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Abstract

Understanding the heterogeneity in health of older adults is a compelling question in the biology of aging. We analyzed the performance of five 
measures of health heterogeneity, judging them by their ability to predict mortality. Using clinical and biomarker data on 1,013 participants of 
the Canadian Study of Health and Aging who were followed for up to 6 years, we calculated two indices of biological age using the Klemera 
and Doubal method, which controversially includes using chronological age as a “biomarker,” and three frailty indices (FIs) that do not include 
chronological age: a standard clinical FI, an FI from standard laboratory blood tests and blood pressure, and their combination (FI-combined). 
Predictive validity was tested using Cox proportional hazards analysis and discriminative ability by the area under the receiver-operating 
characteristic curves. All five measures showed moderate performance that was improved by combining measures to evaluate larger numbers 
of items. The greatest addition in explanatory power came from the FI-combined that showed the best mortality prediction in an age-adjusted 
model. More extensive comparisons across different databases are required, but these results do not support including chronological age as a 
biomarker.
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Introduction

Chronological age (CA) is an excellent predictor of mortality in pop-
ulations. Its relationship with mortality, known as the Gompertz law, 
has been widely used to describe the distribution of adult lifespan by 
both demographers and actuaries (1). Among individuals, however, 
the relationship between age and mortality is highly variable, reflect-
ing genetic, environmental, and socioeconomic factors (2,3). The 
role of stochastic component in aging is fundamental (4) and cannot 
be underestimated. As some people appear to age faster than do oth-
ers, the metaphor of “biological aging” (in contrast to “chronologi-
cal aging”) is widely employed.

Different approaches to quantify biological age (BA) in indi-
viduals have been proposed. An early effort used a test battery to 
measure the rate of aging (5). This approach is now referred to as 
employing “biomarkers of aging” (6) and has been applied not only 
to humans but also to animals (7,8). For many years, biomarkers of 
aging were defined as specific, nondisease traits (the possibility of the 
latter sometimes disputed (9)), in multiple physiological domains, 

that predict mortality in an age-coherent way, and do so better than 
does CA (10–13).

The many attempts to quantify BA with biomarkers over the 
decades (5,13) show increasing use of multivariate statistical tech-
niques (14–17). A 2013 study (18) compared 5 multivariate algo-
rithms to calculate BA from a set of 7–10 biomarkers in the National 
Health and Nutrition Examination survey (NHANES) and favored 
an algorithm proposed by Klemera and Doubal (17). Their algo-
rithm was also recently used to quantify BA in younger adults (19). 
Interestingly, an essential part of the Klemera–Doubal algorithm is 
that CA is added to the battery of biomarkers as itself a biomarker of 
aging (17). Not counter intuitively, including CA in the calculation 
of BA improved its ability to predict mortality (17). Klemera and 
Doubal (17) anticipated that labeling CA as a biomarker would be 
controversial. It leaves unanswered whether a robust estimate of BA 
can be obtained from biomarkers without including CA.

One way to consider the relationship between CA and BA is to 
recognize that contemporary definitions of BA, for all their diversity, 
are empirical measures of the heterogeneity of health in people of the 
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same age, a feature also known as frailty (20,21). Heterogeneity in 
health can be measured using a deficit accumulation approach (22). 
Our group has introduced the concept of a frailty index (FI) to quan-
tify the susceptibility of people of the same age to adverse outcomes 
(23). Any FI counts a range of clinically apparent health deficits of 
varying types and divides that count by the total number of items 
measured (23,24). The approach has also been extended to animal 
models (25–27). An FI can also be created exclusively from bio-
markers, including values from common laboratory tests (eg, serum 
urea, thyroid-stimulating hormone, electrolytes) and physiological 
measures (eg, blood pressure) (28,29). How this approach to meas-
uring heterogeneity in health compares with a biomarker-based BA 
selected by multivariable regression analysis is not known. This is an 
important question because it allows a means of understanding how 
to incorporate CA and BA age in mortality prediction. For example, 
is it better seen as a biomarker or a covariate?

