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Modeling the process of human tumorigenesis
Sneha Balani1, Long V. Nguyen1 & Connie J. Eaves1

Modelling the genesis of human cancers is at a scientific turning point. Starting from primary

sources of normal human cells, it is now possible to reproducibly generate several types of

malignant cell populations. Powerful methods for clonally tracking and manipulating their

appearance and progression in serially transplanted immunodeficient mice are also in place.

These developments circumvent historic drawbacks inherent in analyses of cancers produced

in model organisms, established human malignant cell lines, or highly heterogeneous patient

samples. In this review, we survey the advantages, contributions and limitations of current

de novo human tumorigenesis strategies and note several exciting prospects on the horizon.

I
dentifying established malignancies in humans is usually not a difficult clinical issue as most
human cancers do not become symptomatic until they are well advanced. Indeed, by the time
they are detected, most will already consist of millions, if not trillions, of cells exhibiting many

abnormal features1. These include evidence of invasive behaviour, deregulated growth, cells with
an abnormal morphology and disorganized histology, and possession of a diversity of
mutations2. How these can be usefully combined to generate more refined assessments of
categories and stages of human cancer development has, however, challenged pathologists for
decades. In addition, the molecular events involved in the early genesis of malignant human cell
populations have been particularly elusive. This is because these stages are not usually detected in
patients and, when they are, very little if any tissue is available for research studies. At the same
time, there is expanding interest in the possibility that a better understanding of the initial
changes that lead to an irreversibly transformed state and new ways to identify such changes
might revolutionize early detection strategies as well as therapeutic success rates. Many
approaches, both prospective and retrospective, have thus been developed to recreate and
interrogate the process of tumorigenesis. All have particular advantages, but also significant
caveats and shortcomings. What is new, are recent technological advances that are now enabling
malignant populations of human cells to be generated de novo from primary tissue sources.

Here, we first review the background of information on which current understanding of the
process of human oncogenesis has been founded. This is then followed by a review of newer
developments and findings emanating from de novo tumorigenesis experiments that are driving
new concepts relevant to this rapidly evolving topic. When coupled with unbiased DNA
barcoding, reprogramming, and CRISPR/Cas9 technologies, these methods hold promise for
obtaining further insights into the different stages of development of malignant human cell
populations with unprecedented precision and clinical relevance.
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The Past—origin of current concepts
Tumorigenesis viewed as an evolutionary process. The concept
that almost all human tumours represent aberrant clonal out-
growths is well established3. However, this simply means that the
malignant population that ultimately appears represents the
deregulated growth of a single cell. It does not imply biologic or
even genetic identity among its progeny. Nevertheless, it does
make it likely that all members of the clone will carry a trace of
the earliest genetic or epigenetic changes that drove its
deregulated expansion. It is also important to remember that,
by the time a cancer is first detectable, it will already contain
many millions or even billions of cells produced through dozens
of amplifying divisions. During this process, additional genetic
diversification and evolution occurs (Fig. 1). This is due in part
just to normal rates of incorrect DNA replication (estimated as
2.3� 10� 8 mutations per nucleotide per cell generation in
human cells)4. A decreased control of DNA stability is also a
common feature of malignant cells. Other mechanisms that
contribute to the variable diversification of malignant clones
include the tissue and genotype of the cell in which the process of
transformation is initiated, the age of the individual in which this
process begins and numerous environmental factors5–9.

Modern sequencing data has now revealed the enormous
heterogeneity that exists within the genomes of malignant
populations10. This heterogeneity is often apparent within a
single cancer assessed at a single moment and sampled from a
single site. Additional heterogeneity may also be encountered
when different sites are examined, or the same tumour is sampled
at different times, or from different individuals with tumours that
have arisen in the same tissue. The genetic diversity that
characterizes many malignant populations has multiple causes.
One is that the full transformation of human cells relies on the
accumulation of multiple mutations through a stepwise process in
which different rare mutations and/or epigenetic changes must be
accrued in order for cells to acquire a deregulated ability for
unlimited division as well as other abnormal phenotypic
properties11,12. From this concept, it has been inferred that the
process of spontaneous oncogenesis in humans would most often
be slow, at least initially, spanning a period of several years. Such
a model, in turn, implies that most cancers would originate in a
cell type that is normally long-lived but still has sufficient
proliferative capacity to accumulate the number of rare mutations

required to become transformed. Interestingly, it also implies the
possible generation of neoplastic clones with mutations that
predispose to further transformation but may never do so, as is
being increasingly documented in many tissues13–15. However,
accelerating the process, and a cause of more rapidly increasing
genetic diversity, would be the acquisition of one or more
mutations or epigenetic changes that compromise genomic
stability16–19. At the same time, recent genomic analyses of
some human cancers are suggesting alternative trajectories in
which transforming populations early on may undergo
cataclysmic bursts of genomic diversification20.

