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Abstract

In this review article, emphasis is placed on the critical survey of available data concerning 

modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA 

following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, 

one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In 

addition, information is provided about the generation of secondary oxidation products of 8-

oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the 

decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively 

generated DNA damage that consist of single lesions, intra- and interstrand cross-links were 

unambiguously assigned and quantitatively detected on the basis of accurate measurements 

involving in most cases high performance liquid chromatography coupled to electrospray 

ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA 

lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is 

low, at best a few modifications per 106 normal bases. Application of accurate analytical 

measurement methods has also allowed the determination of repair kinetics of several well-defined 

lesions in cellular DNA that however concerns so far only a restricted number of cases.
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Introduction

Oxidatively generated damage to cellular DNA is ubiquitous, being associated with 

oxidative, metabolism through the initial generation of the low reactive superoxide anion 

radical (O2
•−), the product of one-electron reduction of oxygen during aerobic respiration 

[1]. Subsequently, O2
•− can be converted through enzymatic dismutation to hydrogen 

peroxide (H2O2) that, like its precursor, exhibits a very low reactivity toward biomolecules 

while it is involved in redox signaling. However, transition metals such as ferrous ions are 

able to reduce H2O2 according to the Fenton reaction giving rise to highly reactive hydroxyl 

radicals (•OH) that are implicated in most oxidative degradation pathways of cellular DNA 

under physiological may be exacerbated during inflammation and under various conditions. 

The formation of O2
•− pathological situations including arteriosclerosis, type 2 diabetes, 

cancer and neurodegenerative diseases [2–5]. This is often accompanied by the activation of 

NO-synthases that triggers the release of nitric oxide (•NO) another poorly reactive radical 

although it can induce the generation of a powerful oxidant peroxynitrite (ONOO−), a 

reactive nitrogen species (RNS), through the efficient combination of •NO and O2
•− [7]. The 

UVA component of solar radiation, a major environmental factor, is also able to damage 

DNA mostly through the formation of singlet oxygen (1O2), another reactive oxygen species 

(ROS) [8,9]. Ionizing radiation acting as both a generator of •OH and a strong one-electron 

oxidant has been considered as the most biologically relevant oxidizing agent of DNA for 

more than 20 years since mid-50’s [10–12]. Bystander effects that are mediated by the 

delayed generation of •OH and •NO have been shown to damage DNA in neighboring cells 

despite the fact that they are not directly hit with UV and ionizing radiations [13–16].

Earlier studies on the formation of oxidatively-induced damage to DNA have focused on 

pyrimidine bases mostly for analytical reasons. The discovery and tentative characterization 

of two isomers of 5(6)-hydroperoxy-6(5)-hydroxy-5,6-dihydrothymine in 1959 [17] 

provided a strong impetus toward mechanistic studies on oxidative degradation pathways of 

thymine, uracil and cytosine in the subsequent 20 years. Efforts were also made on the basis 

of gas chromatography-mass spectrometry measurements to gain information on the 

main •OH-mediated reactions of 2-deoxyribose moiety involved in the formation of DNA 

strand breaks [18,19]. The advent of high performance liquid chromatography (HPLC) a 

powerful separation tool largely replacing paper and thin-layer chromatography in the mid 

70’s allowed for the complete separation of complex mixtures of oxidized nucleosides 
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including thymidine hydroperoxides, polar degradation products of 2’-deoxyguanosine and 

modified short oligonucleotides. The development of other spectrometric methods included 

both 1-D and 2-D high field 1H, 13C and 15N NMR and soft ionization mass spectrometry 

methods such as electrospray ionization. These advances permitted the structural assignment 

of complex oxidation products arising from polar purine components and more relevant 

DNA substrates such as short oligonucleotides. In addition, efforts were made to delineate 

the reactivity of defined base or sugar radicals upon their mild generation usually by UV 

activation of a photolabile precursor at a specific site within a defined sequence DNA 

fragment [20,21]. Theoretical calculation approaches gradually emerged through the 

development of highly performant ab initio DFT based computational and simulation 

methods, all of which have provided relevant information about the reactivity and energy 

requirements of key intermediates, which is not accessible experimentally [22–25]. Based on 

detailed structural and mechanistic studies, one may propose comprehensive oxidative 

degradation pathways of the main nucleic acid components upon exposure to 1O2, •OH, one-

electron oxidants, halogenating agents and cellular dioxygenases; this information has been 

recently critically reviewed in exhaustive surveys. In parallel, there have been numerous 

attempts to search for the presence of some of the oxidation products in cells and tissues that 

were previously characterized in model studies. As will be briefly reviewed in a subsequent 

section, most of the early assays that were designed and applied for the analysis of certain 

products for decades suffer from major drawbacks, often leading to an overestimation of the 

levels of base oxidatively induced modifications of up to two or three orders of magnitude. 

Several of these inaccurate measurements are still being used to support putative correlations 

involving possible biomarkers of oxidatively induced DNA lesions and biological end-points 

related to aging, neurological disease and cancer risk. The main aim of the present review 

article is to provide an updated overview of the current situation concerning the accurate 

characterization and quantitative formation of mostly oxidatively induced base modifications 

in nuclear DNA of cells and tissues. Emphasis is placed on HPLC coupled to electrospray 

ionization-tandem mass spectrometry (ESI-MS/MS) as the gold standard of analysis because 

of its accuracy, versatility and reproducibility, taking into consideration that DNA extraction 

and subsequent work-up remain critical sources of spurious oxidation of inherent and 

overwhelmingly abundant DNA components present in the analysis..

Main reactive endogenous and exogenous cellular oxidizing species and 

agents

Oxidatively generated damage to DNA may occur directly or indirectly through the action of 

various oxidizing species that result from metabolic processes and/or exposure to diverse 

chemical and physical agents. A brief description of the main biologically relevant oxidants 

that are able to trigger DNA degradation pathways is provided below together with 

information on their mode of action and preferred targets.

Reactive oxygen species

Hydroxyl radicals (•OH) are endogenously produced in cells by Fenton type-driven reactions 

and they react efficiently with most molecules at the site of generation. This explains 

why •OH cannot be scavenged effectively, in contrast to numerous incorrect claims that 
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examine the addition of antioxidants to the cellular medium [26]. A convenient source 

of •OH used to investigate radical-mediated oxidation reactions of cellular DNA involves the 

indirect effect of ionizing radiation through the radiolysis of bound water molecules. It is 

well documented from extensive model studies that •OH reacts predominantly by adding to 

the 5,6-pyrimidine and 7,8-purine double bonds of nucleobases giving rise to radical 

intermediates to which O2 may subsequently add or act as an one-electron oxidizing agent 

[27]. A second prominent oxidation reaction for thymine and 5-methylcytosine consists 

of •OH-mediated hydrogen abstraction from the methyl group leading to the formation of 5-

(uracilyl) and 5-(cytosyl) methyl radicals, respectively [28,29]. Another efficient 

competitive •OH reaction when considering the nucleotide monomeric units is the 

abstraction of a hydrogen atom from the three methine carbons and the 5-hydroxymethyl 

group of 2-deoxyribose, all being reactive sites due to the presence of a vicinal O atom [27]. 

The formation of carbon centered radicals at C3 and C5 followed in aerated aqueous 

solutions by the generation of peroxyl radical intermediates lead to the quantitative 

formation of strand breaks. This is not the case for the abstraction reaction initiated at C1 

that gives rise to 2-deoxyribonolactone, also called an oxidized abasic site [19,30–32]. It 

may be noted that chemical reactions initiated by the formation of C4 radicals are more 

complex. One of the degradation products has been identified as 2-deoxypentos-4-ulose, 

another oxidized abasic site. In addition, a competitive oxidative pathway leads to the 

formation of DNA strand break bearing a 3’-phosphoglycolate residues with the 

concomitant release of malondialdehyde and non- modified nucleobase [31, 33,34]. 

However, large disparities have been observed in the quantitative formation of the various 

sugar oxidation products measured in isolated DNA using either an isotope-dilution gas 

chromatography-mass spectrometry assay [32] or a more recently designed HPLC-based 

method [34].

As already pointed out, H2O2 and O2
•− together with its conjugate acid, the related minor 

hydroperoxide radical (HO2
•), do not exhibit any significant reactivity toward nucleobase 

and 2-deoxyribose DNA components in aqueous solutions DNA. However, it has been 

shown that O2
•− but not O2 [35,36] is able to react with the highly oxidizing radicals G(-H)• 

that arise from deprotonation of the guanine radical cation by two competitive reactions 

[37]. Predominant addition of O2
•− to G(-H)• gives rise through a complex sequence of 

reactions leading to 2,2,4-triamino-5(2H)-oxazolone (Oz) [38] while relatively minor one-

electron reduction leads to restoration of the guanine base in a chemical repair process. 

Similar O2
•− addition reactions have also been observed for other highly oxidizing radicals 

that are derived from the one-electron oxidation of tyrosine and tryptophan, respectively 

[39,40].

Singlet oxygen (1O2) in the 1Δ state is another biologically relevant ROS that is mostly 

generated in cells by type II photosensitization mechanism through energy transfer from 

triplet excited molecules to molecular oxygen. One typical reaction involves endogenous 

photosensitizers, which upon excitation by the UVA component of solar radiation, lead to 

the predominant generation of 1O2 as the main source of cellular DNA oxidation. Evidence 

has been provided from extensive model studies that the recombination of peroxyl radicals 

of various biomolecules can lead to the release of 1O2 as the result of decomposition of 

transient tetroxides according to the concerted Russell mechanism [41]. However, no 
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evidence for the occurrence of such a mechanism has been found so far in cells. As a 

dienophile, 1O2 reacts preferentially with unsaturated compounds that possess electron rich 

double bonds. This is the case with guanine as being the exclusive nucleic acid component 

susceptible to react with 1O2 in aqueous solutions. Interestingly, synthetic naphthalene 

endoperoxides that are able to release pure 1O2 upon gentle warming, and that can be 

labeled with stable isotopes (i.e., 18O2), are available for mechanistic studies in both aqueous 

solution and cellular DNA [42,43].

Pyrimidine peroxyl radicals

In general, peroxyl radicals are weak oxidants and they tend to react very slowly with DNA. 

