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Abstract

The radiofluorination of N-heterocyclic carbene (NHC) boron trifluoride adducts affords novel 

[18F]–positron emission tomography probes which resist hydrolytic fluoride release. The labelling 

protocol relies on an 18F–19F isotopic exchange reaction promoted by the Lewis acid SnCl4. 

Modification of the NHC backbone with a maleimide functionality provides access to a model 

peptide conjugate which shows no evidence of defluorination when imaged in vivo.

Positron emission tomography (PET) is a rapidly growing imaging technique that relies on 

the use of molecular radiotracers containing a positron emitting isotope.1 To date, a great 

deal of attention has been devoted to the use of fluorine-18 (18F), a radionuclide that can be 

easily generated from [18O]–water and whose nuclear decay characteristics are ideally suited 

for applications in PET imaging.2 One difficulty faced in the synthesis of 18F-containing 

molecular radiotracers is the short half-life of the isotope (110min). It follows that the best 

methods to access 18F-containing molecular radiotracers should be fast and preferably 

carried out in the late stages of the synthesis of the radiopharmaceutical probe.3 An 

attractive approach that provides a possible solution to these challenges is based on 

molecules containing a boron atom as a fluoride binding site.4 This approach was pioneered 

by Perrin who showed that arylboronic acids or esters featuring electron-withdrawing groups 

quickly react with fluoride ions to form the corresponding aryltrifluoroborates.5 Over the 

years, Perrin and other groups have investigated a number of backbones designed to stabilize 

the trifluoroborate unit and prevent its decomposition in vivo (Chart 1).6 Although the rate 

of hydrolysis can be slowed down drastically, all fluoroborates investigated to date are 

unstable toward hydrolysis. This hydrolysis reaction is potentially problematic because the 

fluoride ions liberated by hydrolysis of the radiotracer lead to unwanted background signal 

in particular from the skeleton.
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Recently we introduced a strategy based on the use of zwitterionic trifluoroborates.6f,g In 

particular, we found that the trifluoroborate moiety can be significantly stabilized against 

hydrolysis by a proximal cationic functionality such as a phosphonium unit as in the case of 

D and E.6g This approach is further validated by the recent work of Perrin who showed that 

ammonium trifluoroborate moieties of type C show sufficient stability for in vivo 
imaging.6b,c As part of our continuing interest in this chemistry, we were drawn by the 

remarkable stability of N-heterocyclic carbene (NHC) boron fluoride adducts7 such as 1.8 

Compound 1, which can also be described as a zwitterionic imidazolium trifluoroborate is 

highly resistant to hydrolysis and can be recrystallized from boiling water. Encouraged by 

these properties, we questioned whether such NHC–BF3 adducts could be radiofluorinated 

and used as prosthetic groups for PET imaging. In this paper, we describe the initial results 

that we have obtained while working toward this goal.

As a starting point for these studies, we synthesized the carbene–BF3 adduct 2 as a model 

compound. Using the method recently employed by for the monoethyl analog (1),8 

compound 2 was obtained by thermolysis of 1,3-dimethyl-1H-imidazolium tetrafluoroborate 

under reduced pressure (Scheme 1).8 The presence of the trifluoroborate moiety is 

confirmed by the detection of a quartet in both the 11B NMR spectrum (0.21 ppm, JB–F = 

37.0 Hz) and the 19F NMR spectrum (−139.2 ppm, JB–F = 37.0 Hz). The 1H NMR spectrum 

shows two singlets at 3.85 ppm and 7.11 ppm corresponding to the methyl and the methine 

groups, respectively. The structure of this compound has also been studied by single crystal 

X-ray diffraction (Fig. 1). The B(1)–C(1) bond connecting the NHC ligand to the boron 

center (1.641(3) Å) is comparable to the boron–carbon bond of 1 (1.644(3) Å),8 indicating a 

strong coordination of the NHC ligand to the boron atom.

Next, we turned our attention toward the synthesis of a NHC–BF3 adduct that could be 

easily conjugated with biomolecules for targeted disease imaging. After reviewing different 

functionalization possibilities, we decided to synthesize the amino-substituted derivative 5 
(Scheme 2). We successfully accessed this new derivative by reaction of the known 

nitrocarbene–AgI complex 39 with BF3–OEt2. This reaction afforded the nitrocarbene–BF3 

adduct 4 as a white solid in 83% yield. Hydrogenation of 4 over palladium afforded 5 in a 

78%yield. The 1H NMR spectrum of 4 and 5 display two singlets (3.94 ppm and 4.16 ppm 

for 4 and 3.61 and 3.73 ppm for 5) corresponding to themethyl group and a singlet (8.21 

ppm for 4 and 6.37 ppm for 5) corresponding to the methine proton. The presence of an 

amino group in 5 is confirmed by the detection of a broad signal at 4.02 ppm. As in the case 

of 2, quartets are observed in the 11B NMR and 19F NMR spectra of 4 and 5 (11B NMR: 

0.13 ppm, JB–F = 33.5 Hz for 4 and 0.27 ppm, JB–F = 37.2 Hz for 5; 19F NMR: −137.9 ppm, 

JB–F = 33.5 Hz for 4 and −138.0 ppm, JB–F = 37.2 Hz for 5). The crystal structure of 4 has 

also been determined. The carbene–BF3 moiety is essentially analogous to that in 2 (Fig. 1). 

