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Abstract

The added value of diffusion-weighted magnetic resonance imaging (DW-MRI) for the detection, 

localization, and staging of primary prostate cancer has been extensively reported in original 

studies and meta-analyses. More recently, DW-MRI and related techniques have been used to non-

invasively assess prostate cancer aggressiveness and estimate its biological behavior. The present 

article aims to summarize the potential applications of DW-MRI for non-invasive optimization of 

pretherapeutic risk assessment, patient management decisions, and evaluation of treatment 

response.

Introduction

More than thirty years have passed since the first in-vivo magnetic resonance imaging (MRI) 

studies of the prostate. The anatomical MRI sequences (T1- and T2-weighted) applied in the 

early day of MRI remain valid and represent the workhorses of prostate MRI, but currently 

these are supplemented with a multiparametric approach which includes one or more 

‘functional’ imaging sequences, including diffusion-weighted (DW), dynamic contrast-

enhanced (DCE), and/or MR-spectroscopy (MRS) techniques [1–2]. The last decade has 

witnessed mounting research activities on these techniques, particularly on DW-MRI, as 

reflected in the increasing number of Medline entries on this topic for the assessment of 

prostate cancer (Figure 1).

Extensive literature is now available that documents that the addition of DWI to standard 

T2w sequences significantly improves the diagnostic performance of prostate MRI [3–5]. A 

recently published meta-analysis concluded that a two-parameter approach (i.e. T2w MRI + 

DWI or DCE) may be sufficient for routine prostate imaging and that the combination of 

T2w MRI plus DWI may be more favorable [6]. Emerging high-resolution techniques might 

further increase the sensitivity of DWI to small or sparse cancer foci despite their lower 

signal-to-noise and contrast-to-noise ratios [7–8]. At present, as a broad body of evidence 

supports the routine application of DW-MRI from a diagnostic accuracy perspective, the 

scientific interest has expanded towards possible clinical implications of DWI-derived 
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parameters and their decision-support potential. There are a growing number of publications 

documenting potential applications of DWI for non-invasive optimization of pre-therapeutic 

risk assessment, patient management decisions, and evaluation of treatment response. In this 

review, we aim to provide current state and scientific trends in these fields.

DW-MRI as a tool for risk-assessment

The well recognized biological heterogeneity of PCa is considered the key factor influencing 

the exceptionally variable natural history of the disease. A considerable proportion of slow-

growing, indolent cancers do not affect the patients’ life expectancy, as repeatedly shown in 

the literature and recently summarized in a meta-analysis of autopsy-studies from the 

prostate-specific antigen (PSA) era that reported a 47.3% prevalence of undiagnosed PCa in 

men aged 80 or older [9]. Other patients, however, suffer from rapidly expanding, metastatic 

and often fatal clones [10]. At the time of diagnosis, accurate risk-assessment is therefore 

crucial to avoid potentially harmful overtreatment for the former and delayed treatment for 

the latter group. The pathologic Gleason scoring (GS) system and its 2005 revised version 

[11] build the basis for the vast majority of currently applied risk-assessment tools. A recent 

analysis from the John’s Hopkins Hospital confirmed the prognostic significance of the GS 

in a modern series of 7,869 patients and proposed a 5-point prognostic scale (i.e. grade I: GS 

3+3=6; grade II: GS 3+4=7; grade III: GS 4+3=7; grade IV: GS 4+4=8; grade V: GS ≥9) 

[12]. The challenge with the GS, however, is that there are considerable discrepancies 

between GS on transrectal ultrasound (TRUS) biopsy-derived and prostatectomy-derived 

histological specimen. A meta-analysis of 14,839 patients showed that after radical 

prostatectomy, 38% of all GS 2–6 tumors were upgraded and 50% of GS 8–10 tumors were 

downgraded [13]. On this issue, DW-MRI may offer two types of problem-solving 

strategies, i.e. (1) generation of quantitative parameters for GS-estimation and (2) selection 

of an appropriate target lesion for guided biopsy.