Here, we compared the performance of the FI with two bio-
marker-based measures of BA that employed the Klemera–Doubal 
algorithm (one with and one without CA) in predicting mortality. 
Building on recent work (28,30) in the Canadian Study of Health 
and Aging (CSHA), in people in whom both clinical and biomarker 
data were available, our objectives were to compare these empirical 
estimates and to consider whether including CA was of sufficient 
benefit to the performance of the models that its theoretical implica-
tions should be evaluated.

Methods

Study Population
Our sample is drawn from the first wave of data from the CSHA. As 
detailed elsewhere, in 1991–1992, a cohort of 10,263 older adults 
(aged 65 and older at baseline) was assembled from an age-stratified, 
national random sample, clustered by area, with oversampling of 
older people (75–84 and 85 and older strata) and those in institu-
tions (1,255; 9,008 in the community) to study cognitive impairment 
and other health conditions (31,32). Of the 2,914 participants who 
had a clinical examination, here we used a subset of both community-
dwelling and institutionalized participants (n = 1,375), who had labo-
ratory test data. Of these 1,375 participants, 1,013 participant had 
sufficient data (without missing data (28)) to construct one version of 
the FI based only on routine physical and laboratory tests (FI-LAB) 
as detailed elsewhere (28). Decedent data were obtained from the 
Vital Statistics Registry in each province and from interviews with 
the household members (eg, spouses or next kin of deceases study 
participants). Mortality data were available up to the 6-year follow-
up. Briefly, their mean age was 80.8 years (SD = 7.2), 61.6% were 
women; 67.4% of the participants lived in the community.

Frailty Indices
A standard FI (FI-CSHA) was previously constructed from 38 
variables used in the CSHA clinical examination sample (28) 
(Supplementary Figure S1). In short, these variables included dis-
ease history, symptoms, and health rating variables (eg, functional 
limitations) and satisfied the criteria for being a deficit as previously 
described (33).

The FI-LAB was calculated earlier from 23 variables based on 
21 routine blood tests plus systolic and diastolic blood pressure (28) 
dichotomized using the “normal” cutoff points, that is, represented 
by 0 or 1, where 0 indicates the values are within the normal cut off 
values and “1” otherwise (28). Following Howlett and coworkers 

(28), we also considered the FI-combined, which simply is the sum 
of the deficits in FI-LAB and FI-CSHA and divided by the new total.

Selection of Biomarkers
Of 22 biomarkers used to calculate the FI-LAB, following Klemera 
and Doubal (17), we selected those biomarkers in which their val-
ues (or their logarithms) were significantly correlated with age. 
The various versions of BA were calculated from those 10 selected 
biomarkers.

BA Estimates
All estimates of BA considered here are based on calculating regres-
sion parameters of the individual biomarkers on CA:

	
ˆ ( )x q kj j jCA CA= +

	 (1)

where ˆ ( )xj CA  represents estimated age-specific average of the jth 
biomarker at each CA. Using the same notation as Klemera and 
Doubal (17), we indicate qj and kj as the intercept and the slope, 
respectively.

Klemera–Doubal algorithms are based on calculating the two 
versions of BA. The first algorithm calculates BA without inclusion 
of CA (BAE) from the list (battery) of selected biomarkers:
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The second version of their algorithm calculates BA that takes 
into account CA as an additional biomarker (BAEC) (17). In their 
formula, the weight coefficient wCA (our notation) is the inverse vari-
ance sBA

2 . This they defined using the residual variance between BAE 
(equation 2) and CA, and taking into account the correlation coef-
ficients between the individual biomarkers (for details see ref. 17):
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Klemera and Doubal (17) and others (18,19,30) preferred the latter 
algorithm (equation 3) largely because it has been suggested to give a 
narrower estimate of BA, as illustrated by simulations (17).