Most of our knowledge of the process of oncogenesis in human
tissues has been derived historically from 3 different types of
investigation: (i) genomic analyses of cells obtained from patients
at different times during the development and evolution of their
cancer with retrospective inferences drawn from the spectrum
and prevalence of sequence changes (best determined at the single
cell level)21–24; (ii) inferences derived from single cell or clonal
transcriptome studies25,26; and (iii) studies of genetically
engineered malignant populations in model organisms, and
mice in particular27–29. The first two of these types of
investigation have shown that most human cancers, by the time
they become clinically evident, consist of cells that have already
acquired multiple mutations2. However, the extent to which the
time course or order in which the same mutations or other
relevant (for example, epigenetically determined) changes are
accrued in any given human cancer still remains poorly
understood30.

Although, mutations do not occur randomly31–33, the
likelihood of a given complement of mutations being accrued
in the lifetime of an individual human cell or its progeny remains
low. It is therefore not surprising that the more primitive cells in
tissues of high cell turnover; that is, those cells responsible for
sustaining the required cell outputs of the tissue, have commonly
been assumed to serve as reservoirs of premalignant changes that
accrue throughout life.

In the human hematopoietic system, this concept has been
most strongly supported by genomic analyses of cells from
patients with chronic myeloid leukemia (CML). This leukemia is
unusual in that it is typically diagnosed at an early stage (referred
to as chronic phase). Although the clone can already be huge
(typically more than a trillion cells), the process of differentiation
is minimally perturbed and hence most of the cells are actually
highly differentiated, short-lived mature blood cells, indistin-
guishable from their normal counterparts. Cell production within
the chronic phase clone, in fact, largely mirrors the normal
process of adult human hematopoiesis and is likewise sustained
by a phenotypically similar and rare subset of multi-potent self-
renewing CML (BCR-ABL1þ ) cells as shown by their unique
capacity for prolonged CML cell output both in vitro and
in vivo34,35. Interestingly, effective treatment of CML patients
with tyrosine kinase inhibitors (TKIs) selectively eliminates the
bulk of the clone (499.9%), but has less effect on the CML stem
cells which can then rapidly regenerate an enlarged derivative
population if TKI administration is transiently arrested36.
Moreover, if the chronic phase clone is not adequately reduced,
subclones of CML cells with additional mutations and biological
properties eventually appear and produce an inevitably fatal acute
lymphoid or myeloid leukemia37. Additional studies have
suggested that at least some other forms of human acute
myeloid leukemia (AML)23,38–42 myelodysplastic syndromes
(MDS)43,44 fit a similar model of step-wise disease progression.

The cancer stem cell concept. The restriction of transplantable
tumour-initiating ability (in immunodeficient mice) to a rare,

Figure 1 | Schematic depiction of the subclonal evolution and

diversification of cell types in developing malignant populations. In this

diagram, subclones identified by accumulating genetic changes are shown

by different colours. Cells within each clone that have proliferative potential

are shown as pale cells in contrast to some of their progeny that can no

longer divide that are shown as dark cells (to illustrate the diversification of

biological properties that occurs both within and between subclones), with

some clones being transient, whereas others are persistent but variably

expanding.
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prospectively separable subset of malignant human cell popula-
tions was first demonstrated in human AML45. This was followed
soon thereafter by analogous experimental evidence of tumour-
initiating ability confined to distinct and prospectively separable
subsets of cells in primary samples of human breast46, brain47

and colon cancers48. Together, these findings established the
concept of cancer stem cells thus identified by their transplantable
tumour-initiating property. Phenotypic and transcriptional
similarities between the subsets of malignant human cells and
the stem cells of the tissue of origin have reinforced
the association of this ‘cancer stem cell’ functionality with the
retention or reactivation of molecular mechanisms essential to
the maintenance of normal tissue stem cells. Of particular interest
in this regard, has been an association of quiescence with many
types of both normal and cancer stem cells49–53, thus accounting
for the innate resistance of the cancer stem cell population to
standard chemotherapeutic agents that primarily target dividing
cells. The relative insensitivity of these cells to treatment also
makes them dangerous reservoirs for the accumulation of
additional mutations that make their elimination even more
problematic.

