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Abstract

The determination of reactivity parameters for short-lived intermediates provides an indispensable 

tool for synthetic design. Despite that electrophilicity parameters have now been established for 

more than 250 reactive species, the corresponding parameters for benzyne and related 

intermediates have not been uncovered. We report a study that has allowed for the quantification of 

benzyne’s electrophilicity parameter. Our approach relies on the strategic use of the diffusion-

clock method and also provides electrophilicity parameters E for other substituted arynes.

A critical aspect of successful synthetic design plans is the ability to reliably predict 

chemical reactivity. Accordingly, over decades of research, chemists have developed 

reactivity profiles that account for a variety of functional groups. Early breakthroughs, such 

as the Swain and Scott parameters,1 paved the way for the established reactivity scales now 

available.2–4 Most commonly used today is the benzhydrylium-based reactivity scale, which 

includes nucleophilicity and electrophilicity parameters for more than 1,200 compounds, 

including reactive intermediates (Figure 1, e.g., 1–6).2,5 Notably missing from the many 

species studied thus far is benzyne (7). Since its validation in the 1950s,6 benzyne (7) has 

proven to be an indispensable synthetic building block. Benzyne (7) and related species have 

been used to construct decorated arenes and heterocycles and assemble intricate natural 

product scaffolds.7 Moreover, attempts to observe arynes by microwave and infrared 

spectroscopy8 and atomic force microscopy,9 along with computational studies of 

arynes,10,11 have provided a wealth of knowledge about aryne structure and 

regioselectivities in trapping experiments. One notable question has remained: Just how 
electrophilic is benzyne?
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This question has gone unanswered because of the fleeting nature of benzyne (7). We 

reasoned that the elucidation of benzyne’s electrophilicity parameter could be made possible 

by utilization of the diffusion-clock method, which has previously been used to determine 

the electrophilicity of highly reactive carbocations.12,13 In prior kinetic studies, the fastest 

reactions of carbocations (generated using laser-flash photolysis) with neutral nucleophiles 

in organic solvents were found to proceed with second-order rate constants of 2–4 × 109 L 

mol−1 s−1, due to diffusion control.14 As depicted in Figure 2, nucleophiles that differ in 

reactivity toward weak electrophiles become equally reactive toward strong electrophiles as 

the diffusion limit is reached.15

Assuming that the relative reactivities of nucleophiles toward carbocations and typical 

Michael acceptors (reference electrophiles) also hold for reactions with arynes, we reasoned 

that the diffusion-clock method could be used to determine the electrophilic reactivities of 

arynes. Specifically, if benzyne (7) was generated (from precursor 8) in the presence of 

equal concentrations of trapping nucleophiles (Nuc1 and Nuc2, both used in large excess), 

the resulting A/B ratio could be used to calculate k1/k2 as suggested in Equation A (Figure 

2). If Nuc1 reacts with diffusion control (i.e., k1 ≈ 3 × 109 L mol−1 s−1)16 the rate constant 

k2 can be calculated from the k1/k2 ratio. Armed with this rate constant, the electrophilicity 

of benzyne could then be determined using the previously derived equation for the reactions 

of electrophiles with nucleophiles (Equation B, Figure 2).2 In this key equation, 

electrophiles are characterized by one parameter (electrophilicity E) and nucleophiles are 

characterized by two solvent-dependent parameters (nucleophilicity N and nucleophile-

specific susceptibility sN). With the experimentally determined rate constant and the 

previously established nucleophilicity parameters (N and sN), solving the equation for E 
would be straightforward. Herein, we demonstrate the success of this approach to determine 

the elusive E parameter for benzyne (7) and several other related species.

To initiate our studies, we selected a series of nucleophiles to be used in trapping 

experiments. Nucleophiles 9–14 (Figure 3) were chosen because (a) their nucleophilicity 

parameters in CH3CN had already been established and (b) they were likely to undergo 

efficient reaction with the highly reactive intermediates we planned to study.17 Table 1 

highlights the experiments that were used to determine the E parameter for benzyne (7) and 

related reactive intermediates 18–20. Beginning with benzyne (7), the appropriate silyl 

triflate precursor was treated with CsF in acetonitrile in the presence of two competing 

nucleophiles that have known and varying nucleophilicity parameters. After consumption of 

the silyl triflate and workup, the crude mixture was analyzed by supercritical fluid 

chromatography (SFC) to provide the ratio of products A/B. The competition experiment 

between pyrrolidine (12) and thioacetate (13) led to a 2.89 to 1 ratio of products (entry 1a). 

