect

a clear inversion of the tuning curve but little attenuation.
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Conversely, where suppressive input is weak, such that excita-

tion and suppression are nearly balanced, the tuning curve

would be severely attenuated. In this case, the close balance

between excitatory and suppressive inputs means that highly

attenuated cells take longer to cross their firing threshold. This

is consistent with evidence from barn owls that longer onset

latencies are associated with high attenuation [47].

Finally, the BLM predicts that anticorrelation masks the

registration of a correlated disparity signal. Previous work pitted

cRDS against aRDS to produce zero net correlation in the

display. Participants can judge depth in such displays, leading

to the suggestion of an additional mechanism separate from cor-

relation [48]. In contrast, the BLM posits a single mechanism and

exploits anticorrelation to facilitate the interpretation of depth.

We predict that the masking effects of anticorrelation are tuned

(i.e., that anticorrelated disparities are more suppressed than

others) and that spatial limits on masking from anticorrelation

are set by V1 complex cell receptive fields.

Relation to Binocular Rivalry
Our mechanistic account of the early stages of binocular vision

suggests a natural link to work on binocular rivalry. Traditionally,

the study of rivalry and stereopsis have been separate [49, 50],

although recent work has suggested computational links be-

tween them [51]. Here we show that proscription is likely to be

a key constituent of normal disparity processing. This suggests

that stereopsis and rivalry sit along a spectrum of binocular re-

sponses mediated by inhibition. This is compatible with work

on the perception of visual appearance [52] and suggests a

link to GABA-mediated inhibition related to binocular rivalry.

For instance, there is a strong association between human V1

GABA concentration (quantified by magnetic resonance spec-

troscopy) and monocular percept duration [53]. Furthermore,

temporary monocular deprivation leads to reduced V1 GABA

[54]. Therefore, it seems plausible that inhibitory mechanisms

in V1 are related to processing binocular incongruence. It will

be interesting to test how the mechanisms that we propose

are implemented physiologically, and whether these support a

unifying axis between rivalry and stereopsis.

Relation to Cue Integration and Multisensory
Processing
Finally, it is worth noting that neuronal tuning to properties that

appear inconsistent with the physical structure of the world are

not limited to binocular disparity. In particular, neurons can be

tuned to the same or opposite features for different visual cues

and/or between sensorymodalities [55–57]. For instance, certain

neurons in macaque area MSTd respond maximally to the

same direction of motion when specified either by visual or by

vestibular cues (‘‘congruent’’), while others (‘‘incongruent’’)

have opposite direction preferences between modalities [57].

Aswith the discussion of phase disparity, ‘‘incongruent’’ neurons

are puzzling because they respond best to stimulation that could

not be caused by a single physical object.

The inference framework that we provide for binocular vision

suggests an important role for neurons that encode proscriptive

features. We hypothesize that a similar mechanism is used

when combining different cues (e.g., disparity and texture) or

sensory modalities (e.g., vision and touch). Specifically, neurons
1410 Current Biology 27, 1403–1412, May 22, 2017
form a continuum of responses (ranging from ‘‘congruent’’ to

‘‘incongruent’’) analogous to ‘‘hybrid’’ disparity encoding. These

encoding neurons can be read out by a population of units that

integrate signals fromdifferent cues. This canbroadly beconcep-

tualized as a type of causal inference based on explaining away

[58] and links to suggestions about providing a mechanism for

discounting irrelevant properties of viewed stimuli [59].

Conclusions
Early sensory neurons are broadly understood as optimized to

capture the physical properties of the surrounding environment.

Within this context, neural tuning to elements that do not relate

to physical objects represents a significant puzzle. Using an

optimal information framework, we demonstrate the importance

of proscription: neural responses that provide evidence against

interpretations incompatible with the physical causes of sensa-

tions. We demonstrate the role of these ‘‘what not’’ responses

in a neural network optimized to extract depth in natural images.

We show that combining detection with proscription provides a

unified account of key physiological and perceptual observations

in 3D vision that are unexplained by traditional approaches. We

capture the encoding and readout mechanisms in simple analyt-

ical form and propose that marrying detection with proscription

provides an effective coding strategy for sensory estimation.
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METHOD DETAILS