The only notable difference is observed in the B(1)–C(1) separation (1.657(2) Å) which is 

slightly longer than in 2 (1.637(5) Å). This elongation is assigned to the electron 

withdrawing properties of the nitro group and the associated weaker donor properties of the 

carbene–carbon atom.
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Compound 5 can be easily converted into the maleimide derivative 7 in two steps as 

illustrated in Scheme 2. The spectroscopic properties of 7 are close to those of 5. The 

methine signal is observed at 7.08 ppm. The trifluoroborate moiety gives rise to a quartet at 

0.29 ppm in the 11B NMR spectrum(JB–F = 35.6 Hz) as well as a quartet at −138.5 ppm in 

the 19F NMR spectrum(JB–F = 35.6 Hz). The structure of this derivative has also been 

confirmed by X-ray diffraction (Fig. 1). The B(1)–C(1) separation (1.656(9) Å) is close to 

that in 4, a characteristic consistent with the electron withdrawing properties of the 

maleimide functional group.

Next, we decided to investigate the rates of hydrolysis of these new NHC–BF3 adducts (2, 4, 

5, 7). This hydrolysis reaction, which is expected to produce the corresponding boronic acid 

according to a first order rate process (ν = kobs[NHC–BF3]), was monitored by 19F NMR 

spectroscopy in D2O/CD3CN (8/2 vol) at pH 7.5 ([phosphate buffer] = 500 mM, [NHC–

BF3] = 20 mM).4d,10 Surprisingly, we found that the hydrolysis of the adducts was 

extremely slow. After a week, we did not observe any free fluoride for 4 and 7 indicating 

that these two derivatives are essentially immortal. Their stability is assigned to the electron 

withdrawing nature of the nitro or maleimide functionality which increases the Lewis acidity 

of the boron center thereby preventing fluoride anion dissociation. Compounds 2 and 5 are 

also surprisingly stable and only show a trace amount of free fluoride after a week in 

D2O/CD3CN (8/2 vol) at pH 7.5. By extending this experiment to a longer timescale, we 

have been able to calculate the rate of hydrolysis for these two compounds. These rates, 

which are respectively equal to kobs = 1.2 × 10−6 min−1 for 2 and 1.1 × 10−6 for 5 are lower 

than those measured under the same conditions for the phosphonium borane D. Altogether, 

these results illustrate the remarkable resistance of NHC–BF3 adducts to hydrolysis and 

suggest that they could be used as prosthetic groups for PET imaging.

Employing the approach developed by our group for the preparation of [18F]BODIPY 

dyes,11 we decided to investigate the radiofluorination of these NHC–BF3 adducts via
18F–19F isotopic exchange using SnCl4 as a Lewis acid promoter. We first tested this 

approach with the non-functionalized NHC–BF3 adduct 2 which was mixed with SnCl4 (5–

15 eq.) in MeCN and combined with a solution of [18F]–fluoride (as the tetra-n-

butylammonium salt) in MeCN (Scheme 3 and Table 1). The reaction mixture was then 

shaken for 10 min before being quenched by addition of water. The radiolabeled compound 

([18F]2) was immobilized on a Sep-Pak cartridge (Sep-Pak Plus tC18) and washed with 

water. [18F]2 was eluted off the cartridge with MeCN. An aliquot of the resulting MeCN 

solution was subjected to HPLC analysis.

The radiochemical yield (RCY) was calculated based on the radio-activity of the isolated 

product and the starting radio-activity. As shown in Table 1, the RCY ranges from 35–56% 

for different reaction conditions. It was found that increasing the concentration of precursor 

leads to higher isolation yield (entries 1–3). Interestingly, variation in the concentration of 

the Lewis acid promoter (entries 3–5) or in the temperature (entries 6 and 7) of the reaction 

had little impact on the RCY. When a long reaction time was employed as in entries 8 and 9, 

a decreased isolation yield was observed due to product decomposition. The highest specific 

activity of the final product obtained in this experiment was calculated to be 53.5 mCi 

μmol−1 (entry 8).
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Using conditions from entry 7, we have also been able to prepare [18F]7 with a specific 

activity of 51.3 mCi μmol−1 (RCY = 54%, Scheme 4). The identity of [18F]7 was confirmed 

by co-injection with the non-radiolabeled standard (Fig. 2). This radiofluorinated NHC–BF3 

adduct could be conveniently conjugated with the model peptide H–Cys–Phe–OH via a 

thiol-Michael addition reaction. This synthesis was carried out by mixing a solution of 

[18F]7 in MeCN with an aqueous solution of H–Cys–Phe–OH (400 μg, 1.5 μmol) (Scheme 

4). After shaking for 10 min at room temperature, a portion of the reaction mixture (0.01 

mCi) was loaded onto the HPLC for purification affording [18F]7–H–Cys–Phe–OH with a 

95.7% purity. The identity of [18F]7–H–Cys–Phe–OH peptide was confirmed by its mass 

spectrum (Fig. S11, ESI‡) as well as by co-injection with the independently synthesized 

non-radiolabeled standard (Fig. 3). The specific activity of [18F]7–H–Cys–Phe–OH peptide 

was calculated as 40.8 mCi μmol−1.