However, the situation is different for pyrimidine peroxyl radicals attached to 

oligonucleotides which, upon an initial radical reaction triggered by either •OH or one-

electron oxidants in aqueous solution, can induce additional damage as shown initially by 

the pioneering work of Box et al [43]. Evidence has been provided through detailed 

experimental and theoretical mechanistic studies that 5-(6)-hydroperoxy-5,6-

dihydropyrimidyl radicals are able to add to vicinal guanine bases in a sequence dependent 

manner with a strong preference toward purines located on the 5’-end [45–47]. The use of 

[18O]-labeled molecular oxygen showed that an 18O atom is transferred from the peroxyl 

group of thymine to the C8 of vicinal guanine giving rise to a tandem nucleobase lesion 

consisting of formylamine and 8-oxo-7,8-dihydroguanine (8-oxoGua) [46]. It was estimated 

from an extensive mechanistic study that about 50% of 8-oxo-7,8-dihydropurine bases, 

including predominantly 8-oxoGua and to a lesser extent 8-oxo-7,8-dihydroadenine (8-

oxoAde), are generated as part of tandem base lesions upon exposure of DNA to •OH in 

aerated aqueous solutions [48]. As an initial study addressing the repair of oxidatively 

generated tandem base lesions, the two sequence isomers of vicinal 8-oxoGua and 

formylamine clustered damage were partly refractory to enzymatic removal by common 

base excision repair (BER) enzymes: endonuclease III and formamidopyrimidine DNA N-

glycosylase [49]. Evidence was provided that 5-hydroperoxy-6-hydroxy-5,6-

dihydrothyminyl, one of the two main peroxyl radicals induced by one-electron oxidation of 

a pyrimidine base in a thymine doublet, is able to abstract a hydrogen atom from the methyl 

group of the vicinal nucleobase. This was found to give rise to tandem base lesions 

consisting of 5,6-dihydroxy-5,6-dihydrothymine (ThyGly) on one side and either 5-

formyluracil (5-FoUra) or 5-hydroxymethyluracil (5-HmUra) on the adjacent nucleobase 

[50]. Other examples of formation of oxidatively generated tandem lesions through the 

initial formation of defined peroxyl pyrimidine radicals in synthetic oligonucleotides using 

suitable photo-labile radical precursors are available. For example, evidence was provided 

that pyrimidine peroxyl radicals are also able to add to 3’ or 5’-contiguous thymine 

nucleobases, thus generating tandem base modifications [51,52]. As a competitive minor 

reaction, peroxyl pyrimidine radicals were shown to abstract a hydrogen atom from the 

anomeric proton of the adjacent nucleoside leading to the formation of 2-

deoxyribonolactone as part of a tandem sugar-nucleobase lesion. It was also demonstrated, 

in more recent model studies, that the peroxyl radical specifically generated in double 

stranded DNA fragments from appropriate photochemical precursor at C4 of a 2-

deoxyribose moiety is able to induce the formation of DSBs [53,54]. However, no reports 

have so far been reported on the formation of the above described oxidatively-induced 
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tandem lesions in cellular DNA. This may be at least partly explained by the lack of 

sufficient sensitivity using standard HPLC-ESI-MS/MS instruments.

One-electron oxidants

Ionizing radiation, through its direct interaction with DNA components in the solid state, 

was the first physical agent used to abstract an electron from purine nucleobases and 

generate the corresponding base radical cations [55,56]. However, a different strategy was 

applied in aqueous solutions to gain mechanistic insights into one-electron oxidation 

degradation pathways of nucleobases whose susceptibility to undergo ionization decreases in 

the following order guanine > adenine > thymine > cytosine as an inverse correlation with 

their reduction potential [57]. Several type I photosensitizers including 2-methyl-1,4-

naphthoquinone, riboflavin and benzophenone were selected for performing one-electron 

oxidation experiments [8,28]. This approach has allowed detailed mechanistic studies of the 

radical cations of purine and pyrimidine nucleobases in aqueous solution either as free 

components or when inserted into DNA. Another suitable photochemical technique to 

generate base radical cations consists of exposing DNA or its constituents to high intensity 

266 nm nanosecond laser pulses. Increase in the pulse intensity favors bi-photonic ionization 

of the bases at the expense of [2+2] photocycloaddition of pyrimidine nucleobases. 

Increasing interest is devoted to the carbonate anion radical (CO3
•−) as a biologically 

relevant one-electron oxidant that is likely efficiently produced during inflammation. 

Favorable coupling of O2
•− and •NO, emanating from the activation of NO-synthase gives 

rise to peroxynitrite that upon reaction with CO2 generates nitrosoperoxycarbonate, the 

precursor of CO3
•− and •NO2 [58,59]. Purine and pyrimidine radical cations, thereby 

generated by these different agents, are able to undergo two main competitive reactions 

including deprotonation and hydration. Interestingly, the pathways leading to stable products 

from one-electron oxidants of nucleobases in aerated aqueous solutions converge with those 

of •OH-induced decomposition. As a consequence, many of the products of the two 

pathways are identical although there are marked differences in the yield of unstable 

intermediates and the final distribution of products. However, a peculiar property of the 

guanine radical cations, in addition to their ability to undergo hydration [60], is their 

tendency to react with other nucleophiles. A likely nucleophile in chromatin involves histone 

abundant lysine residues bearing a primary amino group, that can give rise to DNA-protein 

crosslinks [61,62]. Alternatively, the N3 atom of vicinal intrastrand thymine and opposite 

cytosine can yield intra and interstrand crosslinks [63–65]. Here, we will only discuss GT 

intra-strand cross-links that have been characterized so far in cellular DNA upon exposure to 

high intensity UVC laser irradiation [66].

One electron oxidation of adenine generates the adenine radical cation, which rapidly 

undergoes deprotonation to the neutral N6-adeninyl radical [67]. One- and two-photon 

photolysis of DNA-A tracts with energies inferior to the ionization potential were recently 

shown to generate N6-centered radicals nearly quantitatively in low temperate glasses [68]. 

The reaction of hypochlorite with adenine and cytosine in DNA, RNA and polynucleotides 

also lead to N-centered radicals through the decomposition of intermediate chloramines 

[69]. The chemistry of N-centered radicals of 2’-deoxyadenosine (dA) was studied by 

exposure of the corresponding photolabile phenylhydrazone derivatives to near-UV light 
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[70]. The major reactions of the nucleoside involved H-atom abstraction to regenerate dA, 

deamination to give 2’-deoxyinosine, and the formation of dA-dA dimers as determined by 

mass spectrometry analyses. Mason and co-workers [71] have developed an immune spin-

trapping technique to detect DNA radicals as DMPO-DNA nitrone adducts by electron spin 

resonance (ESR). Using this method, they identified the same N6-adduct of adenine as above 

by ESR and MS analyses upon exposure of purified DNA and cellular DNA to CuCl2-H2O2 

[72]. The characterization in cellular DNA of one-electron oxidation products of adenine 

with the exception however of 8-oxoAde and 4,6-diamino-5-formamidopyrimidine 

(FapyAde) awaits further experiments.

Peroxidases

Several mammalian heme peroxidases including myeloperoxidase (MPO), lactoperoxidase 

(LPO) and eosinophil peroxidase (EPO) are able to trigger the formation of hypohalous acid 

in inflammatory cells through the H2O2-mediated oxidation of related halides and pseudo 

halides including thiocyanate[73–76]. MPO-mediated oxidation reactions released from 

activated leukocytes catalyze the formation of hypochlorous acid (pKa = 7.46) in 

equilibrium with hypochlorite (OCl−), andare very efficient to kill invading pathogens [77]. 

Evidence has been provided that both HOCl and hypobromous acid (HOBr) are efficient 

halogenating agents of cytosine, adenine and guanine in model compounds and isolated 

DNA and RNA [78–80]. N-Chloramines that may be generated by the reaction of HOCl 

with the amino groups of amino are also able to chlorinate nucleobases albeit with a lower 

efficiency than HOCl [81].

Measurement of oxidatively generated damage in cellular DNA

Much effort has been made during the last five decades to develop assays aimed at 

monitoring the formation of oxidatively in cellular DNA following. Early attempts at the 

beginning of the 70’s focused on the measurement of radiation-induced 5,6-dihydroxy-5,6-

dihydrothymine (ThyGly) also called “thymine glycol”. For this purpose cellular DNA was 

pre-labeled with [3H]- or [14C]-thymidine before being subjected to gamma or X-irradiation. 

The formation of ThyGly was assessed indirectly as either 2-methylglycerol or acetol that 

arises from borohydride reduction [82] and alkali degradation treatment, respectively [83]. 

Thus, various attempts were made to monitor the formation and repair of ThyGly in 

bacterial and mammalian cells exposed to ionizing radiation [82,84,85]. These authors 

reported that ThyGly was generated in cellular DNA upon exposure to either UV radiation 

[83,85] or hematoporphyrin photosensitization [86]; however, these conditions do not trigger 

thymine oxidation. It was then confirmed that both assays suffered from major flaws. In 

particular, the occurrence of self-radiolysis most likely led to an overestimation of ThyGly 

by three to four orders of magnitude, thus explaining the previously mentioned 

inconsistencies [87]. Since then, numerous chromatographic based assays together with 

more global methods including immunological approaches and enzymatic assays were 

developed. More recently with the discovery of 5-hydroxymethylcytosine (5-HmCyt) as a 

relevant epigenetic mark, numerous efforts have been devoted to the design of next-

generation sequencing and array-based hybridization methods capable of mapping this 

modified base and its oxidation products at the nucleoside level in the genome [88–90]. 
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Detailed information on these different methods is available in several recently published 

comprehensive review articles [91–94]. In the present contribution, a brief summary of the 

respective strengths and limitations of the main methods that have been recently or are 

currently utilized is provided.