Information Theoretic Analysis
Individual Simple Units

We sought to formalize the idea that information encoded in the responses of binocular simple units is not restricted to the preferred

disparity. To do so, we computed the Shannon information I between broadband stimuli s with varying disparity d and simple unit

responses R,

IðR; sdÞ=
X
i

pðri j sdÞlogpðri j sdÞ
pðriÞ ; (1)

where ri denotes the firing rate of the simple unit. The resulting information indicates how well a particular disparity is encoded in the

response of the simple unit. In this demonstration, the receptive fields were parameterized as two-dimensional ðx; yÞ, vertically ori-

ented Gabor functions,

Wðx; yÞ= eððx�x0Þ2 + y2Þ=2s2cosð2pfðx � x0Þ+fÞ; (2)

wheres denotes theGaussian envelopewidth, x0 denotes the position, f the spatial frequency, andf denotes the phase of the recep-

tive field. To define the disparity encoded by the simple unit, we varied the phase and/or position, and kept the remaining parameters

constant. Varying the position parameter introduces a simple translation in the receptive field, while varying the phase causes a

change in the internal structure of the receptive field.

We computed the information carried by a simple unit with preferred disparity of 4 pixels definedby a either a position shift or a phase

shift. For this simulation, the receptive field envelope, s, was set to 5 pixels and the frequency, f, was set to 0.05 cycles/pixel. The stim-

ulus set consisted of 100,000 uniform randomdot imageswith disparities between� 20 and 20pixels. For both encodingmechanisms,

we observed that individual simple units convey information about non-preferred disparities (Figure 1C). This highlights that the activity

of simple units selective for a particular disparity could contribute to the activity of complex units tuned to different disparities.

Population of Simple Units

In the previous section we examined information at the single unit level. Next, we demonstrate how much information is encoded

across a small population of simple units ðN= 5Þwith position, phase, and hybrid disparity encoding.We used a small number of units

for computational convenience, as the amount of memory required to store the full stimulus-response distribution increased expo-

nentially with the number of units (simulating a population of 10 units, for instance, would require a prohibitive 80 gigabytes of RAM

memory). An alternative to study information in larger neural populations would be to use other measures such as the linear Fisher

Information – a quantity that is inversely related to discrimination thresholds, and that can be efficiently computed if responses follow

a distribution of the exponential family with linear sufficient statistics (e.g., [61]). However, we chose to use Shannon Information to

avoid focusing on discrimination tasks and obviate further assumptions about the response distribution.

Althoughwe are nowworking at the level of multiple simple units, Equation 1 can still be used – the difference is that the response is

a vector of activities of multiple simple units, so the underlying probability distributions are multidimensional. Because we are not

interested in the information about individual stimulus disparities, but rather how well all disparities are encoded, we integrate

over the stimulus disparity,

IðR;SÞ=
X
d

X
i

pðri j sdÞlogpðri j sdÞ
pðriÞ : (3)
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We generated populations of simple units with (i) position shifts, (ii) phase shifts, or (iii) a combination of both (hybrid encoding). The

Gaussian envelope width, s, and the spatial frequency, f, were kept constant, and only the position x0 and the phase f parameters

were allowed to vary.

We examined information encoded under two schemes. First, we computed the information under the assumption of uniformly

spaced simple units. This ensures minimal overlap between the tuning curves of the simple units, and therefore avoids redundancy

(i.e., the suboptimal case where two or more units in the population have very similar tuning curves). Next, we examined information

without imposing this uniform spacing, and allowed the simple units to assume random tuning profiles. We did this by generating

1,000 populations for which the position and/or phase shifts (according to the encoding mechanisms under evaluation) were

randomly drawn from a uniform distribution. This yielded a distribution of information values for each of the mechanisms. As ex-

pected, we observed higher information values for the uniformly distributed population (Figure 1D, horizontal lines) when compared

to random populations (Figure 1D, bar graph). In both cases, we found that hybrid populations carried themost information about the

disparity imposed in our stimulus set (Figure 1D).

Naturalistic Binocular Images
We generated naturalistic stereoscopic images using 100 light-field photographs extracted from the Light Field Saliency Database

[14] (http://www.eecis.udel.edu/�nianyi/LFSD.htm). The dataset comprised images of a variety of indoor and outdoor scenes—

representative stereo pairs are provided in Figure S1—and the corresponding depth maps. First, each RGB image (1080-by-1080

pixels) was converted to gray-scale values and down-sampled at the resolution of the corresponding depthmap (328-by-328 pixels).

Thereafter, we used the information provided by the depth map to render stereo pairs with arbitrary disparity range. From each light-

field acquisition, we extracted a series of images focused at different points in depth, and rendered stereoscopic pairs by shifting the

pixels of the original image by an amount proportional to the value of the depthmap, restricting themaximum shift to 10 pixels. Pixels

that were revealed behind occluded regions (by displacing image features in depth) were filled using linear interpolation. To prevent

interpolation from affecting the training procedure, we excluded image patches for which more than 5% of the pixels were

interpolated.