Given that thioacetate (13) and pyrrolidine (12) have significantly different nucleophilicity 

parameters, the low selectivity indicates that both nucleophiles react under diffusion control 

with benzyne (7). Next, we studied the competition between pyrrolidine (12), a nucleophile 

that reacts with diffusion control, and less reactive nucleophiles. The utilization of t-
butylamine (11) gave a 21.5 to 1 ratio of products (entry 1b), whereas the use of imidazole 

(10) led to a 37.7 to 1 ratio of adducts (entry 1c). Based on these results (i.e., entries 1a–1c), 

the E parameter for benzyne (7) was calculated to be −1.18 For comparison, benzyne (7) is 1 
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order of magnitude less electrophilic compared to the bis(4-methoxyphenyl)methylium ion 

(3, Figure 1).

Having determined the E parameter for benzyne (7), we performed a series of competition 

experiments in order to establish the E parameter for other useful strained intermediates (18–
20, Table 1). In the case of methoxybenzyne 18, the competition experiment using dithioate 

(14) and thioacetate (13) gave a 4.40 to 1 ratio (entry 2a), indicating that both nucleophiles 

react with 18 close to diffusion control. Competition between dithioate 14 and imidazole 

(10) gave a 13.0 to 1 ratio of adducts (entry 2b). Further competition experiments with 

dithioate (14) and t-butylamine (11) gave a 17.5 to 1 ratio of products (entry 2c).19 Thus, the 

E parameter for 18 was determined to be −1, like benzyne (7). In the case of fluorobenzyne 

19, it was necessary to employ a nucleophile that was significantly less reactive than t-
butylamine (11) because the use of anything more reactive led to diffusion control. For 

example, a competition experiment between pyrrolidine (12) and imidazole (10), which is 

less reactive than t-butylamine (11), gave a 1.60 to 1 ratio of adducts (entry 3a). The only 

suitable nucleophile tested that did not react under diffusion control was benzotriazole (9). 

The competition experiment between dithioate (14) and benzotriazole (9) gave a ratio 5.61 

to 1. As k2 derived from this ratio was in the nonlinear part of the log k2 vs E correlations, 

only an approximate value of E(19) ≈ +4 could be estimated (entry 3b). It is interesting to 

note that 19 is 5 orders of magnitude more electrophilic than 7 or 18 and shares similar 

reactivity to that of a benzylic carbocation (2 and 1, Figure 1). We also determined the E 
value for 6,7-indolyne 20, a versatile heterocyclic building block that is known to react 

regioselectively with nucleophiles,11c by performing three competition experiments. We first 

used dithioate (14) and pyrrolidine (12). The small reactivity ratio showed that nucleophile 

(14) reacted under diffusion control. However, competition experiments between dithioate 

(14) and imidazole (10) and between dithioate (14) and t-butylamine (11) (entries 4b and 4c) 

gave reactivity ratios of 15.6 and 23.8, respectively,18 which allowed us to determine the E 
value for 20 to be approximately −1.

A summary of the E parameters for the strained intermediates studied herein is shown in 

Figure 4. Benzyne (7), methoxybenzyne (18), and 6,7-indolyne (20) all have E values close 

to −1. Fluorobenzyne (19) is several orders of magnitude more electrophilic, with an E value 

close to 4. The extreme electron-withdrawing nature of the fluoride substituent presumably 

contributes to the greater electrophilicity. It should be noted, however, that the 

electrophilicity parameters derived in this work hold only for additions of nucleophiles to the 

triple bond that proceed with rate-determining formation of one new σ-bond.20

In summary, we have performed a study to quantify the electrophilicity parameter (E) for 

benzyne (7) and several substituted arynes (18–20). To achieve this, we strategically 

employed the diffusion-clock method as a means to overcome the inherent challenge of 

performing kinetic experiments of a fleeting intermediate. These efforts expand the growing 

database of reactivity parameters for synthetic intermediates and allow, for the first time, the 

quantification of aryne electrophilicities.
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Figure 1. 
Sampling of the benzhydrylium-based electrophilicity scale showing compounds 1–6 and 

benzyne (7).
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Figure 2. 
Diffusion-clock method and planned application to determine the E parameter for benzyne 

(7).
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Figure 3. 
Nucleophiles used in this study and their N and sN values in acetonitrile.
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Figure 4. 
Summary of E parameters determined.
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