It can be demonstrated, after elementary transformations, that 
equation (3) can be rewritten as follows:
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In other words, the term ε characterizes the relative weight of 
CA, compared with the sum of the weights of the biomarkers. The 
difference between the value of BA with and without CA (ie, the 
difference between BAE and BAEC) depends, therefore, exclusively 
on ε. From this, it should be clear that, as we have presented it, 
the Klemera–Doubal algorithm in effect assigns a weight for CA 
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(the standard error sBA
2 ), which as it varies gives different values 

for BA. For example, we can consider two extreme cases, when ε 
<< 1; (biomarkers overweight CA, sBA

2  is relatively large). In this 
case, BA BA (CA BAEC E E≈ + −ε ),  that is, BAEC is close to BAE. In 
the other extreme case, when ε >> 1 (CA suppresses biomarkers, ie, 
sBA
2  is relatively small), BA CA (BA CAEC E E≈ + − ) / ε.  In this case, 

BAEC is near CA. Note further that it is not clear how these maneu-
vers are related to an important basic presumption that the paper 
makes explicit, which is that the differences between BA and CA 
must reflect the individual degree of aging (17). As is evident above, 
BA is CA ± some value, but that value depends on CA, that is, 
BAEC will vary, depending on the weight given to CA, so that older 
people will have higher BAEC than younger people, other things 
being equal.

Modified Klemera–Doubal Algorithm
Here, we suggest a minor modification of the Klemera–Doubal 
algorithm to directly calculate the difference between BA and CA. 
In this way, the observed sum value of the biomarkers of an indi-
vidual are compared with the expected value at this CA, based on 
the CA-biomarker regression equation (5), as illustrated in Figure 1:
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This equation is similar to equation (2) with the substitution of the 
intercept by the value of the age-specific norm, ˆ ( )xj CA . The BA can 
be calculated by adding Δ to the CA:

	 BA CA+= ∆ 	 (6)

The last formula gives the value of BAE (after substitution of equa-
tion 1 into equation 2). The difference, however, is that equation (2) 
calculates BA directly. By contrast, we stress calculating Δ, which can 
be added to CA to estimate BA if necessary. This is important, as quite 
often, it is more useful to know whether the person’s BA is higher or 
lower than his/her CA rather than to know the estimate of their BA.

Data Analysis
We compared the following five measures of BA: BA obtained with 
the Klemera and Doubal method derived from 10 biomarkers with 

(i) and without (ii) CA (ie, BAE and BAEC); BA estimated with a 
standard FI-CSHA from data obtained in clinical evaluation (iii); 
an FI-LAB (iv); and an FI-combined that included both clinical and 
laboratory data (v).

Linear least squares regression techniques were used to estimate 
the parameters of the individual biomarkers of regression with age, 
either in their natural scale or using the log-transformed values, as 
appropriate.

To investigate the impact of these estimates of five methods on 
mortality, Kaplan–Meier survival and Cox proportional hazard 
regression models were used to estimate the probability of survival. 
The FI values were converted to integers between 0 and 100 by 
rounding them after multiplying by 100, giving equal percent incre-
ments. To compare the performance of models with different combi-
nations of variables, the log likelihood test was used.

Receiver-operating characteristic analysis was used to assess the 
discriminative ability of the FIs and BA (assessed by different algo-
rithms) separately and in combination, in relation to mortality. The 
confidence intervals for the receiver-operating characteristic were 
calculated using bootstrapping, with 1,000 replications. Data analy-
sis was conducted using Matlab Version 8.5 (Mathworks) and SPSS 
(IBM SPSS Statistics Version 22). The statistical significance level 
was set at p < .05.

Results

Ten of the 22 available biomarkers were significantly correlated with 
CA (Table 1). These biomarkers (albumin, calcium, creatinine, dias-
tolic blood pressure, hemoglobin, alkaline phosphatase, inorganic 
phosphorous, total protein, thyroid-stimulating hormone, and urea) 
were used to calculate BA, using different algorithms (equations 
2,3,5, and 6).

The frequency distribution for the estimated difference (Δ) 
between BAE and CA using equation (5) is presented in Figure 2A; 
the distribution of BAE (equation 6)  is shown in Panel B.  BAEC 
estimated using Klemera–Doubal algorithm using the sBC

2 150=  
is shown in Panel C.  The histograms are overlaid with nor-
mal curves with the following parameters: for Δ, mean  =  0.24 
(SD = 16.39); for BAE, mean = 80.89 (SD = 17.83), and for BAEC, 
mean = 80.8 (SD = 11.1). The latter distribution is narrower than 
the former.