However, in other human cancers, like melanoma54, a majority
of the cells with self-sustaining tumorigenic properties is often
already apparent at diagnosis. In addition, there is increasing
evidence of the reversibility of the properties that confer
transplantable tumour-initiating activity in a growing number
of human tumours. This phenomenon, referred to as phenotypic
instability or plasticity, is thought to reflect changes triggered by
cues from the environment or stochastically regulated intrinsic
parameters55–58, and may add significantly to the heterogeneous
dynamic evolution of tumours caused by a stepwise and branched
process of mutation accrual noted already.

Transgenic mouse models of de novo tumorigenesis. Mouse
models have been valuable for analysing early oncogenic events
because of the ease with which their genomes can be genetically
manipulated in defined manners and times. This has made it
possible to interrogate many specific molecular, cellular and tis-
sue-specific characteristics associated with inherited and somati-
cally acquired mutations in humans that have been inferred to
play a role in their transformation. There are, however, numerous
physiological differences between mice and humans that limit the
utility of this approach to provide insights into mechanisms
operative in humans. Of particular note in this regard is the
apparent ease with which mouse cells can be transformed, in
contrast to their human counterparts59.

Mouse models have been particularly helpful in tracing the
clonal origin of normal and transformed cells in various tissues.
This type of experiment typically takes advantage of a known
lineage-specific gene promoter to transgenically engineer the
expression of an oncogene exclusively in the cell types in which
that promoter is active. This strategy can thus be used to track
subsequent changes in predefined cell types before the formation
of a detectable tumour. In addition, this strategy has been useful
for identifying the origin of any malignant populations ultimately
obtained and demonstrating different properties in the tumours
thus generated27,60–63.

For example, in the adult mammary gland, the specificity of
expression of different types of cytokeratins associated with either
basal or luminal mammary epithelial cells has enabled tumours
derived from these different cell types to be produced and
compared. These include the production of estrogen receptor-
positive and progesterone receptor-positive (ERþPRþ ) and
ER�PR� tumours from mouse basal and luminal cells

engineered separately to express PIK3CA(H1047R), thereby
creating models that appear to mirror analogous phenotypes of
human breast cancer64,65. However, it is also noteworthy that
potent stimulation of normal adult mouse luminal mammary
cells, even in the absence of a mutant gene, can induce their
production of both basal and luminal progeny66, despite evidence
of their more restricted differentiation behaviour in vitro and
in vivo67,68. Similar transgenic models have been used to study
concomitant PIK3CA expression and p53 deletion64,65,69, as well
as concomitant BRCA1/PTEN/p53 depletion in mouse mammary
cells70.

Familial adenomatous polyposis, a human condition with a
recognized step-wise process of transformation, is another
interesting example of a tumour that has been modelled in mice.
In this case, the inducible loss of only one APC allele in Lrig1-
expressing cells resulted first in their acquisition of pre-neoplastic
changes and then their generation of multiple colonic tumours
within 50 days71. In the epidermis, Sox2 expression has been
found to initiate the de novo growth of a squamous cell
carcinoma72, and glioblastoma in the brain73. On the other
hand, forced expression of Sox9 in the epidermis was sufficient to
induce the de novo formation of basal cell carcinomas74. Mouse
models have been similarly used to study the ability of Wnt-
activation75, oncogenic Ras76, Myb77, and Pgc-1b78 to initiate de
novo tumorigenesis in intestinal epithelial cells. Studies in the
hematopoietic system of mice have also reported analogous
strategies for the de novo generation of AML79, plasma cell
neoplasms80, and lymphoid malignancies81.