This method produced 200 stereo pairs. From these images we extracted 38,000 different pairs of smaller image patches (30-by-

30 pixels). To ensure accurate disparity information, we excluded image patches with low variance of pixel intensity (gray level s.d.

threshold = 20). All image patches were then scaled so that pixel intensity values were contained in the interval between –1 and 1, and

randomly divided into training and test sets, as described below.

We did not use standard two frame stereo datasets (e.g., Middlebury datasets) given that these contain a large range of disparities,

making it difficult to obtain sufficiently large training sets for a given set of disparity values. We restricted the network to work on a

small number of individual disparities for which we could provide training data. Rendering stereo pairs from the corresponding depth

map, as described above, allowed us to generate images with arbitrary disparity range, and therefore increase the number of class

exemplars available to train the network. Additionally, native two frame stereo datasets are typically composed of a comparatively

small number of photographs, which could lead to exploring a narrow portion of the space of natural image statistics. This would

affect the properties of the network and the degree to which it could generalize to other stimuli.

Binocular Neural Network
Architecture

The binocular network was implemented using Theano [60], a library for efficient optimization and evaluation ofmathematical expres-

sions. We used a simple convolutional neural network that comprised (i) an input layer, (ii) a convolutional-pooling layer and (iii) an

output logistic regression layer (Figure 2A). The input is convolved with a series of kernels to produce one output map per kernel

(which we refer to as convolutional maps). The use of convolution means that each kernel is applied at all different locations of

the input space. This significantly reduces the number of parameters that need to be learned (i.e., we do not parametrize all possible

pairwise connections between layers) and allows the network to extract a given image feature at all different positions of the image.

Inputs were image patches (30x30x2 pixels; the last dimension carrying the left and right images) extracted from stereoscopic im-

ages. In the convolutional layer, binocular inputs are passed through 28 binocular kernels (19x19x2 pixels) producing 28 output maps

(12x12 pixels). This resulted in 4,032 units (28 maps of dimensions 12x12 pixels) forming 2,911,104 connections to the input layer

(4,032x19x19x2 pixels). Since thismapping is convolutional, this required that 20,244 parameters were learned for this layer (28 filters

of dimensions 19x19x2 plus 28 bias terms). We chose units with rectified linear activation functions since a rectifying non-linearity is

biologically plausible and necessary to model neurophysiological data [62]. The activity, a, of unit j in the kth convolutional map was

given by:

a
ðkÞ
j =

�
wðkÞsj +b

ðkÞ
j

�
+

(4)

where wðkÞ is the 19x19x2 dimensional binocular kernel of the kth convolutional map, sj is the 19x19x2 binocular image captured by

the jth unit, bj is a bias term and ð:Þ+ denotes a linear rectification non-linearity (ReLU). Parameterizing the left and right images sepa-

rately, the activity ajðkÞ can be alternatively written as:

a
ðkÞ
j =

�
wðLkÞsLj +wðRkÞsRj +b

ðkÞ
j

�
+

(5)
e2 Current Biology 27, 1403–1412.e1–e8, May 22, 2017

http://www.eecis.udel.edu/%7Enianyi/LFSD.htm
http://www.eecis.udel.edu/%7Enianyi/LFSD.htm


where wðLkÞ and wðRkÞ represent the kth kernels applied to left and right images (i.e., left and right receptive fields), while sL
j and sR

j

represent the left and right input images captured by the receptive field of unit j.

The convolutional layer was followed by a max-pooling layer that down-sampled each kernel map by a factor of two, producing 28

maps of dimensions 6-by-6 pixels. Finally, a logistic regression layer (1,008 connections; 36 per feature map, resulting in 1,010 pa-

rameters including the bias terms) mapped the activities in the pooling layer to two output decision units. The vector of output ac-

tivities r was obtained by mapping the vector of activities in the pooling layer a via the weight matrix W and adding the bias terms

b, followed by a softmax operation:

r = softmaxðWa+bÞ (6)

The predicted class was determined as the unit with highest activity. ForN-way classification, the architecture was identical except

for the number of output units of the BNN.

