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Deep Learning for Plant Identification in Natural Environment
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Plant image identification has become an interdisciplinary focus in both botanical taxonomy and computer vision. The first plant
image dataset collected bymobile phone in natural scene is presented, which contains 10,000 images of 100 ornamental plant species
in Beijing Forestry University campus. A 26-layer deep learningmodel consisting of 8 residual building blocks is designed for large-
scale plant classification in natural environment.The proposedmodel achieves a recognition rate of 91.78% on the BJFU100 dataset,
demonstrating that deep learning is a promising technology for smart forestry.

1. Introduction

Automatic plant image identification is the most promising
solution towards bridging the botanical taxonomic gap,
which receives considerable attention in both botany and
computer community. As the machine learning technol-
ogy advances, sophisticated models have been proposed
for automatic plant identification. With the popularity of
smartphones and the emergence of Pl@ntNet mobile apps
[1], millions of plant photos have been acquired. Mobile-
based automatic plant identification is essential to real-world
social-based ecological surveillance [2], invasive exotic plant
monitor [3], ecological science popularization, and so on.
Improving the performance of mobile-based plant identifi-
cation models attracts increased attention from scholars and
engineers.

Nowadays, many efforts have been conducted in extract-
ing local characteristics of leaf, flower, or fruit. Most
researchers use variations on leaf characteristic as a com-
parative tool for studying plants, and some leaf datasets
including Swedish leaf dataset, Flavia dataset, and ICL
dataset are standard benchmark. In [4], Söderkvist extracted
shape characteristics and moment features of the leaves and
analyzed the 15 different Swedish tree classes using back
propagation for the feed-forward neural network. In [5], Fu et
al. chose the local contrast and other parameters to describe
the characteristics of the surrounding pixels of veins. The
artificial neural network was used to segment the veins and

other leaves. The experiment shows that the neural network
is more effective in identifying the vein images. Li et al.
[6] proposed an efficient leaf vein extraction method by
combining snakes technique with cellular neural networks,
which obtained satisfactory results on leaf segmentation.
He and Huang used the probabilistic neural network as a
classifier to identify the plant leaf images, which has a better
identification accuracy comparing to BP neural network [7].
In 2013, the idea of natural-based leaf recognition was pro-
posed, and the method of contour segmentation algorithm
based on polygon leaf model was used to obtain contour
image [8]. With the deep learning becoming a hot spot in
the field of image recognition, Liu and Kan proposed texture
features in combination with shape characteristics, using
deep belief network architecture as a classifier [9]. Zhang
et al. designed a deep learning system which includes eight
layers of Convolution Neural Network to identify leaf images
and achieved a higher recognition rate. Some researchers
focus on the flowers. Nilsback and Zisserman proposed a
method of bag of visual word to describe the color, shape,
texture features, and other characteristics [10]. In [11], Zhang
et al. combined Harr features with SIFT features of flower
image, coding them with nonnegative sparse coding method
and classifying them by k-nearest neighbor method. In [12],
they raised a method of recognizing the picking rose by
integrating BP neural network. The studies of identifying
plants by fruit are relatively rare. Li et al. proposed themethod
of multifeature integration using preference Ainet as the
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Figure 1: Example images of the BJFU100 dataset. (a) Chinese buckeye, (b) metasequoia, (c) Ginkgo biloba, (d) hybrid tulip tree, (e)Weigela
florida cv. red-prince, (f) Yucca gloriosa, (g) Euonymus kiautschovicus Loes, (h) Berberis thunbergii var. atropurpurea, (i) mottled bamboo, (j)
Celastrus orbiculatus, (k) Parthenocissus quinquefolia, and (l) Viburnum opulus.

recognition algorithm [13]. After so many years continued
exploration into plant recognition technology, the dedicated
mobile applications such as LeafSnap [14], Pl@ntNet [1],
or Microsoft Garage’s Flower Recognition app [15] can be
conveniently used for identify plants.