A key advantage of such transgenic mouse models of
oncogenesis is their ability to mimic the effect of acquiring
endogenous oncogenic mutations under homeostatic conditions.
They also enable events critical to the initiation of tumour
formation within the normal tissue architecture to be examined.
However, it is also possible that the level of oncogene expression
driven by promoters of lineage-specific (tracer) genes would be
different from that characteristic of tumours caused by mutations
in the corresponding endogenous genes. The different epigenetic
mechanisms regulating their expression in the two different sites
would be expected to contribute to the types, or at least speed, of
the phenotypic changes induced. Furthermore, interactions of
spontaneously arising mutant human cells within their native
microenvironments, as well as intrinsic aspects of the process of
normal tissue control, may not be well modelled in the mouse. On
the other hand, transgenic mouse models offer the advantage that
they can now be readily engineered to regulate not only the
lineage, but also the level, timing and duration of expression of
genes of interest that have been introduced into the germ line.

Mouse knock-in (KI) protocols now enable some of the short-
comings of historic transgenic models to be addressed. These
involve the use of homologous recombination to replace
endogenous genes in mouse embryonic stem cells with candidate
oncogenic mutant alleles and subsequent introduction of the
selected cells into the mouse germ line. KI mice have thus been
generated to explore the function of Kit mutations in gastro-
intestinal stromal tumours, the role of TP53 in Li-Fraumeni
syndrome tumours and for recapitulating familial cancers. This
technique has also been further adapted to induce spontaneous
expression of the oncogenic KRAS(G12D) gene enabling the
genesis of lung cancer, thymic lymphoma, and aberrant intestinal
crypt foci to be created and studied82. CRISPR/Cas9 technology
to introduce oncogenic mutations into the endogenous locus of
the mouse germ line (with or without controlled expression) is
now offering even greater precision in the types of genetic
manipulations that can be deployed to analyse downstream
biological effects83–85.
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Transformation of human cell lines. Much of the process of
malignant transformation of human cells has historically focused
on immortalized non-tumorigenic human cell lines as the starting
material. MCF-10A is an example of a human mammary epi-
thelial cell line of this type that has been used for this purpose.
Forced over-expression of MYC86, EGFR87, Nicastrin88, ERBB2
(ref. 89), and RANK90 in MCF-10A cells produced several
phenotypic changes associated with transformation. These
included changes in their growth properties in three-
dimensional (3D) cultures91, as well as in xenotransplant
models89. However, a study based on a non-tumorigenic
human prostate cell line, EPT2-D5, showed that metastatic
prostate tumours could be generated in xenografted mice simply
by first culturing the cells in a protein-free media to generate
‘spheres’92. Moreover, recent epigenomic and transcriptional
analysis of MCF-10A and two other immortalized (184-hTERT)
non-tumorigenic human mammary cell lines has revealed that all
three have acquired significant differences from primary sources
of human mammary cells93. It thus remains unclear how well the
transformation of such immortalized cell lines will reflect those
relevant to the spontaneous genesis of cancers from primary
sources of human cells.

The present—utility of de novo human models
External factors. It is also now clear that most malignant cells are
not capable of autonomous growth, although the acquisition of
autocrine properties and other intrinsic mechanisms for
enhanced auto-stimulation and survival are common. Tumours,
like normal tissues, also require a blood supply and frequently
contain numerous other non-clonally derived cell types, even to
the point where these latter cell types may become pre-
dominant94–96. These cells may include many different stromal
cell types as well as the components of vessel walls and
extravasated blood and lymphoid cells. External cues emanating
from these different sources both positively and negatively
regulate the local rate of growth of neighbouring malignant
cells as well as their invasive behaviour97,98, thereby contributing
to the overall dynamic evolution of the genomic, biologic and
geographic properties of the entire population of malignant
cells10.

Persistence of tissue-specific programs. In addition to these
multiple sources of cellular heterogeneity, malignant populations