Training Procedure

The input stereo pairs were first randomly divided into training- (70%, 26,600 pairs), validation- (15%, 5,700 pairs) and test- (15%,

5,700 pairs) sets. No patches were simultaneously present in the training, validation, and test sets. To optimize the BNN, only the

training and validation sets were used. We initialized the weights of the convolutional layer as Gabor filters with no differences be-

tween the left and right images. Therefore, initialization provided no disparity selectivity. With x and y indexing the coordinates in

pixels with respect to the center of each kernel, the left and right monocular kernels WL and WR of the jth unit were initialized as

wL
j =wR

j = e�ðx02 + y02Þ=ð2s2Þcosð2pfx0 +fÞ (7)

with f = 0.1 cycles/pixel, s = 3 pixel, q = p=2 radians, x0 = xcosðqÞ+ ysinðqÞ, y0 = � xsinðqÞ+ ycosðqÞ, andf the phase of the cosine term

of each unit, which was equally spaced between 0 and p. The bias terms of these units were initialized to zero. During training we did

not constrain the filters to any particular morphology, neither did we constrain properties such as spatial frequency selectivity. In the

logistic regression layer, the weights and bias terms were all initialized to zero.

The BNN was trained using mini-batch gradient descent with each batch comprising 100 examples (50 examples of each class).

For each batch, we computed the derivative of the loss function with respect to parameters of the network via back-propagation, and

adjusted the parameters for the next iteration according to the update rule

wi + 1 =wi � a

�
vL

vwðDiÞ

�
(8)

where a is the learning rate, and hvL=vwðDiÞi is the average over the batchDi of the derivative of the loss function with respect to thew,

evaluated at wi. The learning rate a was constant and equal to 0.001.

After evaluating all the batches once—completing one epoch—we tested the BNN using the validation image dataset. We

repeated this process for a maximum of 1,000 epochs. Initially, the maximum number of iterations allowed without improvement

was set to 10,000. To allow exhaustive optimization, this limit was increased by a factor of 2 every time there was an improvement

of 0.5% in performance as tested in the validation set.

Evaluation

We tested the BNN using both natural and synthetic images. For natural images, we tested it using 5,700 held-out patches on the test

image dataset (i.e., these exemplars were not used for training or validating the network). For comparison with neurophysiological

observations, we also tested the BNN using random-dot stereogram patches. This test set consisted of 6,000 randomly generated

stereograms containing a mixture of dark and bright dots on a gray background (dot size = 1 pixel; dot density = 50%).

For comparison with psychophysical observations, we also tested the BNN with large random-dot stereograms depicting a step-

edge (240-by-240 pixels). The dot size was set to 8 pixels and the dot density was approximately 15%. No occlusion between the

dots was allowed. The step disparity was set to 2 pixels. Disparity noise sampled from a Gaussian distribution (s.d. = 8 pixels) was

added to increase task difficulty. Stereograms could contain bright dots, dark dots (single polarity cases) or an even mixture of both

(mixed polarity case) on a uniformmid-gray background. Bright, dark, andmid-gray pixels corresponded to values of + 1,� 1 and 0,

respectively. Differences in the response to mixed- and single-polarity stereograms could be affected by differences in mean lumi-

nance or contrast. We sought to rule out such effects by performing control analyses where these properties werematched. In partic-

ular, we report the results obtainedwhen themean luminance (DC) was removed, as differences in DC can have a drastic effect on the

population responses [23]. Similar results were obtained when single-polarity stereograms were scaled to have the same peak-to-

trough values (i.e., pixel intensities varied from� 1 to + 1, producing a range of 2), and scaled tomatch the range of themixed polarity

stereograms after we had removed the mean luminance. Figure S4 compares results obtained with different manipulations of the

images.

Modeling Binocular Receptive Fields
The receptive fields of simple units in the BNN were not constrained to develop a particular structure (i.e., Gabor functions) during

optimization – they could in principle develop any kind of morphology. We therefore assessed whether the receptive field structure

mirrored that found in simple cells in primary visual cortex. In particular, we set out to test (i) if the receptive fields were well approx-

imated by Gabor functions, and (ii) what kind of encoding mechanism they develop – i.e., position, phase or hybrid encoding.
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We started by assessing whether the receptive fields were well approximated by Gabor functions. To reduce the number of free-

parameters, we examined the horizontal cross-section of the receptive field, and fit a 1-dimensional Gabor function,

W =A3 e�ðx�x0Þ2=ð2s2Þcosð2pfðx � x0Þ+fÞ: (9)