It was in the late 2000’s that researchers noticed that the degree of diffusion restriction of 

PCa foci, as quantified by the apparent diffusion coefficient (ADC), correlates with the 

lesion’s GS on whole-mount histopathology specimen [14–21]. It has also been 

demonstrated that the median ADC value of a MRI-visible focus is a better predictor of the 

presence of intermediate- or high-risk PCa (i.e. GS>6 on prostatectomy specimen) than 

TRUS-guided biopsy [22]. Subsequent research revealed that histogram-derived descriptive 

variables, such as the 10th percentile of the ADC, may perform better in predicting the final 

GS than the lesion’s mean/median ADC [23–24]. However, the overlap of ADC values for 

different GS was substantial in these studies, meaning that there was no clear cut-off ADC-

value for the distinction of low- vs. high-grade cancers (Figure 2).

This variability of ADC-values might be explained by biological as well as technical 

considerations. On a micro-anatomical level, the median ADC was shown to correlate with 

the cell density and amount of glandular tissue within a single 2.5 × 2.5 mm2 voxel but not 

consistently with the prevalent Gleason pattern [25]. Others verified that cell density of a 

PCa lesion is a major determinant of its pixel-by-pixel ADC-value [26], and that its ADC-

value is also influenced by the proliferation rate, as assessed by its Ki-67 labeling index 

[27]. The fact that the extent of diffusion restriction is not exclusively determined by the 
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Gleason pattern but other additional biological features may explain the repeatedly observed 

imperfect correlation between ADC and GS. Technical issues complicate matters. Although 

ADC-measurements are well reproducible on an intra-individual level [28], they are highly 

dependent on technical factors, e.g. the choice of b-values [29–30] or the use of an 

endorectal coil [31]. One approach to overcome the inherent problem of reproducibility and 

comparability of ADC-measurements is to analyze the spatial relation of single voxels 

within a tumor rather than statistical descriptors of absolute whole-lesion ADC-values. 

Texture analysis, for example, is one way to mathematically describe the degree of disorder 

among the voxels within a tumor, as schematically demonstrated in Figure 3 and Figure 4.

This method was shown to deliver ADC-map derived parameters that are independently 

associated with a lesion’s GS [32] and outperformed mean ADC in estimating the amount of 

Gleason 4 pattern in GS 7 tumors [33]. Another approach to overcome the limitations of 

conventional DW-MRI is the application of more advanced DWI-techniques, such as 

diffusion kurtosis imaging or intravoxel incoherent motion imaging [34]. Intravoxel 

incoherent motion (IVIM) imaging is a DWI-technique that uses three or more b-values in 

order to account for the non-monoexponential behavior of ADC as a function of b-values. It 

also allows to separate true diffusion effects from perfusion (i.e. ‘pseudo-diffusion’) effects 

at low b-values. In prostate cancer, IVIM-derived variables (i.e. molecular diffusion 

coefficient D, and perfusion fraction f) were shown to be significantly lower than in benign 

prostate tissue [35–36]. Others found that high-grade prostate cancers had significantly 

lower D-values than low-grade lesion, allowing for a more accurate estimation of tumor 

grade than ADC [37]. In another analysis, however, f and the perfusion-related diffusion 

coefficient (D*) were not significantly different in prostate cancer and benign prostatic 

hyperplasia [36] and further research will have to identify the true clinical value of this novel 

technique. Diffusion kurtosis imaging (DKI) is a DWI-technique that takes into account that 

water molecules in biological tissues do not follow a Gaussian pattern of distribution. This 

deviation from a uniform diffusion pattern can be mathematically described as kurtosis and 

visualized by DKI, which applies diffusion gradients with multiple b-values in multiple 

spatial directions [38]. The DKI-derived metric K has been shown to be significantly 

different in cancer than in non-cancerous prostate tissue [39] and has also been used to 

differentiate high-grade from low-grade prostate cancer [40–42]. Others, however, found that 

the K-values of prostate cancer and benign prostatic hyperplasia showed marked overlap 

[43] and that DKI-derived metrics did not provide a significant benefit for detection and 

grading of prostate cancer when compared to standard ADC-maps [44]. An excellent review 

on the basic principles and body-imaging applications of DKI is provided in [45].