also frequently retain many of the distinguishing but hetero-
geneous features of the tissue from which they have arisen even
after they have metastasized. In fact, almost by definition, a
stepwise model of transformation would imply that this would
have to be the case unless it completely froze the state of the first
affected cell resulting in the generation of a clone of identical
daughter phenotypes. If not, then it would be predicted that the
composition of a malignant clone would also reflect some of the
phenotypic heterogeneity determined by persisting elements of
processes that normally sustain the maintenance, organization
and differentiation of cells in that tissue99. Thus, the phenotypic
heterogeneity inherent in many bulk malignant populations
would be anticipated to also reflect some of the complex diversity
of persisting epigenetic and transcriptional elements
characteristic of the formation and maintenance of the tissue
from which the cells arose. In this regard, it is noteworthy that
different tissues make different utilization of multiple, albeit
overlapping basic mechanisms that ultimately co-ordinate their
proliferative capacity, survival and epigenetic control of lineage
restriction to ultimately establish non-dividing or nonviable cell
states. Within the same tissue, these may also change during
development and aging as well as under different conditions of
homeostasis, wounding, inflammation and infection. Even at a
single moment in time, there may be multiple pathways by which
a single mature cell type can be generated. Moreover, the
properties of ‘self-renewal’ and long-term quiescence in normal
cells are now known, at least as suggested by lineage tracing
studies in mice, to be more broadly distributed and less rigidly
associated with the capacity to regenerate the entire tissue100–102.

These issues are important because they have necessitated a
modification to the historic assumption as to the singular state of
‘stem cells’ even within a given tissue. Hence a greater diversity of
cell types can now be envisaged as potential initial cells in which
the genetic and epigenetic changes, required to generate
irreversibly expanding malignant clones, might originate. As
detailed below, these considerations also undermine assumptions
underpinning the historic concept of a cancer stem cell, without
negating it altogether—a difficult development that the field has
now had to accommodate10.

De novo human models of tumorigenesis. Experimental models
of de novo tumorigenesis starting from cells isolated directly from
normal human tissues are attractive because they circumvent the
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Figure 2 | De novo generation of tumours from ‘normal’ human cells. Most examples of successful transformation of primary sources of normal human

cells (or non-tumorigenic human cell lines) have used retro- or lenti-viruses encoding one or more oncogenes and a fluorochrome (for example, GFP) to

enable malignant cells to be later isolated and characterized. The transduced cells are then transplanted into a receptive site in immunodeficient mice.

When a tumour forms, the cells can then be removed for morphological, immunohistochemical, flow cytomteric and/or various molecular and clonal

analyses. When this method is efficient, polyclonal tumours may be generated (as illustrated by the pie chart). Retrieved viable cells can also be further

transplanted or may be used to generate cell lines.
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concerns inherent in extrapolating from immortalized cell line
data or species differences (Fig. 2). However, the frequency of
success has thus far been much more limited, perhaps due to a
historic lag in the development of appropriate methods to isolate
the relevant target cells in viable form, and/or to transduce them
at an adequate efficiency. Indeed, where these issues have been
carefully addressed, some models have been generated (Table 1).
For example, normal human basal prostate cells transduced with
a combination of vectors encoding cDNAs for AKT, ERG and the
androgen receptor have been found to produce tumours in
transplanted immunodeficient mice103. In contrast, in the same
study, transplants of co-isolated luminal prostate cells transduced
with the same vectors did not yield tumours. This result is
interesting because the gene expression profile of prostate cancers
appears closer to that of the luminal cells of the normal prostate.
One explanation is that prostate cancers in which these genes are
characteristically altered actually originate in basal cells that then
generate progeny that have luminal features103. Alternatively, it
may be argued that a malignant phenotype can originate in vivo
directly in luminal cells but the conditions used to date simply fail
to support this process experimentally.

De novo models of tumorigenesis starting from primary human
cells have also now been reported for colon and mammary cells.
For example, a recent study demonstrated the formation of
tumours in immunodeficient mice transplanted with organoids
expanded in vitro from colon cells in which CRISPR/Cas9 was
used to generate suppressive mutations in APC, SMAD4 and
TP53 and activating mutations in KRAS and PIK3CA104. De novo
genesis of human breast tumours has also now been achieved in

immunodeficient mice transplanted with primary isolates of
normal cells transduced with p53(R175H), CCND1, PIK3CA and
KRAS(G12V)105, SV40 plus KRAS(G12V)106, and more recently
with just KRAS(G12D) alone107. However, in contrast to the
results described for the prostate model, immunohistological
analyses of these human breast tumours has indicated the
presence of a mixture of phenotypes, possibly related to
the polyclonal composition of the tumours generated107. The
robustness of these models and speed of the tumorigenic process
in at least some cases should make them useful for future
elucidation of the minimal cellular and extrinsic factors required
for their genesis.