We used a two-stage procedure for optimization. First, we ran a coarse grid-search to find a good initial guess for the parameters,

whereby the combination of parameters with lowest sum of squared errors was selected. Then, taking the grid-search estimates as

initial guesses, we estimated the final parameters using bound constrained minimization. The constrained parameters were the

amplitude ð0 < A < +NÞ, the center of the envelope ðminðxÞ < x0 < maxðxÞÞ, the phase ð�p < f < pÞ and the frequency, which

was constrained to an interval of ± 10% around the peak of the Fourier transform of the receptive field profile. To assess whether

disparity was encoded via position and/or phase shifts (Figure 1B), we subtracted the position/phase parameters between the left

and right receptive fields. The phase parameter was wrapped to ½�p;p�.
To address consistency with neurophysiology, we examined the spatial frequency bandwidth of the receptive fields learned by our

model. We quantified spatial frequency bandwidth using two methods. First, we used a non-parametric approach of computing the

spatial frequency tuning curve for each filter, and then determining the corresponding bandwidth (FWHM). We found that the spatial

frequency bandwidth values were plausible when compared to the bandwidth of V1 neurons [63] (average bandwidth = 2.32 octaves;

values ranged from 1.58 to 3.44 octaves). As a confirmatory procedure, we used a parametric approach based on the standard

deviation and the frequency parameters of the Gabor fits. This yielded near-identical results, although 13/56 filters could not be eval-

uated using this method as they produced NaN estimates.

Varying the Number of Simple Units and Testing the Importance of Positional Disparities
When defining the architecture of the BNN, we arbitrarily set the number of simple unit types to 28. To ensure that our results hold in a

more generalizedmanner, we additionally trained similar versions of the Binocular Neural Network while varying the number of simple

unit types. The remaining parameters of the network were kept constant. After optimization, we found a similar pattern of results: we

achieved high classification accuracies (Figure S2A), and the binocular receptive fields developed a combination of phase and

position disparities (Figures S2B and S2C).

Relating simple unit properties (i.e., their receptive fields) to the readout of their activity is a key step in understanding the compu-

tation performed by the network. We chose to deploy the network with 28 types of simple units as opposed to the models with fewer

units. This was because it provided a richer substrate to determine the relationship between simple units properties and their readout,

and allowed us to perform a ‘lesion’ analysis of the network where performance was not uniquely dependent on a very small number

of units. With fewer units (e.g., 8), performance when dropping units would have become unstable.

Estimating Correlated versus Anticorrelated Amplitude Ratios
Complex units in the BNN responded more vigorously to correlated (cRDS) than anticorrelated stereograms (aRDS) (Figure 3A),

a phenomenon that is observed in disparity selective V1 complex cells [15, 16]. We examined whether the degree of attenuation

observed in our network was compatible with electrophysiological data. Attenuation is commonly assessed by modeling tuning

curves for aRDS and cRDS, and then evaluating the ratio between the corresponding amplitudes [15, 20, 47]. Therefore, wemodeled

the tuning curves using Gabor functions (similar to those used to model the binocular receptive fields) and computed the ratio be-

tween the amplitude parameter for correlated and anticorrelated stimuli. We started by generating disparity tuning curves for

each complex unit by computing the activity elicited by correlated or anticorrelated random-dot stereograms (50% dot density)

with disparities ranging from � 20 to 20 pixels (100 trials per disparity) (Figure 3B). To avoid relying on a single fit per complex

unit, we used bootstrapping to generate 5,000 resampled tuning curves, and we fit a Gabor to each sample. The average explained

variance of the fits to the disparity tuning curves was R2 = 0:945 (R2 = 0:93 for cRDS and R2 = 0:96 for aRDS). Based on these param-

eters, we computed the respective amplitude ratios by dividing the amplitudes for aRDS by the amplitudes for cRDS. We finally

arrived at a distribution of amplitude ratios (Figure 3C) by pooling the data across complex units.

N-Way Classification
In addition to the binary case, we also trained a network to performN-way classification. The only change required to the networkwas

an increase in the number of output complex units. In particular, we optimized a network for 7- and 11-way classification. In these

cases, the complex units of the network also display inversion and attenuation for anticorrelated random-dot stereograms, with com-

parable but more variable amplitude ratios (Figure S3). We found that the corresponding tuning curves featured abrupt changes in

selectivity, and some were not well described by Gabor-like profiles. We note that this is also the case in cortex (i.e., that Gabor func-

tions do not always describe disparity tuning well). However, the abrupt variations in tuning could be alleviated by varying the tem-

perature of the softmax nonlinearity, or by defining the N-way classification problem to operate over a broader disparity space.