We investigated the relationship between BA and CA as a function 
of sBA

2  (or the relative weight, ε). As sBA
2  decreased, BA approached 

CA as illustrated in Supplementary Figure S1. Both FIs (FI-LAB 
and FI-CSHA) were significantly correlated with BAE (Figure  3A 
and B). The FI-LAB was moderately correlated with BAE (r = .397,  
p < .0001), whereas the FI-CSHA was weakly, but significantly cor-
related with BAE (r = .183, p < .001). BAEC was only weakly corre-
lated with either FI (Figure 3C and D).

Mortality increased significantly with BA when BAE (Figure 4A) 
was stratified in to four groups. Similar results were seen when 
BAEC was divided into four strata (Figure  4B). The association of 
the BAs with mortality was also demonstrated using Cox regres-
sion (Table 2). In unadjusted models, including CA in estimates of 
BA gave the best fit (see log likelihood in the right column) and this 
was followed by CA. The latter had the highest hazard ratio (HR), 
followed by the FI-combined. In the model adjusted for age and sex, 
the betas for BAEC and the HRs were higher than for BAE, but the log 
likelihoods were the same. The log likelihood was the highest for the 
model that included FI-combined.

Figure  1.  Definition of the difference Δ between the estimated biological 
age and chronological age (CA) of a person (indicated by the solid circle), 
illustrated for the jth biomarker Xj. These differences Δj obtained for 
biomarkers significantly correlated with CA (j  =  1,…, m) are averaged 
(equation 5) with the weights depending on the slopes and residual variances.
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The impact on the discriminative ability of either method 
to calculate BA to predict mortality was moderate but lower 
for the BAE (area under the receiver-operating characteristic, 
AUC  =  0.679) compared with the BAEC (AUC  =  0.699); these 
were equal after adjusting for age and sex (AUC  =  0.726) but 
still lower than with FI-combined (AUC  =  0.735; Table  3). We 
also investigated how the discriminative ability of the BAEC to 
predict mortality depended on the relative weight of the CA, ε, 
which inversely corresponds to the BA variance, sBA

2 . The results 
(Table 4) show that when ε increased (ie, meaning that the vari-
ance sBA

2  decreased) the ability of the BAEC to accurately predict 
mortality increased (column 5). Even so, using the value of BA 
that gave the greatest weight to CA was still inferior if the model 

was adjusted for age. In that case, the variance sBA
2  made no dif-

ference to the value of the AUC (column 3).

Discussion

We investigated the properties of two estimates of BA and ana-
lyzed their relationships with three FIs (FI-LAB, FI-CSHA, and the 
FI-combined). We compared how each of these five estimates dis-
criminated people in relation to mortality and how this could be 
modified by accounting for CA. We found that both BA measures 
were moderately correlated with the FI-LAB and weakly with the 
FI-CSHA. That is not surprising, as the FI-LAB is composed of 
dichotomized biomarkers, half of which were used to calculate the 
BAs, whereas the FI-CSHA contains more clinically evident infor-
mation about health status. Of the two versions of the BA, BAE 
(based exclusively on biological measures) was more strongly cor-
related with the FIs than was the BAEC that took into account CA. 
Both BAs had comparable performances in the adjusted Cox pro-
portional hazards regressions and the receiver-operating charac-
teristic analyses, although both were inferior to the FI-combined.