Examples of de novo leukaemogenesis using primitive
(CD34þ ) subsets of hematopoietic cells isolated from human
cord blood is also accruing. In this case, examples of genes whose
vector-mediated forced overexpression in normal cells have
produced overt leukaemic populations in immunodeficient mice
include cDNAs for MLL-AF9 (refs 108,109), MLL-AF4 (ref. 110),
MN1 plus NUP98HOXD13 (ref. 111), BCR-ABL plus a dominant-
negative form of IKAROS112, and MYC plus BCL113. The mixed
lineage leukaemia (MLL) gene is rearranged and fuses with
multiple partner genes in both spontaneously arising human
AML and acute lymphoid leukemia (ALL), but the MLL-AF9
fusion oncogene is associated almost exclusively with AML in
humans108. Interestingly, overexpression of MLL-AF9 in normal
cord blood cells produced ALL in transplanted Non-obese
diabetic-Scid (NOD-SCID) hosts, but AML in NOD-SCID mice
that had been engineered to express three human growth factors.
This result illustrates the ability of external factors to dictate the

Table 1 | Examples of de novo tumour models from primary human cell sources.

Human
Tissue

Gene Finding Reference

Prostate AKT, ERG, AR Tumour formation in basal cells but not in luminal cells. 103

Colon APC, SMAD4, TP53, KRAS,
PIK3CA

Organoids engineered to express all five mutations grew independently of niche factors in vitro,
and could be transplanted to form tumours in mice.

104

Mammary p53(R175H), CCND1, PIK3CA,
and KRAS(G12V)

Cells with BRCA1-mutation form tumours and showed increased basal differentiation compared
to cells from non-carrier tissues. EpCAMþCD10� luminal cells from both BRCA1þ /þ and
BRCA1mut/þ tissues were enriched for tumour-forming ability.

105

SV40 and KRAS(G12V) Transformation of EpCAMþ cells resulted in the development of common forms of breast
cancer, including ERþ and ER� tumours with luminal and basal-like characteristics,
respectively. Transformation of CD10þ (basal) cells resulted in the development of rare
metaplastic tumours similar to the claudin-low subtype.

106

KRAS(G12D) Both basal and luminal cells generated polyclonal serial transplantable tumours containing a
mixture of phenotypes and clones with variable growth dynamics revealed in serial transplants.

107

Blood MLL-AF9 Some leukemia stem cells (LSCs) were multi-potent and could be lineage directed by altering
either the growth factors or the recipient strain of mouse, highlighting the importance of
microenvironment. Other LSCs were strictly lineage committed, demonstrating the
heterogeneity of the stem cell compartment in the MLL diseases produced.

108,109

MLL-AF4 Generation of a model of t(4;11) pro-B ALL that fully recapitulated the immunophenotypic and
molecular features of the disease that appears in patients.

110

MN1 and NUP98HOXD13 Co-transduction of an activated HOX gene (NUP98HOXD13) with MN1 induced a serially
transplantable AML.

111

BCR-ABL1 and dnIKAROS
(IK6)

An aggressive AML with disseminated myeloid sarcomas developed within 4 weeks following
transplantation of cord blood cells transduced with both genes.

112

MYC and BCL2 Production of a model of lymphoma that recapitulates the histopathological and clinical aspects
of steroid-, chemotherapy- and rituximab-resistant human ‘double-hit’ MYC-BCL2 lymphoma.

113

DEK-NUP214 Development of a human cell AML with phenotypic characteristics of a t(6;9) disease and
CD45þCD13þCD34þCD38þ immunophenotype.

165

ZMYM2-FGFR1 Development of myeloproliferative disease that progresses to AML. Mice show
hepatospenomegaly, hypercellular bone marrow and a CD45þCD34þCD13þ
immunophenotype.

166
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phenotype of the malignant cells produced and further
underscores the fallacy in assuming the predominant cell type
necessarily reflects the cell of origin or the specific oncogene
driving the tumorigenic state. The MN1-NUP98HOXD13 model
also serves to illustrate the difference between effects obtained in
analogous mouse and human target cells. In mouse cells, MN1
alone was sufficient to induce a myeloid leukaemia, whereas in
human cord blood cells it induced only a transient
myeloproliferation. Only when an activated HOX gene (that is,
NUP98HOXD13), was also introduced was a serially
transplantable AML obtained in the human cells.