Although the research on automatic plant taxonomy has
yield fruitful results, one must note that those models are
still far from the requirements of a fully automated ecological
surveillance scenario [3]. The aforesaid datasets lack the
mobile-based plant images acquired in natural scene which
vary greatly in contributors, cameras, areas, periods of the
year, individual plants, and so on. The traditional classi-
fication models rely heavily on preprocessing to eliminate
complex background and enhance desiring features. What
is more, the handcraft feature engineering is incapable of
dealing with large-scale datasets consisting of unconstrained
images.

To overcome aforementioned challenges and inspired by
the deep learning breakthrough in image recognition, we
acquired the BJFU100 dataset by mobile phone in natural
environment.The proposed dataset contains 10,000 images of
100 ornamental plant species in Beijing Forestry University
campus. A 26-layer deep learning model consisting of 8
residual building blocks is designed for uncontrolled plant
identification. The proposed model achieves a recognition
rate of 91.78% on the BJFU100 dataset.

2. Proposed BJFU100 Dataset and Deep
Learning Model

Deep learning architectures are formed by multiple linear
and nonlinear transformations of input data, with the goal
of yielding more abstract and discriminative representations
[16]. These methods have dramatically improved the state-
of-the-art in speech recognition, visual object recognition,

object detection, and many other domains such as drug
discovery and genomics [17]. The deep convolutional neural
networks proposed in [18] demonstrated outstanding perfor-
mance in the large-scale image classification task of ILSVRC-
2012 [19]. The model was trained on more than one million
images and has achieved a winning top-5 test error rate of
15.3% over 1,000 classes. It almost halved the error rates of the
best competing approaches. This success has brought about
a revolution in computer vision [17]. Recent progress in the
field has advanced the feasibility of deep learning applications
to solve complex, real-world problems [20].

2.1. BJFU100 Dataset. The BJFU100 dataset is collected from
natural scene by mobile devices. It consists of 100 species
of ornamental plants in Beijing Forestry University cam-
pus. Each category contains one hundred different photos
acquired by smartphone in natural environment. The smart-
phone is equipped with a prime lens of 28mm equivalent
focal length and a RGB sensor of 3120 × 4208 resolution.

For tall arbors, images were taken from a low angle at
ground as shown in Figures 1(a)–1(d). Low shrubs were shot
from a high angle, as shown in Figures 1(e)–1(h). Other
ornamental plantswere taken froma level angle. Subjectsmay
vary in size by an order of magnitude (i.e., some images show
only the leaf, others an entire plant from a distance), as shown
in Figures 1(i)–1(l).

2.2. The Deep Residual Network. With the network depth
increasing, traditional methods are not as expected to
improve accuracy but introduce problems like vanishing
gradient and degradation. The residual network, that is,
ResNet, introduces skip connections that allow the informa-
tion (from the input or those learned in earlier layers) to flow
more into the deeper layers [23, 24]. With increasing depth,
ResNets give better function approximation capabilities as
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Figure 2: (a) A basic building block. (b) A “bottleneck” building block of deep residual networks.
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Figure 3: Architecture of 26-layer ResNet model for plant identification.

they gain more parameters and successfully contribute to
solving vanishing gradient and degradation problems. Deep
residual networks with residual units have shown compelling
accuracy and nice convergence behaviors on several large-
scale image recognition tasks, such as ImageNet [23] and MS
COCO [25] competitions.