Immunoassays

Many attempts have been made over the years to develop immunological based methods 

including among others, the enzyme linked immunosorbent assay (ELISA) and the 

radioimmunoassay (RIA) for measuring oxidatively generated base damage in DNA. Initial 

efforts focused on the preparation of monoclonal and polyclonal antibodies directed against 

ThyGly [95–96]. Subsequently, interest was devoted to design immunoassays for detecting 

8-oxoGua [97–99] after discovery of this guanine oxidation product [100]. As a common 

observation, the main limitation of the designed ELISA and radioimmunoassays (RIA) is the 

lack of specificity due to the weak antigenicity of single oxidized bases in DNA that show a 

notable cross-reactivity with the overwhelming natural base precursors within the 10−4 to 

10−5 range. This is insufficient to detect low physiological levels of ThyGly, 8-oxoGua as 

well as most other oxidized bases in cellular DNA on the order of a few modifications per 

106 normal nucleosides. This has also been demonstrated for a monoclonal antibody directed 

against 5’,8-cyclo-2’-deoxyadenosine (cdA), which is a bulkier tandem base-sugar 

modification [101]. In contrast, immunological detection of 5-HmCyt enzymatically 

generated in embryonic and neuronal cells is routinely achieved with 0.1 % of this 

modification with respect to cytosine [102–103]. Similarly, immunological detection of 5-

formylcytosine (5-FoCyt) and 5-carboxycytosine (5-CaCyt) generated through iterative 

oxidation is not accurate because the modifications are present at least 100-fold less than 5-

HmCyt. Antibodies against 8-oxoGua are still widely used for sensitive histochemical 

immunofluorescence detection in human and animal tissues with various clinical 

applications and basic research involving DNA repair [104–109]. However the specificity of 

these antibodies remains to be established under in vivo conditions. It may also be pointed 

out that the measurement of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) in human 

fluids including urine, plasma and saliva has been achieved by competitive ELISA using 

N45.1 monoclonal antibody [110,111]. It was recently confirmed that the immunological 

detection of 8-oxodG in urine is less quantitative than that achieved by HPLC-ESI-MS/MS 

due to the presence of interfering contaminants such as D-glucose and D-galactose 

[112,113].

Enzymatic assays

Enzymatic based methods have become available with the isolation, characterization and 

cloning of DNA repair enzymes with emphasis on DNA N-glycosylases that remove 

oxidatively generated nucleobase lesions. The aim of enzymatic approaches, which include 

the alkaline single cell gel electrophoresis assay, also called “comet assay” [114–117], the 

alkaline elution technique [118,119] and the alkaline unwinding assay [120] is to convert 

oxidized nucleobases in a more or less specific way into strand breaks through the transient 

formation of alkali-sensitive abasic sites. The quantitation of the strand breaks generated 

during the analytical step is achieved in a very sensitive manner under alkaline conditions 

using fluorescence emission measurement after appropriate dye staining. The assays in their 
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initial version allows for the quantitative detection of direct DNA nicks and so-called alkali-

labile lesions including normal and oxidized abasic sites, ThyGly, 5-foUra, Oz), FapyAde 

and to a lesser extent 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) [121]. 

Additional strand breaks can be induced upon incubation of released oxidized DNA with the 

BER enzymes. Thus, bacterial formamidopyrimidine DNA N-glycosylase (Fpg) is used to 

recognize and indirectly measure 8-oxoGua, FapyGua and FapyAde [114,122]. The use of 

human 8-oxoguanine glycosylase 1 (hOGG1) made the detection of oxidized purine bases 

more specific since only 8-oxoGua and FapyGua are substrates for this enzyme [123]. In a 

complementary way, endonuclease III (endo III) is able to cleave the N-glycosidic bond of 

several oxidized pyrimidine nucleobases including ThyGly and 5-methyl-5-

hydroxyhydantoin (HydThy) and related common oxidation products of cytosine such as 

5,6-dihydroxy-5,6-dihydrouracil (UraGly) and related cytosine oxidation products. Usually, 

external calibration of the assays whose application requires only a small number of cells is 

carried out in parallel using ionizing radiation as a standard source of oxidatively generated 

damage to DNA assuming that the exposure of cellular DNA to 1 Gy gives rise to 3 single 

strand breaks and alkali-labile sites per 106 nucleosides [124]. One of the main advantages 

of these enzymatic assays with respect to HPLC-ESI-MS/MS assays is their high sensitivity, 

which benefits from the almost lack of adventitious oxidation of DNA samples during DNA 

release and subsequent analysis. This largely explains why the steady-state levels of 8-

oxoGua in human cells obtained by DNA repair glycosylases are about 7 to 10 lower than 

those measured by either HPLC-ECD or HPLC-ESI-MS/MS [125–127]. It was also shown 

that Fpg-sensitive sites accumulate with age in the DNA of primary embryo fibroblast 

cultures [126] and hepatocytes from ogg1−/− nul mice [128]. Another relevant application 

dealt with the measurement of radiation-induced formation of Fpg- and endo III-sensitive 

sites in the DNA of human monocytes showing a linear increase within the dose range 0.1 – 

0.5 Gy [129]. Enzymatic detection assays have several shortcomings that may slightly affect 

their general suitability. One problem concerns the lack of specificity of repair enzymes 

since quantitative information is provided on classes of damage and not on individual 

lesions. There are also uncertainties about the efficiency of the release of enzyme-sensitive 

sites since the ability to repair oxidized bases as part of tandem lesions is not as efficient as 

that of isolated oxidized bases [48,49]. In addition to applications already mentioned, the 

measurement of Fpg and endo III-sensitive sites has enlightened detailed mechanistic studies 

on oxidatively induced damage to cellular by UVA and visible light in which endogenous 

photosensitizers are implicated [8,9,115,130,131]. Increasing interest has also been devoted 

to human biomonitoring of genotoxic effects of environmental agents in particular 

nanomaterials [132] using the modified comet assay.

Gas chromatography-mass spectrometry (GC-MS)

Capillary gas chromatography coupled to mass spectrometry in the selective ion monitoring 

mode was introduced in the mid 80’s for measuring the formation of radiation-induced 

modifications of nucleobases including 12 oxidation products in DNA and model 

compounds. This method involves the strong acidic hydrolysis of DNA with concentrated 

formic acid (88%) at 150°C for 30 to 40 min in order to liberate DNA modifications as a 

free base [133].
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Subsequently, the overwhelming normal nucleobases and related minor oxidation products 

are converted to trimethylsilylated derivatives by heating at 140°C for 30 min before GC-MS 

analysis. A different protocol at least in the initial step [134] was developed to monitor the 

formation of 5’,8-cyclo-2’-deoxyguanosine (cdG) in isolated [135] and cellular DNA [136]. 

This involved the enzymatic release of the purine 5’,8-cyclonucleosides using a cocktail of 

exonucleases and exonucleases. The acid based protocol was applied to the measurement of 

oxidatively generated base damage in cellular DNA a few years later [137]. Rapidly, major 

discrepancies up to 2 orders of magnitude became apparent between the yield of 8-oxoGua 

measured by GC-MS and HPLC coupled to electrochemical detection (ECD) [138], a 

method that is discussed in the next section. Several groups showed that the derivatization 

step appeared to be a major source of artefactual oxidation giving rise to the usual •OH-

mediated oxidation products with a frequency of close to 10−4 (for a review article, see 

Cadet et al 1997 [139]. Another major drawback of acid hydrolysis of DNA is that it leads to 

the degradation of many oxidatively generated bases including FapyGua and FapyAde as it 

was unambiguously demonstrated [140]. Therefore, a mild acidic treatment involving 

hydrogen fluoride stabilized in pyridine has designed and when combined with a HPLC pre-

purification step was shown to render quantitative GC-MS determination of both FapyAde 

and FapyGua in cellular DNA. An alternative version of the GC-MS assay allows one to 

overcome these two major shortcomings [141]. This version involves an alternative step to 

acid hydrolysis that is the enzymatic release of oxidized nucleobases by DNA repair N-

glycosylases. Although this assay is very promising, there have only been a few recent 

applications [142,143]. Unfortunately, the analyses of DNA oxidatively modified lesions 

until mid-2000s’ were dominated by the method using acid hydrolysis and GC-MS analyses 

giving way to a flood of unreliably high values and misleading correlations between the 

level of oxidized nucleobases and biological end-points, such cancer risk, aging and repair 

[144–147].

It is surprising that GC-MS analysis despite its well-documented shortcomings has received 

recent notice with questionable frequencies of 48 8-oxoG and 35 FapyG per 106 bases in the 

DNA of wild type strains of Caenorhabditis elegans [148].

High performance liquid chromatography-electrochemical detection (HPLC-ECD)

An assay for the sensitive detection of 8-oxodG, an oxidation product of 2’-deoxyguanosine 

[100] was developed using HPLC coupled to electrochemical detection (HPLC-ECD) 

operating in the oxidative mode [149]. This analytical method provided a strong impetus to 

the analysis of oxidatively induced lesions in cellular DNA. Very rapidly, this method 

became suitable for the detection of 8-oxodG in cellular DNA upon exposure to oxidizing 

agents [150,151] and in kidney DNA of rats treated with potassium bromate [152] a well-

documented one-electron oxidant agent once metabolized. These studies together with 

numerous HPLC-ECD measurements during the following 15 years have fully established 8-

oxodG as a relevant biomarker of DNA. This received further support from the comparative 

evaluation of the available methods for measuring 8-oxodG by the European Standard 

Committee on Oxidative DNA Damage (ESCODD), a consortium of 25 laboratories 

[127,153]. ESCODD concluded that both HPLC-ECD and HPLC-MS/MS unlike GC-MS in 

its basic version constitute robust methods. However, and this will be discussed in the next 
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section, DNA extraction and the subsequent work-up before HPLC measurements represent 

critical steps in which adventitious oxidative processes can occur with natural and relatively 

highly abundant nucleobases. In this respect, attempts were made to optimize the extraction 

step using the chaotropic method (i.e., with NaI as a salting out agent) and to minimize 

artefactual contribution [154]. It may be added that other electrochemically active modified 

nucleobases and nucleosides including 5-hydroxyuracil (5-OHUra), 5-hydroxycytosine (5-

OHCyt), 8-oxoAde and FapyGua can also be detected by HPLC-ECD using higher 

oxidation potentials [155–157].

High performance liquid chromatography - mass spectrometry (HPLC-MS)

Early methods using one quadrupole (HPLC-MS) for the measurement of several oxidized 

2’-deoxyribonucleosides usually show a limit of detection in the picomol range. This is 

clearly insufficient to detect oxidatively generated damage to cellular DNA under conditions 

where 30 to 50 μg of DNA are available and where the frequency of individual modifications 

reaches a few lesions per 106 nucleosides, a level that may only concern the most important 

modifications such as 8-oxoGua and ThyGly. Accordingly, it is rather surprising that 

attempts were made to monitor the formation of several radiation-induced oxidized 

nucleosides in cellular DNA through HPLC-MS measurements. The levels of reported 8-

oxoGua and 8-oxoAde obtained by single quadrupole HPLC-MS, however, were between 

50- and 100-fold greater [158,159] than those determined by HPLC-MS/MS [160,161]. 