Computing Optimal Stimuli
To confirm that themodel waswell tuned to extract physical binocular disparities, we computed input images that could best activate

the complex units of ourmodel. The intuition is that we can visualize what inputs aremost efficient in driving a given complex unit, and
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thereafter evaluate whether the input is sensible. The objective function is therefore the activity of a given complex unit, which we

want to maximize. Equivalently, for an output unit j, we minimized the negative of its input:

Lj = � ðWja+bjÞ (10)

where a is the vector of simple unit activities,Wj is the readout weight matrix for the jth complex unit, and bj is the bias term. The goal is

thus to find an input image that minimizes Lj (i.e., maximizes the complex unit activity; Figure 4A). We did this via gradient descent: we

started with a random noise input image, x, computed the gradient of the loss function with respect to the input image, and adjusted

the latter according to the update rule:

xi + 1 = xi � a
vL

vx
(11)

where a is the step size (empirically set to 1).We limited the number of iterations to 100 as this was enough to ensure that optimization

reached a stable image configuration (i.e., the correlation between the stimulus in two consecutive iterations saturated at 1).

The stimuli that best activated the complex units resembled contrast edges horizontally translated between the eyes, in the direc-

tion consistent with the preferred disparity of the complex unit (Figure 4B). This is consistent with detecting positional offsets. The

structure of the optimal stimuli was very similar across the eyes, indicating that stimuli with non-physical (i.e., phase) disparities

are not ideal to activate the BNN’s complex units.

Step-Edge Depth Discrimination and Depth-Sign Maps
In its original form, the BNN takes a 30-by-30 input image patch and produces a binary output corresponding to the predicted

disparity (near or far). Once trained, however, convolutional neural networks can be applied to higher dimensional inputs, without

requiring any changes in the parameters of convolutional layers. We took advantage of this convenience to test the BNN with larger

binocular inputs. The only required modification to the BNN happened in the readout layer, where we applied the mean readout

weight for each simple unit in an element-wise manner. This resulted in two output activity maps – one for near disparities (near

map), and another one for far disparities (far map). More formally, the vector of activities in the jth output map was defined as:

a
ðjÞ
out =

X28
ðk =1Þ

aðkÞconv
bwðkjÞ
out +bðjÞ (12)

where a
ðkÞ
conv is the vector of activities in the kth convolutional map, bwðkjÞ

out is the mean readout weight between the kth convolutional map

and the jth output unit, and bðjÞ is the vector of bias terms of the jth output unit. Finally, we combined the two output maps by element-

wise subtracting the activities of the near map from the far map, so that positive values reflect higher near activity, while negative

values reflect higher far activity.

Relationship between Simple Unit Selectivity and Readout
The activity of complex units in the network depends on the readout of the activity of the population of simple units. We assessed

whether there was a relationship between the receptive fields of simple units and the corresponding readout weights. Take, for

instance, the complex unit that responded to near stimuli: how does this complex unit combine the activity of the population of simple

units?We found that it used readout weights that were proportional to the average interocular receptive field cross-correlation at near

disparities (Figure S6, red elements; Pearson’s R= 0:90, p < 10�9). In the same manner, the readout weights for the far complex unit

were proportional to the average interocular receptive field cross-correlation at far disparities (Figure S6, blue elements; Pearson’s

R= 0:89, p < 10�9). The readout weight is therefore proportional to the interocular receptive field cross-correlation at the preferred

disparity of the complex unit.

Derivation of the Binocular Likelihood Model
Interocular RF Cross-Correlation and Disparity Selectivity

It has been noted elsewhere that computing the cross-correlogram between the left and right receptive fields yields a very good

approximation of the disparity tuning curve [11, 64, 65]. Below we present a derivation that describes this relationship. We start

by considering the response r of binocular simple cells to a given binocular stimulus with disparity d. The binocular half images

(i.e., the images captured by the left and right eyes) are horizontally translated versions of one another. Thus, the stereo pairs pre-

sented in a given trial t can be defined as fStðxÞ;Stðx + dÞg. As observed experimentally, the response of a binocular simple cell

can be well described by linear spatial filtering and rectification, followed by a non-linearity [6, 66],

r =g
�
½StðxÞWLðxÞ+Stðx + dÞWRðxÞ�+

�
; (13)

whereWLðxÞ andWRðxÞ denote the receptive fields of the simple cell for the left and right eyes, and g is an expansive nonlinearity. It

has been shown that this non-linearity is well described by a power law with an exponent of approximately 2, gðxÞ= x2, for x > 0 [66].