These studies demonstrate some of the unique aspects of
tumorigenesis in primary human cells that are not well predicted
by mouse models. They also provide examples of experimentally
generated de novo human tumours whose characteristics are
heavily influenced by factors beyond the cell of origin, or the
genetic alterations used.

Functional diversity of human tumour subclones. Most studies
attempting to analyse the subclonal diversity of malignant human
populations that arise in patients have relied on retrospective
inferences derived from analyses of the genomic or phenotypic
characterization of primary samples and/or changes incurred in
serial transplants of these cells in immunodeficient mouse
hosts23,114–118. However, these approaches generally do not allow
the frequency of clonogenic cells to be quantified, nor the
definition of their genomic or phenotypic properties. These are
important parameters because the genomic instability of many
established neoplastic human populations can produce genetic
alterations that are irrelevant to the continued growth of the
tumour. Examples of such mutations have been well documented
in genetic analyses of the leukemic cells from patients with
chronic phase CML119.

Limiting dilution analysis (LDA) and vector-based tracking of
clonogenic cells offer powerful approaches to quantify malignant
cells with proliferative potential in vivo. The LDA approach has
been extensively applied to a number of primary human tumour
types that can engraft immunodeficient mice. These include
malignant populations that arise in the human brain47,120,
colon48,121, prostate122, breast46, ovary123, skin/melanoma54,124

and the hematopoietic system45,125–128. Coupling these
approaches to prospectively isolated phenotypes of cells within
the transplanted populations has been the basis of identifying the
subset(s) of cells actually possessing the tumorigenic activity
detected in the recipients. However, to exploit this approach to
characterize the clonal growth properties of single tumorigenic
cells, the transplants must be initiated with cell numbers that
produce tumours at a frequency of less than one in three mice.
The large numbers of mice required to obtain clonal data can thus
become rapidly prohibitively expensive, if not impractical,
particularly when clonal outputs may vary quantitatively as well
as phenotypically and dynamically within and between different
primary tumours being assessed.

The use of massively parallel DNA sequencing has improved
the sensitivity and efficiency of vector insert analysis to identify
clones based on their semi-random integration sites129, thus
circumventing many of the limitations of LDA approaches.
Nevertheless, B50% of insertion sites are still elusive to detection
using the latest versions of this methodology129. A more recent
alternative has been the creation and use of libraries of DNA
barcoded lentiviral vectors130. When such libraries are used at a
concentration that results in the transduction of less than one in
three cells in the target population being interrogated, and the
diversity of the library is greater than the number of cells being
investigated, the likelihood that each of the initially marked cells

contains a unique barcode is high. The frequency of each barcode
in the DNA extracted from populations derived from barcoded
cells can then be used to infer the number of cells present in
different clones. For both vector strategies, phenotypic
purification of the cells to be analysed before extracting the
DNA for insert site or barcode analysis allows the phenotypic
composition of each clone to also be characterized109,131–137.

Application of these protocols has revealed complex clonal
dynamics in human tumours derived from serially passaged
cells131. Interestingly, this exercise has documented highly
diverse growth behaviours of single cells from cell lines when
large numbers of these are transplanted, even though single-cell
transplant experiments indicate more than one third can generate a
tumour. Thus, to relate the growth activity of the clones with their
genotype, it is necessary to isolate and sequence the individual
clones generated, as has been done in human glioblastoma138.

The future—new opportunities
Technological advances are well known to be the drivers of new
information. Nowhere is this more relevant than to current issues
of interest in the general arena of biomedicine. In the field of
human cell oncogenesis, three technologies are of particular
relevance: organoid cultures, reprogramming and CRISPR/Cas9.
Organoid culture systems are allowing more faithful tissue
development to be generated from primitive normal cells and
are showing promise for supporting the expansion in vitro of cells
derived directly from human tumours139–141. Reprogramming
allows permanent clonal lines of induced pluripotent stem cells
(iPSCs) to be generated from individual malignant cells. CRISPR/
Cas9 enables the use of precise gene editing to create new models
of human tumours and to test the role of specific genetic
alterations in establishing or maintaining the transformed status
of patient-derived malignant cells.