Both versions of the BA estimates were suggested by Klemera 
and Doubal (17) who, however, favored the second version, BAEC 
that treats CA as a “biomarker.” This BAEC has also been used by 
others (18,19,34). The major practical argument of Klemera and 
Doubal (16) in favor of using BAEC was that it gave a narrower range 
of estimated BA than did BAE. This, they argued, allowed them to 
guard against overestimating the age of people who had extreme 
biomarker values, who otherwise might be estimated to have a BA 
much beyond the known human lifespan (compare Figure 2B and C).  
Perhaps an even more important advantage of using BAEC might be if 
it were to provide a more accurate prediction of mortality than does 
BAE. Although this has been reported previously (18), the differ-
ence between BAEC and BAE was not specified, and the comparisons 
they reported with other candidate BA measures showed only small 
differences in predicting mortality (18). In short, it was not clear 
whether the above advantages were important. Here, in the Cox 
regression model, the HRs were lower for BAE (HR = 1.018, 95% 
confidence interval = 1.012–1.023) than for BAEC (HR = 1.027, 95% 
confidence interval = 1.019–10.035). Even so, the Z scores were the 
same (Z = 6.817) for both BAEC and BAE. In other words, there was 
no advantage to using the more complicated version of BAEC than 
simply using BAE in a model that adjusted for CA.

Furthermore, in our view, embedding CA in BA estimation risks 
not just lack of transparency of its effect, but more importantly, 

Figure 2.  (A) The histogram of the difference (Δ) between estimated biological age BAE from equations (1), (5), and (6) and CA; (B) BAE estimated using equations 
(1), (5), and (6). (C) BAEC estimated using equation (3) with wCA corresponded to the s

BC

2 150= . The histograms are overlaid with the normal curves with the 
parameter: for Δ: mean = 0.24 (SD = 16.39); for BAE: mean = 80.9 (SD = 17.83), and for BAEC: mean = 80.8 (SD = 11.1).

Table 1.  Pearson Correlation Coefficient Between CA and Biomarkers

Correlation 
With CA

Correlation of the 
Log Biomarker 
With CA p Value

Albumin (g/L) −0.236 −0.234 <.0001
AST (SGOT; IU/L) −0.007 −0.059 .821
BP, supine systolic (mmHg) −0.008 −0.012 .800
BP, supine diastolic (mmHg) −0.130 −0.131 <.0001
Calcium (mM) −0.121 −0.120 .0001
Creatinine (mM) 0.142 0.142 <.0001
Folate (nM) −0.005 −0.008 .869
Folate, RBC (nM) −0.042 −0.024 .469
Glucose, fasting (mM) 0.041 0.053 .200
Hemoglobin (g/L) −0.246 −0.243 <.0001
Mean corpuscular volume (fL) 0.036 0.035 .259
Phosphatase, alkaline (IU/L) 0.081 0.066 .01
Phosphorus, inorganic (mM) 0.110 0.118 .004
Potassium (mM) −0.010 −0.120 .728
Protein, total (g/L) −0.146 −0.147 <.0001
Sodium (mM) 0.039 0.038 .209
TSH (mIU/L) 0.075 — .020
T4, Free (pM) −0.026 −0.01 .476
Urea (mM) 0.240 0.252 <.0001
Urine cg −0.060 — .154
Vitamin B12 (pg/L) −0.041 −0.059 .196
White blood cells (number/L) 0.021 0.015 .495

Notes: AST = aspartate aminotransferase; BP = blood pressure; CA = chron-
ological age; RBC = red blood cell; TSH = thyroid-stimulating hormone.
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tautology. If the idea of BA is to quantify heterogeneity in health 
of people of the same CA, it is not clear to us what is gained by 
empirically optimizing the weight of CA to achieve a tighter cor-
relation between BA and CA. This seems self-defeating, even if it 
avoids having some elderly people with adolescent BAs on the one 
hand or Methuselah-like estimates on the other hand. The BAEC lies 
within the boundaries (CA, BAE) approaching the limits on the left or 
on the right depending on the relative weight ε. It is also clear that 
adding CA to the battery of biomarkers drags down the estimates of 
BA closer to CA preventing the estimates of BA being too high (eg, 

>120 years). Whereas this might be considered by some as an advan-
tage of the BAE, this happens, however, at the expense of its clarity. 
We have demonstrated that including CA in the list of biomarkers is 
unnecessary—CA is almost always known.