We assume an unrectified squaring non-linearity for mathematical convenience, however, similar results would be obtained for a

rectifying squaring non-linearity [65]. Based on this, we can compute a disparity tuning curve, fðdÞ, by averaging the response of

the simple cell across a large number of trials T,
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fðdÞ= 1

T

X
t = 1

T

rt
=
1

T

X
t = 1

T

ðStðxÞWLðxÞ+Stðx + dÞWRðxÞÞ2
=
1

T

X
t =1

T �
ðStðxÞWLðxÞÞ2 + ðStðx + dÞWRðxÞÞ2 + 2StðxÞWLðxÞStðx + dÞWRðxÞ

�
: (14)

As many others have noted [7, 8, 19, 66], the first two terms are monocular and do not depend on binocular disparity – over many

trials, these two terms should be a positive constant, C, independent of the disparity d of the stimulus. The disparity dependent mod-

ulation of the tuning curve is captured by the interaction term,

fðdÞ= 1

T

X
t = 1

T

2StðxÞWLðxÞStðx + dÞWRðxÞ+C: (15)

This expression describes the expected response for a simple cell with receptive fieldsWLðxÞ andWRðxÞ to stereoscopic pairs that

are translated horizontally in relation to one another by a given disparity d. Under this formulation, the response of the simple cell is

proportional to the stimulus unnormalized cross-correlation, StðxÞStðx + dÞ, weighted by the product of the left and right receptive

fields, WLðxÞWRðxÞ, known as the binocular interaction field [66].

However, as we will now show, it is useful to reformulate this expression. Because the stereoscopic pairs are simply translated in

relation to the position of the receptive fields, it is equivalent to compute a disparity tuning curve by applying the horizontal shift to the

receptive fields, while keeping the stereoscopic images in the same horizontal position ðaðx � dÞbðxÞ= aðxÞbðx + dÞÞ,

fðdÞ= 1

T

X
t = 1

T

2StðxÞWLðxÞStðxÞWRðx � dÞ+C (16)
=
1

T

X
t = 1

T

2StðxÞ2 WLðxÞWRðx � dÞ+C: (17)

Equation 17 is convenient because it expresses the disparity tuning curve as a function of the dot product between the left and right

receptive fields, translated according to the disparity d. This is by definition the cross-correlation between the left and right receptive

fields ðWL+WRÞ½d�. Note that ð1=TÞPT
t = 1StðxÞ2 is simply the average energy of the stimulus over T trials, which influences the ampli-

tude of the tuning curve (but not its morphology). Therefore,

fðdÞ= 2ðWL+WRÞ½d� 1
T

 X
t = 1

T

StðxÞ2
!
+C (18)
= 2ðWL+WRÞ½d�E
�
StðxÞ2

�
+C: (19)

This formulation provides a mathematically convenient way of expressing tuning for binocular disparity solely based on the recep-

tive fields of simple units. Next, we will take advantage of this convenience to establish a relationship between simple unit properties

and their readout by complex units.

Optimal Readout of Simple Unit Activity by Disparity Selective Complex Units

In the previous section, we showed that the disparity tuning curve of a simple unit can be well approximated by the scaled cross-

correlogram between the left and right receptive fields. We also suggested that stimulus contrast energy induces variability in the

firing rate of simple units. This high variability makes simple units unsuitable for the detection of depth. By combining the activities

of multiple simple units, complex units provide much better estimates of disparity. The classical disparity energy model obviates this

problem by combining the outputs of four simple units with the same preferred binocular disparity, but with their receptive field phase

in quadrature [6].

We now ask how could we optimally combine the activities of a population of simple units with highly variable firing rates. Here, we

consider not only the variability in firing rate statistics, but also extrinsic variability induced by the stimulus. Inspired by previous work

on optimal sensory representations [67], we tackle this problem from a probabilistic viewpoint. Let us interpret the distribution of ac-

tivity of a simple cell i given a particular disparity d as describing the likelihood of observing the firing rate ri given the disparity d. We
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make the simplifying assumption that the response of a simple unit, affected by intrinsic and extrinsic variability, follows a Gaussian

distribution around the mean firing rate value, which is given by the corresponding tuning curve, fiðdÞ. Thus, the likelihood for a given

simple cell i is given by

pðri j dÞ= 1ffiffiffiffiffiffiffiffiffiffi
2psi

p e
�ðri�fiðdÞÞ2

2s2
i : (20)

This equation expresses the probability of observing a firing rate ri given a stimulus with disparity d. Assuming independence

across a population of N simple cells, we can now combine these probabilities to obtain a joint likelihood,

LðdÞ=pðr j dÞ=
YN
i =1

pðri j dÞ: (21)

By working in log-space, we can convert the logarithm of the product of likelihoods into a sumof logarithms of the likelihood. This is

useful because we can express the computation of the likelihood as sum over the activity of many neurons, which is a biologically

plausible operation. Equation 21 thus becomes

logLðdÞ=
X
i = 1

N

logpðri j dÞ (22)
=
X
i = 1

N

log

0BB@ 1ffiffiffiffiffiffiffiffiffiffi
2psi

p e
�ðri�fiðdÞÞ2

2s2
i

1CCA (23)
=
X
i =1

N

� ðri � fiðdÞÞ2
2s2

i

� log
� ffiffiffiffiffiffiffiffiffiffi

2psi

p �
(24)
=
X
i = 1

N rifiðdÞ
s2
i

� 1

2

 
r2i
s2
i

� fiðdÞ2
s2
i

� logð2psiÞ
!
: (25)