Encouraged by these radiofluorination and conjugation results, the stability of [18F]7–H–

Cys–Phe–OH was investigated in vivo. As a prelude to these studies, we first tested the 

stability of the conjugate in a 1× PBS buffer at 37 °C (Fig. S14, ESI‡). Even after 2 hours, 

the conjugate is not compromised as shown by the fact that its purity remains >90% pure. In 
vivo PET/CT imaging in a normal nude mouse afford consistent results. The microPET/CT 

images collected 1 h, 2 h, and 4 h post injection show liver and urinary track clearance of the 

conjugate. More importantly, no bone uptake is observed even 4 h post injections. Indicating 

that [18F]–fluoride release by the radiofluorinated carbene unit is negligible (Fig. 4).

In summary, we have identified a new boron-based fluoride captor with an unusually high 

resistance to hydrolytic fluoride release. The stability of this new probe is ascribed to its 

zwitterionic nature, with the cationic charge of the imidazolium unit acting as an 

electrostatic anchor for the boron-bound fluoride anions. These NHC–BF3 fluoride captors 

are a new incarnation of the concepts underlying the stability of the phosphonium 

trifluoroborates of type D and E developed by us or ammonium trifluoroborates of type C 
recently reported by the Perrin group.
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Fig. 1. 
Crystal structures of the Arduengo carbene borane adducts 2, 4, and 7. Ellipsoids are scaled 

to the 50% probability level and hydrogen atoms have been omitted for clarity.
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Fig. 2. 
Left: UV trace of 7 as the standard reference. Right: Crude radio-HPLC profile for the 18F-

labeling of 7.
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Fig. 3. 
Left: UV traces of [18F]7–H–Cys–Phe–OH as the standard reference. Right: Crude radio-

HPLC profile for the 18F-labeling of [18F]7–H–Cys–Phe–OH.
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Fig. 4. 
Decay-corrected whole-body microPET/CT sagittal images of a nude mice from a static 

scan at 1, 2 h and 4 h after injection of [18F]7–H–Cys–Phe–OH.
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Scheme 1. 
Synthesis of 2.

Chansaenpak et al. Page 10

Chem Commun (Camb). Author manuscript; available in PMC 2017 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Synthesis of the maleimide derivative 7.
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Scheme 3. 
Scheme showing the radiolabeling of 2 via SnCl4 assisted isotopic 18F–19F exchange.
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Scheme 4. 
Scheme showing the preparation of the [18F]7–H–Cys–Phe–OH conjugate.
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Chart 1. 

Chansaenpak et al. Page 14

Chem Commun (Camb). Author manuscript; available in PMC 2017 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chansaenpak et al. Page 15

Ta
b

le
 1

R
ad

io
sy

nt
he

tic
 r

es
ul

ts
 f

or
 [

18
F]

2

E
nt

ry
[2

] 
(m

M
)

Sn
C

l 4
 (

eq
ui

v.
)

Te
m

p.
 (

°C
)

T
im

e 
(m

in
)

SA
a  

(m
C

i μ
m

ol
−1

)
R

C
Y

b  
(%

)

1
15

5
25

10
26

.4
35

.5

2
30

5
25

10
40

.6
42

.1

3
60

5
25

10
40

.8
47

.3

4
30

10
25

10
47

.5
48

.4

5
30

15
25

10
47

.8
48

.1

6
30

5
40

10
45

.5
56

.4

7
30

5
60

10
49

.5
53

.4

8
30

5
25

20
53

.5
49

.9

9
30

5
25

30
36

.8
39

.9

a Sp
ec

if
ic

 a
ct

iv
ity

 is
 d

et
er

m
in

ed
 b

y 
di

vi
di

ng
 th

e 
pr

od
uc

t a
ct

iv
ity

 b
y 

th
e 

am
ou

nt
 o

f 
th

e 
pr

od
uc

t (
ba

se
d 

on
 th

e 
in

te
gr

at
io

n 
of

 U
V

-H
PL

C
 a

nd
 c

om
pa

re
 w

ith
 th

e 
U

V
 c

hr
om

at
og

ra
m

 o
f 

th
e 

st
an

da
rd

).

b R
C

Y
 =

 a
ct

iv
ity

 o
f 

th
e 

is
ol

at
ed

 p
ro

du
ct

/s
ta

rt
in

g 
18

F 
ac

tiv
ity

. A
ll 

yi
el

ds
 a

re
 d

ec
ay

 c
or

re
ct

ed
.

Chem Commun (Camb). Author manuscript; available in PMC 2017 June 03.


	Abstract
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Scheme 1
	Scheme 2
	Scheme 3
	Scheme 4
	Chart 1
	Table 1