Organoids. This term refers to 3D structures generated in sus-
pension cultures under conditions where 2D growth of attached
cells is blocked or prevented (either by suspending the cells in a
semi-solid medium-like matrigel or the use of a culture container
that prevents cell attachment). The generation of 3D organoids to
engineer tissues that are histologically and functionally more
similar to their in vivo counterparts will facilitate the modelling of
human disorders, performing drug screens, and the creation
in vitro of replacement tissues and/or organs. Methods combining
directed differentiation of cells in culture systems that promote
organoid formation are being developed for many complex tis-
sues such as the liver, kidney, intestine, eye, and brain, to name a
few142. The advantages of human organoid cultures include better
control of the cellular milieu than is associated with
tumorigenesis in vivo, better spatial organization of cell types
than is achieved in 2D in vitro systems and improved mimicry of
in vivo cell behaviour, potential for larger scale testing of variables
and drug effects, and reduced ethical concerns and costs
associated with animal xenograft experiments.

Induced pluripotent stem cells. iPSC technology offers a novel
method of capturing the genomic state of single cells from almost
any source, including transformed cells. However, this comes at the
cost of losing the malignant phenotype of the original cells from
which each iPSC clone is derived. Nevertheless, from the limited
experience where it has been applied to the study of cancer to date,
it appears that at least some properties of the malignant cells of
origin may be reactivated by stimulating the iPSCs to differentiate
back into the lineage or tissue from which the malignant cells arose
and may then also be used for drug screening143,144.
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iPSCs have been derived from human chronic phase CML cells
with documented retention and expression of the signature BCR-
ABL1 fusion gene145–147. Additional examples of human
hematopoietic cells from which iPSCs (or iPSC-like cells) have
been obtained include cells from patients with MDS148,
polycythemia vera149 and juvenile myelomonocytic leukemia150,
as well as originally normal human hematopoietic cells forced to
overexpress MLL151. iPSCs have also been generated from human
pancreatic ductal adenocarcinomas152, Multiple endocrine
neoplasia type 2A (MEN2A)153, bladder cancer cell lines154 and
cells from an individual with Li Fraumeni syndrome, a congenital
cancer predisposition genotype in which one allele of the p53 gene is
mutated155. In this case, the iPSCs were used to study the epigenetic
states of tumour formation156 and the bidirectional reversibility of
epigenetic processes associated with iPSC reprogramming157.

CRISPR/Cas9. The CRISPR/Cas9 technology originates from type
II CRISPR-Cas systems that evolved to provide bacteria with a
form of adaptive immunity to viruses and plasmids. The CRISPR-
associated Cas9 protein is an endonuclease that introduces a site-
specific double-strand break (DSB) into DNA. The ability of
CRISPR/Cas9 to introduce DSBs at defined positions using a guide
RNA can also be used to generate human cell lines and primary
cells bearing chromosomal translocations resembling those
described in human cancers (Fig. 3). Examples to date include
lung cancer158, AML159 and Ewing’s sarcoma160. An improved
method to generate models of liver cancer or myeloid malignancy
in mice using CRISPR/Cas9 was also recently reported161,162.
Combining CRISPR/Cas9 with barcoding has been used to track
the clonal dynamics of lung cancer cells during their acquired
resistance to EGFR inhibitors and subsequent response to
combined drug therapies163,164. Combining the generation of
iPSCs with CRISPR/Cas9 holds the future possibility of both
creating new models of human cancer and of testing the ultimate
therapeutic potential of gene-targeting approaches.

Summary
Recreating the process of human tumorigenesis in naive human
cells has been a challenging frontier not anticipated by the
historically contrasting ease of achieving this outcome in mouse
cells. However, several major developments are now changing
this picture. One has been the generation of long-lived mice in
which multiple components of the innate and acquired immune
system have been suppressed. This advance now allows
transformed human cells to grow and evolve into fully malignant
populations in an in vivo setting. Together with improvements in

lentiviral design and production, and methods to isolate and
purify normal viable human cells, these advances are now
enabling a growing number of de novo models of human
tumorigenesis to be developed. The use of DNA barcoding of the
initial cells is now also providing a tractable method to analyse
the clonal composition and dynamics of the malignant cells
generated and should provide a powerful approach to examine
therapeutic effects in the future. These approaches coupled with
emerging methods to modify and regulate cell behaviour even
more precisely herald a new era of improved understanding of the
complex processes of human tumorigenesis.
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