Klemera and Doubal (17) anticipated such skepticism, but their 
explanation, in our view, is based more on a strategy to avoid extreme 
values than it is on an attempt to address the systems biology. In con-
trast, for example, the FI robustly demonstrates an empirical limit to 
deficit accumulation at 0.7, which, without any additional manipu-
lation, appears not to vary even in circumstances of extreme old age 

Figure 3.  BAE is strongly associated with the FI-LAB (A) than with the FI-CSHA (B). Similarly, BAEC is strongly associated with FI-LAB (C) than with the FI-CSHA 
(D) although BACE relationships with CA weaker than with BAE. The dots represent individuals’ values of the BA and FI-LAB; solid lines are the least squares 
regressions of BA on FI-LAB (A and C) and FI-CSHA (B and D).

Figure 4.  Kaplan–Meier survival curves for grades of the BAE (A) and BAEC (B). The cut-points for the strata are as follows: <65, 65–75, 75–100, and >100.



882� Journals of Gerontology: BIOLOGICAL SCIENCES, 2017, Vol. 72, No. 7

(35,36) or critical illness (37,38) and which likewise is not exceeded 
in a naturally aging animal model (26). The physical basis for how 
this limit comes about is now a matter of active investigation (39).

In this article, we demonstrated that there is a simple analyti-
cal relationship between the two measures of BA (equations 3 and 
4). When CA is included in the model, it brings the BA estimate 
down toward CA. This effect is stronger if the relative weight of 
CA increases (or the variance sBA

2  decreases). Where any biomarker 
shows only small variability across individuals, its ability to inform 
us about biological aging is low. That is an additional argument 
against using CA as a (bio)marker and therefore against using 
BAEC in assessing biological aging. CA, however, could be used 
in addition to BAE in outcome prediction models as well known 
and almost always done. Belsky and coworkers (19) used BAEC to 
quantify biological aging in young adults. It is possible that similar 
results would be obtained if they have used BAE instead of BAEC, 
although the margins of the estimates would have been broader. 

Even so, replicating these analyses with a younger sample would 
be a useful next step, as well as incorporating information from 
multiple time points (40).

Perhaps even more important, instead of first calculating BA 
and then comparing that value with CA, we could first calculate 
the difference (Δ) between BA and CA (equation 5). In assessing 
an individuals’ vulnerability, this difference makes more sense than 
the absolute value of BA. Those who are at greater risk will have a 
greater value of this difference than those with low or negative val-
ues of Δ. In essence, Δ defines the difference between the state of the 
individual (defined by the m-dimensional vector of biomarkers) and 
an age-specific norm (here the regression line). Such norms could be 
age, sex, and even population specific (41).

The difference between the individual and the “norm” can be 
assessed in different ways, for example, using a FI as a general 
indicator of health, aging, and well-being (42–44) where the norm 
means the absence of deficits, although the norm could be defined on 
the basis of minimizing mortality risk (44). Note that BA can be also 
estimated from the FI (45–47) by expressing the differences in health 
status in the timescale. Interestingly, the FI consistently shows a limit 
of about 0.7 (ie, 70% of deficits present in the individual), the higher 
level is incompatible with life (35,48). We observed no such a limit 
with BAE and BAEC estimates. Note however that when an estimate 
of BA was produced from the FI it did not exceed the maximally 
observed life span (47).

Our data too should be interpreted with caution. Our sample 
was not representative as discussed in ref. (28). The biomarker 
sample size was relatively small, preventing us from performing the 
analyses separately in men and women. Some results of our anal-
yses were different from what has been reported previously using 
the NHANES data (17). Both the list of biomarkers and the age 
of the samples were different (65  years and older in CSHA and 
30–75 years in NHANES), which might explain the differences in 
the AUC we presented here and what was reported by Levine (17). 