2.2.1. Residual Building Blocks. Residual structural unit uti-
lizes shortcut connections with the help of identity mapping.
Shortcut connections are those skipping one or more layers.
The original underlying mapping can be realized by feed-
forward neural networks with shortcut connections. The
building block illustrated in Figure 2 is defined as

𝑦 = 𝐹 (𝑥, {𝑊𝑖}) + 𝑥,
𝐹 = 𝑊2𝜎 (𝑊1𝑥) ,
𝜎 (𝑎) = max (0, 𝑎) ,

(1)

where 𝑥 and 𝑦 are the input and output vectors of stacked
layers, respectively. The function 𝐹(𝑥, {𝑊𝑖}) represents the
residual mapping that needs to be learned.The function 𝜎(𝑎)
denotes ReLU [26] and the biases are omitted for simplifying
notations. The dimensions of 𝑥 and 𝐹 must be equal to
perform the element-wise addition. If this is not the case, a
linear projection𝑊𝑠 is applied to match the dimensions of 𝑥
and 𝐹:

𝑦 = 𝐹 (𝑥, {𝑊𝑖}) + 𝑊𝑠𝑥. (2)

The baseline building block is shown in Figure 2(a). A
shortcut connection is added to each pair of 3 × 3 filters.
Concerning the training time on deeper nets, a bottleneck
building block is designed as in Figure 2(b). The three layers
are 1 × 1, 3 × 3, and 1 × 1 convolutions, where the 1 ×
1 layers are responsible for reducing and then restoring
dimensions, leaving 3 × 3 layer a bottleneck with smaller
input/output dimensions [23]. Bottleneck building blocks use
fewer parameters to obtain more abstraction of layers.

The overall network architecture of our 26-layer ResNet,
that is, ResNet26, model is depicted in Figure 3. As Figure 3
shows, the model is mainly designed by using bottleneck
building blocks. The input image is fed into a 7 × 7 convo-
lution layer and a 3 × 3 max pooling layer followed by 8 bot-
tleneck building blocks. When the dimensions increase, 1 ×
1 convolution is used in bottleneck to match dimensions.
The 1 × 1 convolution enriches the level of abstraction and
reduces the time complexity. The network ends with a global
average pooling, a fully connected layer, and a softmax layer.
We adopt batch normalization (BN) [27] right after each con-
volution layer and before ReLU [26] activation layer. Down-
sampling is performed by the first convolution layer, the max
pooling layer, and the 3, 5, and 7 bottleneck building blocks.

3. Experiments and Results

3.1. Implementation and Preprocess. The model implementa-
tion is based on the open source deep learning framework
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Figure 4: Evolution of classification accuracy in the test set.

keras [28]. All the experiments were conducted on a Ubuntu
16.04 Linux server with a 3.40GHz i7-3770 CPU (16GB
memory) and a GTX 1070 GPU (8GB memory). The 100
samples of each class are split into 80 training samples and
20 test samples. Compared with conventional classification
methods, data preprocess on deep learning approaches is
much simpler. In this paper, the inputs to the network are
RGB color images. All the images only need to be rescaled
to 224 × 224 pixels and then per-pixel value is divided by 255.
3.2. Training Algorithm. During the back propagation phase,
the model parameter is trained by the stochastic gradi-
ent descent (SGD) algorithm, with the categorical cross-
entropy loss function as optimization object. The SGD can
be expressed as follows:

𝛿𝑥 = 𝑤𝑥+1 (𝜎󸀠 (𝑤𝑥+1 ∙ 𝑐𝑥 + 𝑏𝑥+1) ∘ up (𝛿𝑥+1)) ,
Δ𝑤𝑥 = −𝜂 ∙ ∑

𝑖,𝑗

(𝛿𝑥 ∘ down (𝑆𝑥−1)) , (3)

where 𝛿𝑥 is sensitivity, 𝑤𝑥+1 is multiplicative bias, ∘ indicates
that each element is multiplied, up is upsampling, down is
downsampling,Δ𝑤𝑥 represents theweight update of the layer,
and 𝜂 is the learning rate. The cross-entropy loss function is
defined to be

𝐿 𝑖 = − log( 𝑒𝑓𝑦𝑖∑𝑗 𝑒𝑓𝑗 ) , (4)

where 𝑓𝑗 is the 𝑗th element in the classification score vector𝑓.
After some preliminary training experiments, the base

learning rate is set to 0.001, which is gradually reduced at
each epoch. The decay rate is 10−6 and the momentum is
0.9. Figure 4 shows the training process of ResNet26 model.
Test accuracy improves quickly since the first epochs and
stabilizes after 40 epochs.
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Figure 5: Test accuracy of the ResNet18, ResNet34, ResNet50 [23],
and ResNet26 model. The proposed ResNet26 outperforms the best
reference ResNet by 2.51%.