In contrast to standard TRUS-guided biopsy, where tissue samples are taken in a systematic 

fashion from pre-defined regions of the prostate gland, DW-MRI targets the lesion with the 

highest restriction on ADC maps (i.e. the ‘index lesion’). With this approach, Hambrock and 

colleagues were able to correctly determine the highest Gleason grade in 88% of patients 

prior to prostatectomy (n=34), compared to 55% of a matched control group (n=64) who 

underwent TRUS-guided biopsy (p=0.001) [46]. Zhang et al. directly compared the two 

methods in a single cohort of 48 patients prior to radical prostatectomy [47] and found that 

DW-MRI guided biopsy correctly assessed the highest Gleason grade in 77.1 % vs. 72.9% 

for TRUS-guided biopsy (p=0.727). The different outcomes of these two prospective studies 
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might be explained by the different techniques applied for DW-MRI guided biopsy, each 

with different strengths and limitations. While Hambrock and colleagues biopsied the 

patients within the MR scanner (i.e. in-bore approach), Zhang et al. performed fusion 

biopsies, a technique that fuses stored MR-images with real-time ultrasound. A prospective 

trial in 54 patients with low-risk prostate cancer who underwent MR-guided biopsy of 

cancer-suspicious lesions showed that the mean ADC accurately predicted the presence and 

grade of PCa in these lesions (area under the ROC-curve for the presence of PCa: 0.73) [48]. 

DW-MRI guided biopsy may therefore increase the accuracy of pre-therapeutic risk 

assessment but further studies are needed to resolve technical issues and definitively prove 

its superiority to standard biopsy strategies.

DW-MRI as a support for management decisions

Due to the significant biological heterogeneity of PCa and the relatively indolent nature of a 

considerable proportion of cancers, active surveillance (AS) is becoming an accepted 

alternative management approach to radical treatment in patients with localized low-risk 

PCa. A nationwide survey among 2,133 Japanese urologists in January 2014, for instance, 

revealed that 73.1% of them used some sort of AS, although the authors found a substantial 

variation of inclusion criteria and follow-up protocols [49]. There is a growing body of 

literature verifying that AS is a reasonable and safe management strategy for selected PCa 

patients. In a recent report on a series of 469 men being managed by AS between 1997 and 

2009, the 10-year cancer specific survival rate was 100% [50]. However, about a quarter of 

this cohort dropped out of the AS-protocol, most commonly due to pathologic progression 

on re-biopsy, PSA-progression, and patient preference, and the estimated probability of 

undergoing treatment within 10 years after the start of AS was reported to be 38% [50]. 

Given this considerable drop-out rate, there is the need for more reliable risk-assessment 

tools that can substantiate the decision of AS eligibility. There are some encouraging reports 

in the literature pointing towards DW-MRI-derived parameters, most importantly ADC, 

being a step in this direction. In a prospective study of 86 men managed by AS for low-risk 

PCa, tumor ADC was a significant predictor of upgrading on repeat biopsy and deferred 

radical treatment (incidence: 45%, area under the AUC curve: 0.83) [51]. These findings 

were reaffirmed by other studies that found that a lesion’s mean ADC or semi-quantitatively 

assessed degree of diffusion restriction on ADC maps were independent predictors of 

disease progression, upgrade on repeat biopsy, and/or switch to radical treatment [52–54]. In 

a prospective study on 50 men on AS showed that patients who progressed to radical 

treatment showed a significant drop of tumor mean ADC on follow-up DW-MRI while mean 