Similarly, relatively high values for the 5R and 5S diastereomers of minor 5’,8-cyclo-2’-

deoxyribonucleosides were reported on the basis of HPLC-MS measurements[162]. Other 

questionable results still obtained by HPLC-MS analysis suggested that Sp, a secondary 

oxidation of 8-oxoGua, was generated preferentially at the expense of its precursor in 

Escherichia (E.) coli strains exposed to one-electron oxidants [163]. The apparent formation 

of elevated values of 8-oxodG, 8-oxodA and 5’,8-cyclodA are explained by the erroneous 

detection provided by the use of only one quadrupole. Under these conditions, the possibility 

of detecting independent fragments arising from electrospray ionization of trace levels of 

impurities may give misleading and false identification of the targeted lesions in the 

selective ion monitoring (SIM) mode. So far, the only oxidized 2’-deoxyribonucleoside that 

has been accurately detected by HPLC-MS is 5-(hydroxymethyl)-2’-deoxycytidine (5-

HmdC), the ten-eleven translocation (TET) mediated oxidation product of 5-methyl-2’-

deoxycytidine (5-mdC) that accumulates in cellular DNA to the level of a few lesions per 

103 nucleosides in embryonic stem cells (ESC) and brain tissues as detected by HPLC-MS 

[164,165]. However, attempts to detect 5-formyl-2’-deoxycytidine (5-FodC), the iterative 

enzymatic oxidation product that is present at the level of about one tenth to one hundred 

lower yields are problematic. This can be successfully achieved through by HPLC-ESI-

MS/MS measurement [166] as is also the case for 5-carboxy-2’-deoxycytidine (5-CadC) 

[167] the more extensive oxidation product of 5-FodU.

High performance liquid chromatography – tandem mass spectrometry (HPLC-MS/MS)

HPLC-ESI-MS/MS and the sensitive HPLC-MS3 version are recognized as gold standard 

methods for monitoring the formation of modified nucleosides in biological samples, 

including nuclear DNA and biological fluids such as urine, plasma and saliva [91–93,168–

172].The success of this method lies in the versatility and sensitivity of electrospray 
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ionization that allows the efficient detection of a large number of oxidized DNA components 

with an optimum sensitivity that, on the average, extends into the femtomole range for 

modified 2’-deoxyribonucleosides using accurate multiple reaction monitoring mode 

[91,92]. Furthermore, the availability of synthetic [13C]- and [15N]-labeled internal standards 

allows for the use of isotope dilution as a means to correct for any losses during DNA 

digestion and changes in ionization efficiency during analysis [173–175]. Numerous 

successful HPLC-ESI-MS/MS measurements have been made to monitor the formation of 

several single and tandem oxidatively generated damage in cellular DNA following the 

initial detection of 8-oxodG in nuclear DNA and urine [176,177]. Although the method is 

highly accurate, there remains one major difficulty that restricts the use of HPLC-ESI-

MS/MS. As already mentioned for other chromatographic methods, this is due to the 

unavoidable spurious oxidation of normal DNA bases (likely through the involvement of 

Fenton type reactions during DNA extraction and subsequent work-up) in particular during 

enzymatic digestion and release of individual DNA components. It should be noted that 

DNA is an excellent metal chelator, and thus, will bind potentially redox active metal ions 

during DNA extraction and release them during DNA digestion. Therefore, special attention 

was given during the ESCODD trial and subsequent studies [178–180] to develop methods 

to minimize the occurrence of artefactual oxidation. So far, this was partly achieved by the 

addition of transition metal chelators and anti-oxidants to the DNA sample extracts and 

digests prior to HPLC-MS/MS analysis. One major critical parameter that requires special 

attention is the amount of DNA used for the measurements in view of results indicating an 

inverse correlation between the level of artefactual oxidation and the quantity of extracted 

DNA [181]. Therefore, a minimum of 30 μg of DNA is required to minimize the 

contribution of spurious oxidation to levels that are lower than physiologically relevant 

values without at this stage being able to totally prevent artifactual autooxidation. This 

explains the difference of about 7 to 10 fold in the levels of 8-oxodGuo measured by 

chromatographic methods and the frequency of Fpg-sensitive site determined by either the 

comet assay or the alkaline elution technique, even if in the latter cases, there is a risk of 

underestimation. Such artefactual oxidation is the main reason why HPLC-MS/MS 

measurements are only useful for DNA samples in which the level of damage has been 

significantly increased by several fold, with respect to the steady-state levels, by exposure to 

either endogenous or exogenous oxidants as further illustrated in the following sections. It is 

also clear that HPLC-MS/MS is not an appropriate method to monitor the formation of 

oxidatively generated damage to DNA in mitochondrial DNA since there is a high risk of 

artifactual oxidation due to the relatively low amount of DNA available, usually in the low 

μg range with reasonable quantities of cell and tissue samples. The measurement of 8-oxoG 

and 8-oxodGuo, which is free of methodological artefactual oxidation, in human and animal 

fluids by HPLC-MS/MS will not be discussed in detail in this review (for recent reviews, see 

[111,171,172]. The origin of released 8-oxodG in urine still remains unclear particularly 

with purines since their metabolism involves enzymatic oxidation [182]. As a final remark, 

one should note the lack of accurate data on the formation of oxidatively induced damage to 

2-deoxyribose in cellular DNA. So far only one attempt has been made to measure 2-

deoxyribonolactone and 2-deoxyribonucleoside 5’-aldehyde in the DNA of TK6 human 

lymphoblastoid cells upon exposure to gamma rays using a GC-MS method with isotopic 

dilution [32]. However, the high yield of the latter oxidized 2’-deoxyribonucleoside, i. e. 
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0.22 lesions per 106 2’-deoxyribonucleosides and per Gy, or about 10-fold higher than that 

of 8-oxodG, suggests that the yield of this damage may be overestimated.

Single base modifications

Singlet oxygen

The search of 1O2 oxidation products in cellular DNA has been greatly facilitated by 

extensive and detailed mechanistic studies [8,183,184] using a clean source of 18[1O2] 

through the thermolysis of DHPN18O2 [42,185]. Abundant information is available on 

the 1O2-mediated oxidation reactions of the guanine moiety of isolated 2’-

deoxyribonucleoside and short oligonucleotides. This reaction is rationalized in terms of 

initial Diels-Alder [4+2] cycloaddition across the 4- and 8-carbons of the imidazole ring 

[186] (Fig 1). A relatively minor pathway involves rearrangement of guanine endoperoxides 

1 that transform into 8-hydroperoxyguanine 2, both which are relatively unstable [187,188]. 

Reduction of the 8-hydroperoxide group is likely to give rise to 8-hydroxyguanine [189–

193] that is in dynamic equilibrium with the predominant 8-oxoGua tautomer in solution 

[121,186]. The reactivity of 1O2 towards guanine bases in double stranded DNA has been 

shown to be much lower than that for either single stranded DNA or isolated 2’-

deoxyguanosine [193,194]. In addition, a major change was observed in the product 

distribution of 1O2 guanine oxidation products in isolated calf thymus DNA upon either 

exposure to type II photosensitizer [195–197] or incubation with DHPNO2 [183,198]. The 

reaction with DNA appears to be far simpler than that observed for the isolated nucleoside. 

Thus, 8-oxoGua is predominantly product generated in DNA, whereas in sharp contrast, 

spiroiminodihydantoin (Sp) is predominantly formed at the expense of 8-oxoGua upon 

oxidation of the nucleoside [199]. This can be rationalized in terms of steric factors that 

prevent formation of the quinonoid intermediate and its subsequent hydration. It may be 

added that no evidence for the formation of FapyGua, a typical one-electron oxidation 

degradation product of guanine was observed [200]; thus, this excludes any significant 

contribution of charge transfer reaction as proposed earlier [201]. Incubation of human 

monocytes cells with [18O]-labeled DHPNO2 that has been shown to accumulate 

intracellularly led to the generation of [18O]-labeled 8-oxodGuo in genomic DNA [200]. 

Levels as high as 2 lesions of 8-oxodG per 106 2’-deoxyribonucleosides, which represents 

about 12,000 lesions per nuclear DNA, were accurately quantified by HPLC-ESI-MS/MS 

using the multiple reaction monitoring (MRM) mode with [M+5] labeled 8-oxodG as the 

internal standard [91,173]. This clearly established the ability of 1O2 to react with the 

guanine base in cellular DNA producing 8-oxodG according to the previously characterized 

mechanism involving initial [4+2] cycloaddition of 1O2 across the 4 and 8 carbons of the 

purine ring. The possible formation of 8-oxoGua through radical reactions once DHPNO2 

penetrates into cells was ruled out. Further support for the specific guanine oxidation by 1O2 

in cells incubated with DHPNO2 was provided by the detection of nicks induced in extracted 

DNA by bacterial Fpg [202], a DNA repair enzyme that is able to cleave the N-glycosidic 

bond of 8-oxoGua residues. On the other hand, there was no significant increase in the levels 

of strand breaks induced upon incubation of DNA with endonuclease III that essentially 

recognizes oxidized pyrimidine bases. It was also shown that the steady-state level of strand 

breaks and alkali-labile sites did not increase upon incubation of the cells with DHPNO2. It 
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should be remembered that 1O2 is mostly at the origin of nuclear 8-oxoGua measured in 

numerous types of cells [8,203] and human skin explants [204–206] exposed to UVA 

radiation as the result of a predominant type II photosensitization mechanism [205]. With 

respect to monocytes exposed to UVA, the relative contribution of 1O2 compared to •OH in 

the formation of 8-oxoGua was about 4:1 [115,207]. This ratio is likely lower in the DNA of 

UVA-irradiated melanocytes [208] due to the ability for melanin to photosensitize the 

generation of O2
•−, a potential precursor of •OH.