3.3. Results Analysis. To find the best deep residual network,
a series of experiments have been conducted on BJFU100
dataset. Figure 5 shows the comparison of test accuracy
among the proposedResNet26model and the original ResNet
model of 18, 34, and 50 layers [23] designed for ImageNet.
The ResNet18, ResNet34, and ResNet50 yield a test accuracy
of 89.27%, 88.28%, and 86.15%, respectively. The proposed
ResNet26 results in 91.78% accuracy which increases the
overall efficiency up to 2.51%.

The ResNet26 is the best tradeoff betweenmodel capacity
and optimization difficulty. For the size of BJFU100, ResNet26
contains enough trainable parameter to learn the discrim-
inative feathers, which prevents underfitting. Compared to
largermodel, ResNet26 results in fast and robust convergence
during SGD optimization, which prevents overfitting or falls
into local optimum.

4. ResNet26 on Flavia Dataset

To show the effectiveness of the proposed ResNet26 model,
a series of experiments have been performed on the publicly
available Flavia [29] leaf dataset. It comprises 1907 images of
1600 × 1200 pixels, with 32 categories. Some of the samples
are shown in Figure 6.We randomly select 80% of the dataset
for training and 20% for testing.

All the images are doubled and resized to 224 × 224
pixels. Per-pixel value is divided by the maximum value and
subtracted the mean values of the data.

The training algorithm is exactly the same as that applied
to the BJFU100 dataset. Figure 7 shows the training process
of ResNet26 model. Test accuracy improves quickly since the
first epochs and stabilizes after 30 epochs.

The test accuracy of each model is estimated by 10-
fold cross-validation, as visualized in Figure 8.The ResNet18,
ResNet34, and ResNet50 achieve a test accuracy of 99.44%,
98.95%, and 98.60%, respectively. The proposed ResNet26
gains 99.65% accuracy which increases the overall efficiency
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Figure 6: Example images of the Flavia dataset.
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Figure 7: Evolution of classification accuracy in the test set.

up to 0.21%. Table 1 summarizes our result and other pre-
viously published results on Flavia [29] leaf dataset. The
ResNet26 model achieves a 0.28% improvement compared
with the best-performing method.

5. Conclusion

The first mobile device acquired BJFU100 dataset containing
10,000 images of 100 plant species which provides data pillar
stone for further plant identification study. We continue to
expand the BJFU100 dataset by wider coverage of species and
seasons. The dataset is open for academic community, which
is available at http://pan.baidu.com/s/1jILsypS.Thiswork also
studied a deep learning approach to automatically discover
the representations needed for classification, allowing use
of a unified end-to-end pipeline for recognizing plants in
natural environment. The proposed model ResNet26 results
in 91.78% accuracy in test set, demonstrating that deep
learning is the promising technology for large-scale plant
classification in natural environment.

In future work, the BJFU100 database will be expanded
by more plant species at different phases of life cycle and
more detailed annotations. The deep learning model will be

26 34 5018
ResNet layers

0.90

0.92

0.94

0.96

0.98

1.00

Te
st 

ac
cu

ra
cy

 (%
)

Figure 8: Test accuracy of the ResNet18, ResNet34, ResNet50 [23],
and ResNet26 model on Flavia dataset. The proposed ResNet26
outperforms the best reference ResNet by 0.21%.

Table 1: Recognition rate comparison on Flavia dataset.

Method Recognition rate
PBPNN [21] 93.82%
SVM [22] 96.00%
DBNs (with “dropout”) [9] 99.37%
Our work 99.65%

extended from classification task to yield prediction, insect
detection, disease segmentation, and so on.
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