Table 2.  Cox Proportional Hazards Regression Model

Beta Standard Error Z Score Hazard Ratio 95% Confidence Interval −Log L × 1,000

Unadjusted
  Age (CA) 0.076 0.007 10.878 1.079 1.074–1.094 3.2464
  BAE 0.025 0.002 10.650 1.025 1.021–1.030 3.2560
  BAEC 0.038 0.003 11.792 1.039 1.032–1.046 3.2444
  FI-LAB 0.032 0.004 7.607 1.032 1.024–1.041 3.2819
  FI-CSHA 0.028 0.004 7.410 1.029 1.021–1.037 3.2819
  FI-combined 0.051 0.005 9.873 1.051 1.041–1.063 3.2616
Adjusted
  Sex −0.296 0.093 −3.186 0.744 0.617–0.896 3.2199
  Age 0.062 0.008 8.11 1.063 1.048–1.080
  BAE 0.018 0.003 6.817 1.018 1.012–1.023
  Sex −0.296 0.093 −3.186 0.744 0.617–0.896 3.2199
  Age 0.053 0.008 6.481 1.054 1.037–1.072
  BAEC 0.026 0.004 6.817 1.027 1.019–1.035
  Sex 0.221 0.094 −2.352 0.892 0.665–0.967 3.2282
  Age 0.072 0.007 9.926 1.074 1.059–1.090
  FI-LAB 0.025 0.004 5.286 1.028 1.014–1.031
  Sex −0.303 0.093 −3.2252 0.738 0.613–0.890 3.2258
  Age 0.074 0.007 10.240 1.077 1.062–1.093
  FI-CSHA 0.024 0.004 5.774 1.023 1.015–1.031
  Sex 0.239 0.093 −2.556 0.785 0.653–0.949 3.2156
  Age 0.068 0.007 9.360 1.071 1.055–1.086
  FI-combined 0.040 0.005 7.375 1.041 1.030–1.052

Notes: BA = biological age; CA = chronological age; CSHA = Canadian Study of Health and Aging; FI = frailty index.

Table 3. The AUC With 95% Confidence Intervals for Different Com-
binations of Variables and Their Combinations*

AUC 95% Confidence Interval

Age + sex 0.698 0.665–0.730
BAE + sex 0.679 0.646–0.712
BAEC + sex 0.699 0.667–0.731
Age + sex + BAE 0.726 0.695–0.757
Age + sex + BAEC 0.726 0.695–0.757
Age + sex + FI-LAB 0.715 0.684–0.747
Age + sex + FI-CSHA 0.725 0.694–0.756
Age + sex + FI-combined 0.735 0.705–0.766

Notes: AUC = area under the receiving-operating characteristic; BA = bio-
logical age; CSHA = Canadian Study of Health and Aging; FI = frailty index.

*BAEC was calculated with ε = 0.5 ( )s
BA

2 350= .
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For example, Levine reported that BA most accurately predicted 
mortality although, similarly to our report, the differences were 
marginal. The higher level of the AUC in the receiver-operating char-
acteristic analysis obtained by Levine can be likely attributed to the 
larger sample size used in that study (17).

One advantage of using a FI to measure heterogeneity is that its 
calculation does not require any imputation—the FIs are generally 
robust in respect to the variables that make them up. In other words, 
an FI allows for some missing information to be dealt with (eg, if in 
the individual 4 out of 40 deficits were missing, the FI can be calcu-
lated by dividing the number of deficits present in this individual to 
36, see also ref. 33). In this sense, the FI might be more appropriate 
for assessing the predictive models than the BA measures, although 
testing this hypothesis would require more head-to-head compari-
sons in other data sets.

An important aspect of this study is that we were able to pre-
sent head-to-head comparisons of two measures of BA with three 
FI measures. Here, we compared three FIs with two versions of BA 
and in this way can understand the advantage of using each of them 
to evaluate the complexity of health and aging. In our data, none of 
these measures, considered separately, predict mortality as well as 
does CA, but each adds substantially to predicting mortality using 
CA. This is especially true for the FI-combined, which showed an 
impact on mortality prediction equal to CA. It has been pointed out 
that even though “the problems of old age come as a package,” most 
studies of the diseases of old age do not take this into account (49). 
In consequence, measures that can quantify the package in which 
these problems come, estimate their collective impact, and expose 
characteristic systems features are a necessary area of investigation 
(46). This speaks about the need for a collaborative, multidiscipli-
nary approach to aging research (50–52). These considerations are 
motivating the additional inquires by our group, including under-
standing the physical basis of age-related variability in health.

Supplementary Material

Supplementary data is available at The Journals of Gerontology,
Series A: Biomedical Sciences and Medical Sciences online.
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