A relevant topic has recently emerged with assessment of the photosensitizing ability of 6-

thioguanine (6-TGua) and related analogues including azathioprine and 6-mercaptopurine, 

which are well documented anticancer, immunosuppressant and anti-inflammatory agents 

that are efficiently incorporated into DNA [209–211]. It was reported that UVA irradiation 

of GM5399 primary human fibroblasts pre-incubated with azathioprine led to the induction 

of 8-oxodG in nuclear DNA as the result of photosensitized generation of 1O2 [212]. It was 

recently estimated from a detailed photophysical study that the quantum yield of 1O2 

generation through energy transfer from triplet excited 6-TGua to 3O2 was 24% [213], an 

approximate two-fold lower value than previously estimated [214]. UVA irradiation of 6-

TGua in double-stranded DNA predominantly gives rise to guanine-6-sulfinate [215] as the 

result of efficient 1O2 oxidation through the intermediacy of a peroxy precursor, as inferred 

from a theoretical study [216]². It would be of interest to search for the formation of both 8-

oxoGua and guanine-6-sufinated in the DNA of cells pre-incubated with 6-TGua prior to 

UVA irradiation.

Hydroxyl radical

Relevant information has been gained concerning the formation of the major •OH-mediated 

oxidation products of the pyrimidine bases including thymine, cytosine and 5-

methylcytosine in cellular DNA. This was achieved on the basis of HPLC-ESI-MS/MS 

measurements of modified 2’-deoxyribonucleosides and/or nucleobases that were 

enzymatically or chemically released from nuclear DNA from either human monocytes 

[160,161,173] or Fischer F98 glioma cells [217] subsequent to exposure to gamma rays. As 

depicted in Figure 2 the main •OH-mediated oxidation products of thymine (Thy) involved 

the cis and trans isomers of ThyGly, 5-hydroxymethylhydantoin (HydThy), 5-

hydroxymethyluracil (5-HmUra) and 5-formyluracil (5-FoUra) as previously characterized 

in model studies including isolated DNA [28,65,218]. The formation of ThyGly is 

rationalized in terms of the initial addition of •OH at C5 and to a lesser extent at C6 giving 

rise to transient 5 and 9 [27,219]. In a subsequent step, fast O2 addition leads to 5,6-

hydroxyhydroperoxides through related peroxyl intermediates. The formation of ThyGly is 

explained by reduction of the peroxide function whereas competitive rearrangement of the 

pyrimidine ring, through opening of the 5,6-bond and subsequent recyclization, leads to 

HydThy. The methyl group of Thy is also a major target for •OH reaction such that it is 

subject to hydrogen abstraction thereby generating the 5-(uracilyl)methyl radical (6). 

Reduction and dehydration of transient 5-hydroperoxymethyluracil formed after O2 addition 

to 6 gives rise to 5-HmUra and 5-FoUra, respectively. The oxidation reactions of cytosine 

(Cyt) triggered by •OH present similarities and differences with respect to those identified 

for Thy (Fig 3) [29]. The 5,6-double bond of Cyt is the exclusive site of reaction with •OH 
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leading to the formation of about 90% of 5-hydroxy-5,6-dihydrocytosyl (9) and 10% of 6-

hydroxy-5,6-dihydrocytos-6-yl radical (11). Relatively unstable 5,6-hydroxyhydroperoxides 

are expected to be generated after addition of O2 to 9 and 11. As observed for Thy, reduction 

of the Cyt hydroperoxides leads to the formation of 5,6-dihydroxy-5,6-dihydrocytosine 

products that in contrast to ThyGly are unstable [220,221]. Dehydration gives rise to 5-

hydroxycytosine (5-OHCyt) whereas competitive deamination generates 5,6-dihydroxy-5,6-

dihydrouracil (UraGly). In addition, opening of the 5,6-bond of Cyt 5,6-

hydroxyhydroperoxides followed by hydrolysis and recyclization of the transient ureid likely 

comprise the rearrangement pathways involved in the formation of 5-hydroxyhydantoin 

(HydUra). Another peculiar feature of •OH-mediated oxidation reactions of Cyt deals with 

the intramolecular cyclization of 6-hydroperoxy-5-hydroxyl-5,6-dihydrocytosine [222] that, 

after opening of the endoperoxide and subsequent rearrangement, gives rise to 1-

carbamoyl-4,5-dihydroxy-2-oxoimidazolidine (ImidCyt) (Fig 3) [29,223]. Related 5-mCyt 

oxidation products including 5,6-dihydroxy-5,6-dihydro-5-methylcytosine and 1-

carbamoyl-4,5-dihydroxy-5-methyl-2-oxoimidazolidine have been identified in isolated 

DNA exposed to OH [217]. However, the latter modifications have not been accurately 

detected so far by HPLC-ESI-MS/MS in cellular DNA exposed to ionizing radiation likely 

due to the relatively low yields of formation. In contrast, 5-FoCyt and 5-HmCyt, which arise 

from the formation of 5-hydroperoxymethylcytosine (5-HypmCyt) following O2 addition to 

initially generated 5-(cytosyl)methyl radicals (12)(Fig 4), were detected in a relative ratio of 

10 to 1 respectively.

As already mentioned a significant proportion of •OH-mediated degradation products of 

guanine in cellular DNA are expected to result from reactions induced by pyrimidine 

peroxyl radicals either by addition to the vicinal bases or one-electron oxidation. 

However, •OH reacts efficiently with guanine as it does with other nucleobases in cellular 

DNA. A relatively minor fraction involves the addition of •OH to the C8 position of the 

purine moiety (close to 17% for free 2’-deoxyguanosine) giving rise to the reducing 8-

hydroxy-7,8-dihydroguanyl radical 2 (Fig. 1) [219,224]. In contrast to what is observed with 

pyrimidine radicals, molecular oxygen is not able to add to intermediate 2 which rather is 

subject to one-electron oxidation by O2 leading to the formation of 8-oxoGua. Interestingly, 

2 tends to undergo competitive one-electron reduction in cellular DNA, likely by thiol 

compounds, thereby generating FapyGua [224] with a yield that is about two-fold higher 

than that of 8-oxoGua [160]. Similar degradation pathways are involved in the •OH-induced 

formation of 8-oxoAde and FapyAde (Fig 5) that are generated with about a 10-fold lower 

efficiency than that seen for related guanine degradation products. The lower efficiency of 

adenine degradation may largely be rationalized by the lack of a significant contribution of 

oxidation reactions triggered by pyrimidine peroxyl radicals that predominantly target 

guanine in double stranded DNA.

Oz, another •OH-mediated or one-electron oxidation productof guanine [38] that is formed 

by the addition of superoxide anion radical to highly oxidizing G(-H)• has been detected in 

liver DNA of diabetic rats [225]. The yield of Oz was found to be 10-fold lower than that of 

8-oxoGua. It has been recently reported that 5-carboxamide-5-formamido-2-iminohydantoin 
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is a major •OH-mediated oxidation product of Gua in free nucleoside and oligonucleotides 

[226].

This should stimulate further studies aimed at searching for the formation of this 

rearrangement product of the purine ring of Gua in cellular DNA.

Attempts to search for the formation of 2-hydroxy-2’-deoxyadenosine, one of the main 

radiation-induced degradation products of the adenine moiety of cellular DNA [227] 

tentatively measured by GC-MS, however failed. Therefore, the relevance of 2-hydroxy-2’-

deoxyadenosine as an adenine oxidation product is questionable since it was not detected 

using accurate HPLC-MS/MS in the DNA of THP1 cells exposed to γ –rays at doses up to 

200 Gy [228].

One-electron oxidation

Overwhelming 8-oxoGua and several oxidized bases including ThyGly, 5-HmUra, 5-FoUra 

and 5-OHCyt have been detected by HPLC-ESI-MS/MS as the corresponding 2’-

deoxyribonucleosides in cellular DNA upon ionization by UVC nanosecond high intensity 

laser pulses [66,161]. The formation of these base oxidation products may be rationalized in 

terms of the initial generation of purine and pyrimidine radical cations [28,186] followed by 

subsequent hydration and/or deprotonation reactions. Hydration reactions are highly specific 

giving rise to the 8-hydroxy-7,8-dihydroguanyl radical (3) from 4 (Fig 1) and the 6-

hydroxy-5,6-dihydropyrimidin-5-yl radical (8) from 7 (Fig 2). In addition, competitive 

deprotonation of the thymine radical cation 7 leads to 6 [229,230] a radical which similar to 

1, 7 and 13 are generated by •OH. In addition, 8-oxoAde and FapyAde have been also 

measured in about 10-fold lower yield compared to related guanine degradation products. 

Their formation is rationalized in terms of initial formation of the radical cation 14 that is 

converted into the 8-hydroxy-7,8-dihydroadenyl radical 13 followed by either one-electron 

oxidation into 8-oxoAde or one-electron reduction into FapyAde (Fig 5). Therefore, it is not 

surprising that the five oxidized bases resulting from the fate of radicals 3, 5, 6, 8 and 13 
under aerobic conditions have also been identified as •OH-induced degradation products. 

However, there is a strong bias in the distribution of the oxidation products induced by 

ionization with respect to •OH. It was found that •OH-induced 8-oxoGua was formed with 

efficiency similar or even lower to that of 5-HmUra, 5-FoUra or 5-OHCyt. In contrast, 8-

oxoGua generated by photoionization exhibits at least a 10-fold higher yield than any of the 

other four base oxidation products. The predominant formation of 8-oxoGua cannot be 

accounted for by the preferential ionization of guanine since photophysical studies showed 

that the four main base radical cations were induced with a similar efficiency upon laser 

irradiation. Therefore, it is reasonable to propose that subsequent to ionization of the bases, a 

redistribution of the radical cations thus produced takes place along the oligonucleotide 

chains, through long- and short-charge transfer mechanisms, as proposed for isolated DNA 

[231–233]. Guanine nucleobase, which exhibits the lowest ionization potential among DNA 

components, is the preferential sink for positive holes before they are converted into final 

degradation products.
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Secondary oxidation reactions of 8-oxo-7,8-dihydroguanine

Several oxidized nucleobases including 8-oxoGua, 5-OHCyt and 5-hydroxyuracil, that show 

a much lower oxidation potential than normal bases, are susceptible to further degradation 

by one-electron oxidants including type I photosensitizers, CO3
•− and organic radicals as 

demonstrated in model studies [234–243]. Major attention has been given to 8-oxoGua 

because it is about 100-fold more prone to one-electron oxidation and possesses a lower 

oxidation potential by about 0.5 eV compared to the parent molecule [234,235]. In neutral 

solution, spiroiminodihydantoin (Sp) was the main final degradation product of 8-oxoGua 