The second term in Equation 25 can be ignored if we assume that the tuning curves of the population of simple cells cover homo-

geneously the disparities of interest, and thus
PN

i = 1fiðdÞ2 = constant. Therefore, dropping the quantities that do not depend on the

disparity d, the computation of the log-likelihood simplifies to a sum of the products between the observed simple cell firing rates

ri, and the corresponding tuning curves, fiðdÞ,

logLðdÞ=
X
i = 1

N

rifiðdÞ: (26)

While this is a useful formulation (and technically more generalizable), it is more intuitive to relate readout to binocular correlation.

As we observered earlier, the cross-correlogram is a good approximation to the disparity tuning curve of individual simple cells. By

replacing fiðdÞ according to Equation 19 and dropping the constant term that does not depend on disparity, the log-likelihood can be

written as

logLðdÞ=
X
i =1

N

riðWL+WRÞi½d�: (27)

Therefore, a population of complex cells can approximate the log-likelihood over disparity simply by weighting the firing rates of

individual simple cells by their interocular receptive field cross-correlation. While this particular solution is specific to the assumption

of Gaussian variability, the approach followed here could be applied to other forms of response variability using a suitably trans-

formed version of the cross-correlogram. If one assumes Poisson variability, so as to model intrinsic firing rate variability, then the

readout form would be a log-transform of the interocular receptive field cross-correlation.

It should be noted that this derivation approximates the behavior of the BNN because Equation 14 used a squaring non-linearity

while the BNN used a linear rectification. While this would produce differences in activity, the fundamental response properties are

likely to be preserved between this derivation and the BNN.

Finally, we provide an example of a disparity tuning curve obtained using this simple analytical expression. In this simulation, we

used 9 simple unit maps with Gabor receptive fields (f = 0.0625 cycles/pixel; spatial frequency bandwidth, b = 1.5 octaves; s = 6.27
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pixels), covering the full combination of three position disparities (Dx0 = f�3;0;3g pixels) and three phase disparities

(Df= f � p;�p=3;p=3g radians). Apart from the number of simple units, we kept the architecture of the model consistent with the

Binocular Neural Network. Therefore, the output layer consisted of two complex units – one preferring near, the other preferring

far disparities. The readout weights between simple and complex units were defined according to the analytical expression for

our model (Equation 27). This instantiation of the model produced complex units with disparity tuning curves that closely resemble

those of complex cells in V1 (Figure S7A): the tuning curves for correlated and anticorrelated stereograms are well approximated by

Gabor functions, and anticorrelated tuning curves are inverted and attenuated in relation to correlated stereograms.

The simple units in this instantiation of the model shared the same spatial frequency preference. This demonstrates that our model

does not rely on spatial frequency pooling to produce attenuation in response to aRDS. The spatial frequency bandwidth of the output

complex unit was smaller than that of the corresponding simple units (1.07 octaves), consistent with the findings that pooling activity

across space narrows spatial frequency selectivity [68]. However, our model could also encompass simple units with multiple spatial

frequencies, and their activities could be subsequently readout by complex units using the relationship established in Equation 27. In

this case, pooling across multiple spatial frequencies would increase the bandwidth of the output complex units, while further

reducing the response of the model to spurious disparities [7] and sharpening the degree of disparity selectivity [46, 68].

One prediction stemming from our model is that response saturation in simple cells could modulate the amplitude ratio of down-

stream complex cells. In particular, introducing a compressive nonlinearity at the level of simple cells—for instance, to account for

sublinear binocular integration [69]—causes the aRDS response to further attenuate relatively to the response to cRDS. We demon-

strate this effect in Figure S7B. An expansive non-linearity at the level of simple cells, on the contrary, would cause the degree of

attenuation to decrease.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used bootstrap resampling and we report the corresponding 95% confidence intervals unless otherwise noted. Results were

pooled across stimuli or units within a model, but not across different instantiations of models. For the results of fitting procedures,

we report the proportion of variance explained by the models.

DATA AND SOFTWARE AVAILABILITY

We performed all analyses in Python (https://python.org) using standard packages for numeric and scientific computing. The data

used formodel optimization and implementations of the optimization procedure are available at https://doi.org/10.17863/CAM.8538.
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