ADC remained stable in non-progressors [55]. Tumor volume on ADC maps might be 

another parameter that could optimize patient selection for AS, as shown in a group of 188 

candidates for AS, in whom the tumor lesion’s diameter was an independent predictor of 

insignificant PCa (odds ratio: 0.32, p=0.014) [56]. More advanced DW-MRI techniques, 

such as diffusional kurtosis imaging [57] or diffusion-prepared balanced steady-state free 

precession [8] are possible alternatives to ADC values, and preliminary data shows that in 

candidates for AS they may predict unfavorable histology more accurately [57,8]. DW-MRI 

may also be useful to identify patients who get overgraded on TRUS-guided prostate biopsy 

and are incorrectly deemed nonsuitable for AS. In a study of 304 patients who had been 
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diagnosed with a GS 3+4=7 cancer on TRUS-guided biopsy, Gondo et al. identified T2- and 

DW-MRI-derived information as independent predictors of a GS 3+3=6 on final 

prostatectomy-derived histopathology (area under the ROC curve: 0.88–0.92). Their MRI-

based predictive model outperformed a model solely based on clinical parameters (area 

under the ROC curve: 0.73). For patients after radical prostatectomy, the ADC value of the 

index lesion was shown to be an independent predictor of biochemical recurrence [58].

Focal ablation therapies, such as high-intensity focused ultrasound (HIFU), cryo- or laser-

ablation, are emerging alternatives to radical treatment in localized PCa. It is hoped that 

these techniques may achieve local tumor control with preservation of erectile and urinary 

function. Similar to AS, proper patient selection is crucial for successful implementation of 

these minimal-invasive treatment strategies. DW-MRI may support selection algorithms and 

definition of target areas within the gland, as demonstrated in some preliminary studies. In 

their study on 162 candidates for focal PCa therapy, Matsuoka and colleagues showed that 

with the addition of DW-MRI to 14-core TRUS-guided biopsy, the negative predictive value 

for the determination of cancer-free prostate quadrants could be increased from 70.6% to 

91.1% in the anterior prostate and from 78.5% to 91.7% in the posterior prostate [59]. 

However, when using DW-MRI for lesion-targeting and procedure planning, it should be 

noted that ADC maps may underestimate the tumor volume in up to 50% of cases, especially 

in low-volume PCa [60].

DW-MRI as a tool for treatment response evaluation

With expanding individualization and diversification of management approaches to PCa, 

non-invasive imaging methods gain importance to monitor treatment response and ensure 

early detection of treatment failure. DW-MRI derived parameters have been described as 

potential markers of treatment response in several scenarios. Androgen-deprivation therapy 

was shown to increase the ADC of primary PCa lesions while decreasing the ADC of benign 

prostate tissue [61–63]. In metastatic PCa treated with androgen-deprivation, Reischauer and 

colleagues showed a significant increase of mean ADC of 99mTc-dicarboxypropane 

diphosphonate scintigraphy-detected pelvic bone metastases within one month [64]. This 

method could therefore allow for quantitative treatment response assessment in osteoblastic 

metastases, which are deemed non-measurable according to current response evaluation 

criteria (i.e. RECIST version 1.1) [65]. DW-MRI has also been used to assess and quantify 

tumor necrosis after targeted and photodynamic PCa therapy in animal models where the 

mean/median ADC of treated tumors significantly increased within 24–48 hours while it 

remained stable in control animals, respectively [66–67]. In another mouse model of 

metastatic prostate cancer, it was shown that cabozatinib-induced tumor necrosis was 

paralleled by an increase in mean tumor ADC [68]. In patients with treatment-naïve bone 

metastases (i.e. seven men with PCa and four women with breast cancer), Blackledge et al. 

used a semi-automatic segmentation algorithm for estimation of whole-body tumor burden 

and treatment response evaluation with DW-MRI [69]. Patients who responded to systemic 

treatment, as determined by imaging findings, tumor markers, and clinical parameters, 

showed a significantly larger increase in median global ADC than non-responders [54]. The 

change in whole-body tumor volume, as quantified by ‘tumor diffusion volume’, was 

significantly higher in non-responders than in responders (Figure 5) [69].
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Others found that successful intensity-modulated radiotherapy increases the cancer’s mean 