[236–238,241,242] which arises from an 1,2-acyl shift rearrangement of transient 5-

hydroxy-7,8-dihydro-8-oxoguanine [244] initially proposed as a stable compound [245].The 

formation of guanidinohydantoin from the same intermediate was favored at acidic pH 

[246]. Interestingly, these studies have provided a strong stimulus to delineate the 

biochemical features of Sp, including the mutagenic potential [247,248] and associated 

repair by glycosylases [249–253]. The absolute configuration of 4R and 4S diastereomers of 

Sp 2’-deoxyribonucleosides was recently assigned [254,255]. However, only a few attempts 

have been made to search for the occurrence of secondary oxidation of 8-oxoGua in cellular 

DNA. In an initial study, the steady state level of Sp of 200 lesions per 106 Gua was reported 

to be at least one order of magnitude higher than 8-oxoGua in the DNA of wild type E.coli 
[163]. The same authors reported increases of Sp in Nei deficient E. coli compared to the 

wild type WT strain and unusually high increases when the cells were treated with 500 μM 

Cr(VI); the levels of Sp actually reached as much as 6,000 lesions per 106 Gua. It should be 

noted that the measurement of Sp was performed by HPLC-MS operating in the SIM mode, 

a method with shortcomings and well-documented lack of compound selectivity as already 

discussed (vide supra). The above extremely high value of Sp has to be compared with the 

relatively low level of secondary oxidation products of 8-oxoGua that were measured in the 

DNA of liver and colon tissues of Rag2−/− mice infected with Helicobacter hepaticus using 

the relevant and accurate HPLC-ESI-MS/MS method [256,257]. The frequency of Sp and 

Gh was found to be within the range of 1 to 7 lesions per 108 nucleosides, which is close to 

the limit of detection. These data show that the secondary one-electron oxidation of 8-Gua is 

modest even under conditions of infection in which inflammation triggers a massive 

production of ONOO−, CO3
•−, and •OH. This is in agreement with chemical considerations 

that question the possibility that 8-oxoGua, present at a steady-state level of a only few 

residues per 106, can be a target for further oxidation among overwhelming normal bases 

when hole transfer process within DNA helix is restricted to 20 bp. This also explains why 

the proposed sacrificial role for 8-oxoGua [258,259] by acting as a preferential target of one-

oxidation agents may protect canonical bases has been ruled out [260].

Halogenation of nucleobases

Hypochlorous acid (HOCl), a one-electron oxidizing and chlorinating agent is enzymatically 

generated by myeloperoxidase released from activated neutrophils during inflammation 

[261–264]. Exposure of SKM-1 cells to HOCl has been shown to induce the formation in 

DNA and RNA of the nucleosides of 5-chlorocytosine (5-ClCyt), 8-chloroguanine (5-

ClGua) and 8-chloroadenine (5-ClAde) that were accurately measured by HPLC-ESI-

MS/MS [265]. This may be rationalized by the transient formation of chloramines through 

the reaction of HOCl with the exocyclic amino group and subsequent rearrangement into the 
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corresponding chlorinated bases (Fig 6). 5-ClCyt is formed predominantly over 5-ClGua and 

5-ClAde in the DNA and RNA in SKM-1 cells, with the latter biopolymer showing a higher 

susceptibility to HOCl reactions [265]. In a subsequent study, the halogenated pyrimidine 

base 5-ClCyt was higher in the DNA of diabetic patients than in healthy volunteers, 

suggesting that this product may be used as a relevant biomarker of inflammation [266]. 

This idea is supported by the [265] observation of a significant increase in the steady-state 

level of highly mutagenic 5-ClCyt [267] in the colon and liver of Rag2−/− mice that were 

subjected to chronic inflammation as the result of infection with Helicobacter hepaticus 
[256]. Similarly high values of this biomarker of inflammation, half of which were close or 

more than 10 5-ClCyt lesions per 108 normal bases, were assessed by HPLC-ESI-MS/MS in 

the human colon of patients suffering from inflammatory bowel disease [268].

Aldehyde adducts to amino-substituted bases

Lipid peroxidation is a crucial redox stress event, which has been associated with the 

development of a number of pathologies such as cancer, neurodegenerative and 

inflammatory diseases. The lipid peroxidation process generates a complex mixture of 

phospholipid products including hydroperoxides that can decompose leading to electrophilic 

derivatives such as aldehydes and epoxyaldehydes [269]. Lesions resulting from the reaction 

of DNA with breakdown products of lipid peroxides including malonyldialdehyde (MDA), 

4-hydroxy-2-nonenal (HNE), 4-oxo-(2E)-nonenal (ONE), 2,4-decadienal (DDE), 4,5-epoxy-

(2E)-decenal (EDE), hexenal, acrolein, and crotonaldehyde, have been detected at basal 

levels in human tissues and in clinical situations associated with redox stress disorders [270–

272] (Fig 7).

MDA is one of the best studied lipid peroxidation products. This dialdehyde reacts with 2′-

deoxyguanosine (dG), 2′-deoxyadenosine (dA), and 2′-deoxycytidine (dC), yielding the 

cyclic pyrimidopurinone 3-(2-deoxy-β-D-erythro-pentofuranosyl) pyrimido[1,2-

a]purin-10(3H)-one (M1dG), the acyclic N6-(3-oxo-1-propenyl)-2′-deoxyadenosine (M1dA) 

and N4-(3-oxo-1-propenyl)-2′-deoxycytidine (M1dC) adducts [273–275] (Fig 8). Basal 

levels of the promutagenic pyrimidopurinone adduct M1dG have been detected in different 

human tissues [276–279]. Interestingly, it has been shown that the intake of dietary 

polyunsaturated fatty acids correlates with the formation M1dG in female leukocytes [280]. 

Levels of M1dGo from 0.004 to 9.15 adducts per 108 nucleotides were reported by Ma et al. 

[281] (2015) in human leukocyte DNA using a methodology based on LC/nano electrospray 

ionization high-resolution tandem mass spectrometry (HRMS/MS). Interestingly, M1dG is 

oxidized to 6-oxo-M1dG in genomic DNA of intact cells indicating a possible role of 6-oxo-

M1dG in the cellular consequences attributed to M1dG [282].

The reaction of DNA bases with α,β-unsaturated aldehydes, yields cyclic-substituted 

propano adducts as the 1,N2-propano-2′-deoxyguanosine (1,N2–propanodG) formed by 

Michael addition at the exocyclic amino group followed by ring closure [272,283]. 

Background levels of 1,N2–propanodG adducts resulting from acrolein, crotonaldehyde, and 

HNE reactions have been detected in DNA from different rodent and human tissues [284–

286]. Using a method involving online HPLC/ESI/MS-MS, accurate determinations of 

1,N2–propanodG levels in DNA extracts of human cultured cells (3.43 ± 0.33 /108 dG) and 
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rat tissue (liver, 4.61 ± 0.69 /108 dG; brain, 5.66 ± 3.70 /108 dG; and lung, and 2.25 

± 1.72 /108 dG) have been performed [287]. Recently, 1,N2–propanodG adducts with levels 

of 2.4–3.5 adducts per 108 nucleotides were detected in untreated human MRC5 cells. Cell 

treatment with crotonaldehyde increases the levels of propano adducts in a concentration-

dependent manner [288]. Levels of 1,N2–propanodG were shown to be higher in the liver 

DNA of glutathione-depleted rats [289] indicating that they are persistently formed by 

endogenous pathways.

High levels of 1,N2-propanodG (20.8 fmol of 1,N2-propanodG/mg creatinine) were present 

in urine samples from individuals exposed to urban air pollution [290]. Knowing that 1,N2-

propanodG promotes DNA miscoding in human cells, largely through G → T transversions, 

and can inhibit DNA replication [291], the monitoring of 1,N2–propanodG levels may help 

protecting the health of urban populations.

Epoxidized α,β-unsaturated aldehydes, formed during the lipid peroxidation processes, can 

generate ethano or etheno derivatives upon reaction with DNA [270,271] (Fig 8). Several 

etheno adducts, 1,N6-etheno-2′-deoxyadenosine (εdA), 3,N4-etheno-2′-deoxycytidine 

(εdC),N2,3-etheno-2′-deoxyguanosine (N2,3-εdG), and 1,N2-etheno-2′-deoxyguanosine 

(1,N2-εdG), have been detected in cells as well as in rodent and human tissues [270,292–

294]. Higher levels of εdA and εdC were found in chronic infections and inflammation 

[270,295]. Etheno adducts have been used as biomarkers for DNA damage resulting from 

the reactions of endogenous lipid peroxidation end products [296].

Etheno adducts are genotoxic and mutagenic as shown in vitro systems by primer extension 

assays and in vivo by site-specific mutagenesis in cells [297]. Heptanone-substituted 3,N4-

etheno-2′-deoxycytidine (heptanone-εdCyd) blocked DNA synthesis and increased 

miscoding in both bacteria and human cells [298]. Recently, Patra et al have analyzed 

incorporation events using steady-state kinetics and LC-MS analysis of primers extended 

opposite 1,N6-ethenodA by recombinant human DNA polymerase [299]. The results showed 

a preference for purine pairing opposite 1,N6-ethenodA and for -1 frameshifts.

Ten-eleven translocation (TET) oxidation

The methylation of Cyt to 5-mCyt plays a pivotal role in epigenetics as a chemical 

modification or a mark that regulates gene expression. For example, genes are silenced by 

the methylation of cytosine predominantly occurring in CpG dinucleotides and gene 

promoter regions [300]. The discovery of unusually high levels of 5-hydroxymethylcytosine 

(5-HmCyt) in Purkinje neurons [301], and the initial characterization of ten eleven 

translocation (TET) family enzymes that oxidize 5-mCyt to 5-HmCyt [302], led to a surge of 

research inaugurating a novel pathway that operates to remove 5mC marks in the genome 

during cell differentiation and tissue homeostasis [303]. TET enzymes (I-III) are α–

ketoglutarate and Fe(II)-dependent dioxygenases that oxidize 5-mCyt by an iterative process 

to give 5-HmCyt, 5-FoCyt and 5-CaCyt in double stranded DNA [304] (Fig 9). Interestingly, 

vitamin C acts as a catalyst and enhances TET activity in cells and animals [305]. In the past 

8 years, numerous approaches have been applied to quantify 5-HmCyt and related 

modifications in genomic DNA [306]. These approaches utilize various methods to separate 

5-HmC from complex biological mixtures, including TLC, GC, CE, LC, with anion 
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exchange, reverse phase and HILIC solid phase chromatography, in combination with 

mainly mass spectrometry methods of detection [306,307]. Isotopic labels of 5-mCyt 

nucleoside and its oxidation products for MS analyses are either commercially available or 

fairly easy to synthesize starting with labeled dThd [217,308]. Thereby, the levels of 5-

HmCyt vary appreciably from one tissue to another in mice, with the highest levels usually 

observed in the brain [165]. In humans, he levels of 5-hmCyt in blood DNA varies from 0.01 

to 0.03% Cyt [309] while that in normal brain DNA varies from 0.54–1.34% Cyt [310,311]. 

It should be noted that the levels of 5-HmCyt in healthy cells and tissues are at least 100-

fold higher than those of other oxidatively induced lesions modifications such as 8-oxoGua 

making quantification relatively easy without the problem of artifactual oxidation during 

sample preparation. Although it is possible to increase the formation of 5-HmCyt upon 

exposure of cells to ionizing radiation, the increase obtained at lethal doses of ionizing 

radiation is minor compared to the level of endogenous TET-mediated 5-HmC in cellular 

DNA [217]. The quantification of 5-HmCyt by LC-MS/MS may be achieved on a routine 

basis generally with about 1–2 μg of purified DNA; this corresponds to the extracted DNA 

from about 100,000 cells. The analyses of individual nucleobases or nucleosides of 5-

HmCyt together with certain related modifications have been extended to the DNA of other 

organisms, mitochondrial DNA [311] mammalian RNA [312], and human urine [313]. 

Depending on the method and the instrument of analysis, the limit of detection of 5-HmCyt 

in cellular DNA is in the low- or sub-fmol range [314]. Indeed, a recent method with 

derivatization and MS detection reports the possibility of measuring 5-HmCyt from 20 cells 

[315]. The levels of 5-HmCyt in transformed cells in culture and cancerous tissue attain 

relatively low levels that may lead to difficulties in quantification using current 

methodologies. For example, the level of 5-HmCyt in brain tumors varies from 0.03 to 0.75 

5-HmCyt/Cyt% [310,311]. Likewise the levels of related modifications, including 5-FoCyt, 

5-HmUra, 5-HmUra, are usually 100-fold lower than those of 5-HmCyt under physiological 

conditions. As mentioned in previous sections, the analysis of 5-FoCyt and 5-CaCyt 

nucleosides by HPLC-ESI-MS/MS may be problematic because of the low levels present in 

certain cases. A recent study suggests that 5-HmUra may be produced by random enzymatic 

oxidation of thymine in DNA by TET [316]; however, the levels of 5-HmUra remain low 

compared to 5-HmCyt likely because of active and efficient DNA repair by single-strand 

selective monofunctional uracil DNA glycosylase [321].

Complex modifications

Intrastrand base lesions (G*-T*)

The formation of intrastrand cross-links (ICLs) involving one-electron oxidation of the 

guanine radical cation 3 was recently reported in cellular DNA [66]. This reaction 

constitutes a novel relevant example of nucleophilic addition reactions to 3 upon exposing 

HeLa cells to high intensity nanosecond UVC laser pulses followed by analyses of the 

damage by suitable enzymatic hydrolysis and subsequent HPLC-ESI-MS/MS measurement. 

The crosslink involved the formation of a covalent bond between C8 of guanine and N3 of 

thymine separated by an undamaged nucleotide residing between the modified bases (Fig 9). 

Importantly, the level of dG*-dT* crosslinks was found to increase with the intensity of laser 

pulses. The formation of dG*-dT* was a minor process with respect to the generation of 
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other base oxidation products that arise from either hydration or deprotonation of the 

corresponding radical cations. For example, the yield of dG*-dT* was about 800-fold lower 

than the predominant yield of 8-oxoGua. In addition, either 5-FoUra or 5-HmUra, the two 

methyl oxidation products of thymine were formed with a yield of 60-fold higher than dG*-

dT*. Interestingly, the ability of 4 to form dG*-dT* and to a lesser extent dG*pdT*in which 

both modified bases are vicinal was previously observed in model studies involving single-

stranded oligonucleotides [68] and DNA duplexes [318]. It was recently shown that DNA 

repair glycosylases were able to cleave the N-glycosidic bond of dG*-dT* and dG*dC-dT* 

[319] which were site-specifically inserted into oligodeoxynucleotides with a defined 

sequence [63] (Crean et al 2008).

Purine 5’,8-cyclo-2’-deoxyribonucleosides

Support for •OH-mediated intramolecular cyclization of the C5’-yl sugar radical 15 of 

adenosine 5’-monophosphate and 2’-deoxyadenosine to the C8 position of the purine base 

moiety was gained from isolation and characterization of the corresponding cyclic 

ribonucleotide [320] and 2’-deoxyribonucleoside [321]. These modifications exist as either 

5’R or 5’S diastereomers [322]. Similar reactions that give rise to (5’R) and (5’S)-5’,8-

cyclo-2’-deoxyguanosine (cdG) (Fig 10) were subsequently found to occur in free 2’-

deoxyguanosine and isolated DNA [137]. A resurgence of interest for these intranucleotide 

crosslinks was noted after the 5’R and 5’S diastereomers of 5’,8-cyclo-2’-deoxyadenosine 

(cdA) were found to be relevant substrates for the nucleotide excision repair pathway [323], 

an observation that was confirmed by another research group a few months later [324]. This 

discovery stimulated further mechanistic studies on the formation of both cdA and cdG 

[325,326] while major efforts were devoted toward better understanding the underlying 

repair mechanisms [327] and to delineate the effects of these tandem lesions on DNA 

replication and transcription [328,329]. In addition, attempts were made to search for the 

formation of purine 5’,8-cyclo-2’-deoxyribonucleosides in cellular DNA. For this purpose, 

the two diastereomers of cdG and cdA were measured by GC-MS [330] and HPLC-MS 

[331,332] respectively: two methods that suffer from major drawbacks as already discussed 

(vide supra). Thus, (5’S)-cdA was detected in the DNA of primary keratinocytes of two 

normal human subjects upon exposure to a low dose of 5 Gy of X-rays with a frequency of 

14 lesions/109 normal 2’-deoxyribonucleosides per Gy [162,333]. This yield appears to be 

highly overestimated because it is comparable to the yield of a much more common 

oxidation product, 8-oxodG, which was generated in gamma-irradiated human monocytes 

with a similar efficiency of 20 lesions/109 2’-deoxyribonucleosides per Gy [160]. It should 

be noted that the formation of (5’S)-cdA in isolated aqueous solutions of DNA under aerated 

conditions is a minor pathway and that the amount of (5’S)-cdA induced by •OH represents 

only 1% of 8-oxoG [325]. Furthermore, a dose of 2kGy of gamma rays was necessary, using 

an accurate HPLC-ESI-MS/MS method, to barely detect traces of (5’S)-cdA whose yield 

was estimated to be at most 0.2 lesion/109 2’-deoxyribonucleosides per Gy [325]. The very 

low efficiency of •OH induced formation of purine 5’,8-cyclonucleosides in cellular DNA 

thus raises a question about their biological relevance; this idea actually received further 

confirmation from a recent study [334]. None of the four diastereomers of cdA and cdG was 

detected by HPLC-ESI-MS/MS measurements in the DNA of radiation-resistant 

hyperthermophilic Thermococcus gammatolerans archeon strains exposed to 5 kGy of 
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gamma radiation [334]! The questionable formation of purine 5’,8-cyclo-2’-

deoxyribonucleosides in cells is consistent with the low efficiency for •OH to generate C5’-

yl radicals at either adenine or guanine nucleotides (less than 3% for each), which for the 

most part are efficiency scavenged by O2 [325].

Other confusing aspects concern the steady-levels in nuclear DNA of both cdA and cdG that, 

in the past, have been measured by either capillary HPLC associated with MS3 detection or, 

more recently, by nanoLC-NSI-MS/MS in the brain, kidney and liver tissues of several 

animals including healthy Long-Evans Agouti (LEA) rats and Long-Evans Cinnamon rats 

(LEC) bearing a genetic dysfunction as in human Wilson’s disease [335,336]. Other studies 

have involved Ercc−/Δ mice in which mutations led to a reduced expression of XPF-ERCC1 

that affects NER efficiency and presumably leads to accumulation of both cdA and cdG with 

age [337,338]. Surprisingly, the steady-state levels of purine 5’,8-cyclo-2’-

deoxyribonucleosides were elevated reaching 1 cdA/106 2’-deoxyribonucleosides in the liver 

and brain tissues of LEA rats [336]. Again, the levels were comparable to the average levels 

of 8-oxodG, a more frequently oxidatively generated damage to DNA. It seems that the 

levels of cdA and CdG are overestimated by at least two orders of magnitude as also 

suggested by the elevated values of 5-FoUra and 5-HmUra that were measured in the DNA 

of LEA rats [335]. Thus, the level of 20 FoUra/106 2’-deoxyribonucleosides assessed in 

hepatic tissue corresponds to the amount observed in cellular DNA exposed to 1 kGy of 

gamma rays! Clearly, further studies are necessary to resolve these apparent discrepancies.