ADC early after initiation of therapy [70–72] and that post-radiation mean ADC-values may 

help to identify patients at risk for disease recurrence within 3 years (area under the ROC-

curve: 0.88) [73]. In the field of laser interstitial thermal therapy, a preliminary study on five 

PCa patients reported that T2w-MRI-derived texture features and mean ADC values were 

most significant to detect and quantify therapy-induced changes [74].

Conclusion

As an integral part of multiparametric prostate MRI, DW-MRI improves the diagnostic 

performance in terms of tumor localization and local tumor staging. DW-MRI derived 

quantitative metrics, most importantly ADC, histogram analysis, diffusion kurtosis and 

texture features, can help to optimize pre-therapeutic risk assessment. These parameters can 

support and guide management decisions, most promising for the proper selection of 

patients for active surveillance programs. Finally, there is growing evidence for the use of 

DW-MRI in the assessment of treatment response of primary and metastatic PCa. A deeper 

understanding of the biologic and molecular basis of DW-MRI and the development of 

technical and analytic standards are currently the key challenges for translation of these 

novel applications into clinical routine.
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Figure 1. 
Number of annual Medline Entries for the search terms ‘prostate cancer magnetic resonance 

+ SPECTROSCOPY’ (squares, dashed line), ‘prostate cancer magnetic resonance + 

CONTRAST ENHANCED’ (triangles, dotted line), and ‘prostate cancer magnetic resonance 

+ DIFFUSION’ (circles, solid line).
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Figure 2. 
Box and whisker plots showing the mean ADC of normal prostate tissue and prostate cancer 

lesions stratified by Gleason score from [17]. This graph illustrates the significant 

correlation of ADC and Gleason score but also highlights the substantial overlap between 

the categories. For example, a given cancer with a mean ADC of 0.9×10−3mm2/s could fall 

into different categories. As a consequence, there are no clear ADC cut-off values to 

differentiate low- from high grade tumors.
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Figure 3. 
Example for the calculation of texture features from a grey-level co-occurrence matrix 

(GLCM). For the sake of simplicity, a 4 × 4 pixel grey-scale image with only three grey-

levels (i.e. white, grey, and black) was chosen. In Step 1, a GLCM is deducted from this 

image by considering the relationship of every pixel to its neighborhood. We start with the 

co-occurrence of ‘black + black’, which occurs twice in the image, as indicated by the red 

circles. The absolute count of the different co-occurrences is recorded in a table, which - 

after its completion - is named the GLCM. In Step 2, the GLCM is normalized so that each 

cell doesn’t contain a count but the probability of every possible co-occurrence. These 

probabilities provide the basis for the calculation of the various ‘texture features’ according 

to the equations shown (Step 3).
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Figure 4. 
Whole-mount prostatectomy histopathology specimen (a), multiparametric prostate MRI 

(b,c) with texture analysis (d) of a 63-year-old man. (a) Whole-mount histopathology 

demonstrated a Gleason 3+4 prostate cancer (green circle). (b) T2-weighted imaging showed 

a corresponding region of low signal intensity in the peripheral zone (green circle) as 

compared to non-cancerous tissue (yellow circle). (c) The cancer showed restricted diffusion 

on the apparent diffusion coefficient (ADC) map (green circle). (d) Texture analysis of the 

ADC map showing the normalized ADC Entropy map of the tumour. Reprinted with 

permission from [32].
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Figure 5. 
Pre- and post-treatment ADC-value distributions derived from whole-body DW-MRI of 

patients undergoing chemotherapy for metastasized prostate cancer from [69]. In contrast to 

a non-responder (left diagram), the authors observed a clear shift of the histogram 

distribution towards higher ADC values in a responder (right diagram).
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