Interstrand cross-links

Insight into the formation of intrastrand crosslinks was gained from model studies that led to 

the isolation and characterization of four diastereomers of 6-(2-deoxy-β-D-erythro-

pentofuranosyl)-2-hydroxy-3(3-hydroxy-2-oxopropyl)-2,6-dihydroimidazo[1,2-c]-

pyrimidin-5(3H)-one in isolated DNA upon exposure to •OH in aerated aqueous solutions 

[339,340]. Interestingly, the four Cyt adducts were detected in the DNA of human THP1 

monocytes exposed to gamma rays. Further information concerning the mechanism of 

generation of Cyt adducts was inferred from incubation of isolated and cellular DNA with 

bleomycin, a radiometric enediyne that is known to predominantly abstract the C4’ 

hydrogen atom in double-stranded DNA [341]. The resulting carbon centred C4’ radical 

similar to that generated by •OH is converted among other degradation pathways into the 

corresponding C4’ oxidized abasic site (C4-AP) [33] after O2 addition and elimination of 

the nucleobase (Fig 11). The abasic site or more likely its acyclic form [342] is prone to 

subsequent β-elimination, which is enhanced when either a cytosine or adenine base is 

located on the opposite strand [343]. This results in cleavage of the 3’-phosphodiester bond 

with the concomitant generation of 18, a highly reactive conjugated keto-aldehyde, which 

can add to 4-amino group of 2’-deoxycytidine on the opposite strand giving rise to 

interstrand DNA cross-links (Fig 11). The proposed mechanism of ICL formation has 

received further support from subsequent model studies in which a photolabile precursor of 

the C4’ radical was site-specifically inserted into DNA duplexes [343,344]. The formation of 

Cyt adducts that are present in untreated cells at a level of about 1–3 lesions per 108 

nucleosides was found to increase upon exposure to gamma rays with a relative occurrence 

of 1% with respect to 8-oxoG. In contrast, incubation of cells with bleomycin leads to a 
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significant 4-fold increase in the frequency of the ICLs while the level of 8-oxoG is not 

affected. The search for the formation of similar cycloadducts to adenine in cellular DNA 

expected to be generated from other model studies [344] awaits further investigation.

Repair of oxidatively damaged cellular DNA

There is an abundance of literature concerning the enzymatic activity, substrate specificity 

and mechanistic aspects of diverse prokaryotic and eukaryotic DNA N-glycosylases that act 

on oxidized bases through the predominant base excision repair pathway as reviewed in 

several contributions to this issue. In contrast, there is a paucity of accurate information on 

the repair of individual oxidatively generated base damage in cellular DNA. This is mostly 

explained by difficulties that have been encountered in measuring well-defined DNA 

oxidatively induced modifications in isolated cells or animal tissues, particularly under mild 

oxidative stress conditions. Most relevant data concern the repair of 8-oxoG on the basis of 

HPLC-ECD measurements. In addition, an example of repair that does not implicate BER 

pathway is available [340].

Base excision repair of 8-oxoGua

In pioneering work, Kasai and co-workers were able to accurately monitor the formation of 

8-oxoG by HPLC-CED in the hepatic DNA of mice after whole-animal exposure to γ-rays 

[151]. The average radiation-induced yield of 8-oxoG (20 lesions/109 bases per Gy) is 

similar to that measured by HPLC-MS/MS in γ-irradiated human monocytes, being three 

orders of magnitude lower than that observed in isolated DNA. Interestingly, evidence for 

the efficient repair of 8-oxoG was provided by a decrease of this oxidized base within a few 

hours during post-irradiation incubation. A similar observation was reported in mouse 

FM3A cells in which 8-oxoG was specifically induced in nuclear DNA by riboflavin 

sensitization to UVA radiation [345]. It was found that about 2/3 of the initial amount of 8-

oxoG was repaired by about 2h post-irradiation. Other studies have confirmed that 8-oxoG 

was efficiently repaired in the DNA of animal tissues exposed to various oxidizing agents, 

including UVA radiation [346], ferric nitrilotriacetate [347,348], diesel exhaust particles 

[349] and asbestos [350]. The repair kinetics of 1O2-specifically generated 8-oxoG in the 

DNA of liver and immortalized embryonic fibroblast cells lines from mice was determined 

from the analysis of Fpg-sensitive sites [128]. The removal of 50% of 8-oxoG lesions in both 

cell lines obtained from healthy mice required 4 h. This time-course compares with a 12 h 

period that was required in order to achieve a similar extent of repair in cells generated 

from ogg1−/− null mice that are partly deficient in BER excision ability.

Repair of Cyt adducts as part of interstrand DNA crosslink

The kinetics of removal of interstrand clustered DNA lesions generated by initial hydrogen 

atom abstraction at C4’ of the 2-deoxyribose moiety was assessed using HPLC-ESI-MS/MS 

by monitoring the gradual decrease of the levels of Cyt adducts generated in human 

monocytes upon treatment with bleomycin [340]. The repair rate of the Cyt adducts showed 

a typical biphasic phase and appears to be two-fold slower than that of 8-oxoG. Evidence 

has recently been gained, from model studies involving bacterial UvrABC complex, that 

nucleotide excision repair is also involved in the removal of the above interstrand lesions 
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giving rise to double strand breaks (DSBs) [351,352]. This constitutes a novel example of 

DSB generation arising from one radical hit as the result of DNA repair processing of a Cyt 

adduct containing interstrand crosslink. This involves incision of the damaged strand 

opposite to the nick that was initially generated by chemical reactions giving rise to the 

clustered lesion (Fig 11)

Conclusions and perspectives

Major progress has been made during the last two decades in the identification of 

oxidatively-induced damage to DNA and the mechanisms of formation of damage products, 

which include complex lesions such as tandem modifications and interstrand cross-links, 

DNA protein cross-links, in addition to predominant oxidized single bases. The development 

of HPLC coupled to tandem mass spectrometry that became available during the 90’s has 

made it possible to accurately detect modifications in cellular DNA. In agreement with 

earlier measurements using either HPLC-ECD or enzymatic-sensitive sites, the steady-state 

level of 8-oxoG, an ubiquitous DNA oxidation modification, lies within the range of a few 

lesions per 107 2’-deoxyribonucleosides. This applies as well to other forms of oxidatively 

generated base modifications that have been measured in cellular DNA by HPLC-MS/MS 

methods. Another interesting conclusion is that the mechanism of formation of DNA 

products established from model studies in aerated aqueous solutions may be extrapolated in 

part to cellular DNA. The availability of capillary liquid chromatography associated with 

nanoelectrospray ionization tandem mass spectrometry (LC-NSI-MS/MS) displays a 

significant increase in the sensitivity of detection and represents a powerful tool for further 

investigations. A recent application of this method to mitochondrial DNA [353] has however 

shown the limitation of the approach when low amounts of nucleic acids are analyzed. The 

high values of 8-oxodG that varied within the range of 130–400 lesions/106 are likely due at 

least partly to the occurrence of artifactual oxidation which explains so far the lack of 

accurate data on the steady-state levels of 8-oxoGua in mitochondrial DNA. Other 

interesting potential applications of LC-NSI-MS/MS should focus on the search in cellular 

DNA of tandem base lesions that arise from the reactions of peroxyl pyrimidine radical with 

vicinal nucleobases. As discussed above, it remains to be established whether the occurrence 

of secondary oxidation products, most likely arising from one-electron oxidant-mediated 

reactions, is of biological significance. Another current conflicting issue that needs to be 

adequately addressed concerns the reported steady-state levels of purine 2’-

deoxyribonucleosides that range widely between 0.2 and 10 S-cdA per 107 nucleosides, 

depending on the method employed [336,355]. It would be surprising that such large 

differences in the yield of S-cdA of up to a factor of 50 may only be explained by the diverse 

sources of DNA subjected to analysis.
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Highlights

• HPLC coupled to either ESI-tandem mass spectrometers or an 

electrochemical detector is appropriate for accurately monitoring oxidatively 

damage to cellular DNA.

• Seventeen single base lesions and several intra- and interstrand cross-links 

have been identified in cellular DNA as chemical or enzymatic oxidation 

products.

• Other base modifications arising from oxidative reactions included 

halogenated nucleobases and base adducts with reactive aldehydes from lipid 

peroxides.

• There is paucity of reliable data on the base excision repair kinetics of 

oxidized bases in cells at the exception of 8-oxo-7,8-dihydroguanine.
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Figure 1. 
Oxidation of guanine by OH, one-electron oxidants and singlet oxygen (1O2).
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Figure 2. 
Oxidation of thymine by OH and one-electron oxidation . Initial attack of OH occurs at both 

C5 and C6 positions to give the corresponding OH adducts (e.g. 5). Analogous reactions 

occur for 5-methylcytosine (N3-C4=O → N3=C4-NH2).
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Figure 3. 
Oxidation of cytosine by OH and one-electron oxidation.
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Figure 4. 
Oxidation of 5-methycytosine by •OH and TET enzymes.
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Figure 5. 
Oxidation of adenine by OH and one-electron oxidants.
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Figure 6. 
Halogenation of DNA bases (Cyt, Gua and Ade)
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Figure 7. 
Main α,β-unsaturated aldehydes arising from the decomposition of lipid peroxides.
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Figure 8. 
Main adducts of α,β-unsaturated aldehydes to amino-substituted bases of 2’-

deoxyribonucleosides
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Figure 9. 
Additional reactions of guanine radical cation 3.
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Figure 10. 
Formation of purine 5’,8-cyclo-2’-deoxyribonucleosides by •OH-mediated hydrogen atom 

abstraction at C5’.
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Figure 11. 
Formation of a DNA interstrand crosslink by initial •OH-mediated hydrogen atom 

abstraction at C4’.
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Table 1

Formation of oxidatively generated damage in cellular DNA.

DNA lesions •OH One-e oxidant 1O2 TET

5,6-Dihydroxy-5,6-dihydrothymine (ThyGly) ++ +

5-Hydroxy-5-methylhydantoin (ThyHyd) +

5-Hydroxymethyluracil (5-HmUra) ++ +

5-Formyluracil (5-FoUra) ++ +

5-Hydroxycytosine (5-OHCyt) + +

5,6-Dihydroxy-5,6-dihydrouracil (UraGly) +

1-Carbamoyl-4,5-dihydroxy-2-oxoimidazolidine (ImidCyt) +

5-Hydroxyhydantoin (UraHyd) +

5-Hydroxymethylcytosine (HmCyt) + + +++

5-Formylcytosine (5-FoCyt) + + ++

5-Carboxylcytosine (5-CaCyt) +

8-oxo-7,8-dihydroguanine (8-oxoGua) ++ ++ ++

2,6-Diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) ++

8-Oxo-7,8-dihydroadenine (8-oxoAde) + +

2,2,4-Triamino-5(2H)-oxazolone (Oz) +

Guanine-cytosine adduct Interstrand-crosslink (sugar-cytosine) + +

(5’S)-5’,8-cyclo-2’-deoxyadenosine (cdA) ?

+++
Major damage: may reach a few lesions per 104 nucleobases.

++
Fair damage: between 10 and 100 lesions/108 nucleobases per Gy of ionizing radiation.

+
Minor damage: lower than 10/108 nucleobases per Gy of ionizing radiation.
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