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Abstract

It has been well recognized that the modification of biomaterials with appropriate bioactive pep-

tides could further enhance their functions. Especially, it has been shown that peptide-modified

bone repair materials could promote new bone formation more efficiently compared with conven-

tional ones. The purpose of this article is to give a general review of recent studies on bioactive

peptide-modified materials for bone tissue repair. Firstly, the main peptides for inducing bone re-

generation and commonly used methods to prepare peptide-modified bone repair materials are

introduced. Then, current in vitro and in vivo research progress of peptide-modified composites

used as potential bone repair materials are reviewed and discussed. Generally speaking, the recent

related studies have fully suggested that the modification of bone repair materials with osteogenic-

related peptides provide promising strategies for the development of bioactive materials and sub-

strates for enhanced bone regeneration and the therapy of bone tissue diseases. Furthermore, we

have proposed some research trends in the conclusion and perspectives part.

Keywords: bone repair material; peptide; osteogenic activity

Introduction

Recently, the biomaterials community has increasingly embraced

the concept that implanted substrates should not only provide struc-

tural support for damaged tissues, but also integrate with the sur-

rounding tissues and promote the desired tissue regeneration [1–3].

In order to achieve this goal, researchers have been not only trying

their best to choose appropriate raw materials and utilize advanced

preparation methods, but also making great efforts to further func-

tionalise the materials with effective optimizing techniques. Up to

now, a large panel of natural and synthetic materials has been inves-

tigated for bone tissue engineering applications. However, no single

material fulfils all the criteria of biocompatibility and bioactivity

[4]. Although it was previously thought that materials should pre-

sent a relatively biotolerant surface in order to minimize immune

and fibrotic responses, more and more evidence now suggests

that interactive, biomimetic surfaces often exhibit enhanced

performances [5]. For instance, the efficacy of osseointegration is

mostly dependent on the interactions between the implants and

osteogenic macromolecules in blood [6]. Some biomaterials do not

readily adsorb blood proteins to their surface, and therefore do not

support well bone-related cell activities, potentially leading to lim-

ited bone formation. Consequently, these materials need to be fur-

ther optimized to enhance and accelerate bone ingrowth [7]. The

successful development of high-performance biomaterials must take

into consideration how their surfaces will interact with in vivo sub-

stances, which has prompted a burgeoning effort to engineer mater-

ials with biomolecules or modify their surfaces with biologic

elements [8, 9]. One common approach is to functionalise biomate-

rial surfaces with osteoinductive molecules, including growth factors

or peptides [4]. For the design of biomaterials, it has been well rec-

ognized that desired cell responses are crucial [10]. The immobiliza-

tion of certain molecules on scaffolds has been shown very effective

to improve not only recruiting stem cells but also triggering their

VC The Author(s) 2017. Published by Oxford University Press. 191

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Regenerative Biomaterials, 2017, 191–206

doi: 10.1093/rb/rbx011

Advance Access Publication Date: 16 April 2017

Review

Deleted Text: 1. 
Deleted Text: 1. Introduction
Deleted Text: l
http://www.oxfordjournals.org/


osteogenic differentiation because these molecules can provide

osteogenesis-stimulating signals for the cells [4, 11]. The practical

advantage of using peptides, rather than native proteins, for bioma-

terial surface functionalization, is due to the fact they can be pro-

duced synthetically with precise control of their chemical

composition, thereby avoiding pathogenic contamination from ani-

mal sources. In general, peptides are more resistant than high-

molecular weight proteins, with respect to the denaturation caused

by pH or temperature variations. Moreover, they are easier to ma-

nipulate during the grafting procedure. Especially, the research for

bioactive peptides in orthopaedics is growing rapidly in recent years.

In this article, we have reviewed recent studies on bioactive

peptide-modified materials for bone tissue repair. Firstly, the main

peptides for inducing bone regeneration and commonly-used meth-

ods to prepare peptide-modified bone repair materials are intro-

duced. Then, current in vitro and in vivo research progress of

peptide-modified composites used as potential bone repair materials

are reviewed and discussed. Furthermore, the related research trends

are proposed in the conclusion and perspectives part.

The main peptides used for bone tissue repair

In the past two decades, a variety of bioactive peptides have been

studied and applied for the promotion of bone regeneration to repair

local bone defects or treat other bone diseases. In this section, we

divided these peptides into three categories, including extracellular

matrix (ECM)-derived peptides, bone morphogenetic proteins

(BMPs)-derived peptides and others, and respectively introduced

and discussed the current progress of investigations into them as

follows.

ECM-derived peptides
ECM is an aggregation of extracellular molecules from different

cells to provide biochemical and structural supports [12]. The ECM-

derived peptides with signalling domains, which are capable of con-

necting with receptors on the surface of cell membrane, is a hotspot

of research. Variety of ECM-related peptides shown in Table 1 have

been studied for bone tissue repair and regeneration [13].

The PepGen P-15 (P-15) is a kind of peptide containing 15 amino

acid sequences (766-GTPGPQGIAGQRGVV-780) and identical to

the cell-binding region of type I collagens [14]. Its capacity of sup-

porting bone growth is approved by several studies, such as stimu-

lating osteoblast proliferation and differentiation by enhancing cell

attachment to bone repair materials and upregulating ECM produc-

tion [15, 16]. Different studies have shown that the P-15 could in-

crease not only osteogenic gene expression but also the expression

of osteogenic alkaline phosphatase (ALP) proteins and matrix min-

eralization due to upregulating runt-related transcription factor-2

(RUNX2), collagen 1(COL1), osterix (OSTRX) and bone sialopro-

tein (BSP) [17–19]. Furthermore, in the study of Nguyen et al. [20],

they found that P-15 could significantly enhance the gene expression

of BMP-2 and BMP-7 in human osteosarcoma cell (HOS).

The arginyl-glycyl-aspartic acid (RGD) peptide, which is com-

prised of 3 amino acid residues, is the cardinal integrin-binding do-

main and presents in many extracellular matrix proteins, such as

fibronectin and vitronectin [21, 22]. As a part of cell surface signal-

ling, RGD peptide can enhance the expression of ALP, Runx2,

osteocalcin (OCN), osteopontin (OPN) and BSP to ensure osteoblast

proliferation, differentiation and mineralization. For example,

Huang et al. found that RGD increased cell attachment, and

enhanced cellular proliferation [23]. Furthermore, Rammelt and his

group further used RGD peptide to enhance the adhesion and

growth of cells [24, 25].

The Ser-Val-Val-Tyr-Gly-Leu-Arg (SVVYGLR) peptide that are

adjacent to RGD sequence in osteopontin can not only significantly

improve the proliferation of MSCs, but also upregulate neovascula-

rization [26–28]. The relative results can be found in the studies of

Egusa et al. [27] and Hamada et al. [28] who investigated bioactive

function of a SVVYGLR peptide in osteoclasts and osteoprogenitor

cells.

The GFOGER (glycine-phenylalanine-hydroxyproline-arginine)

as a collagen-mimetic peptide can improve osteogenic differenti-

ation, bone regeneration and osseointegration [29–31]. In the study

of Shekaran et al., they showed that GFOGER could accelerate and

increase bone formation in the femoral defect model [29–31].

Moreover, Mhanna et al. showed that GFOGER played a crucial

role in the proliferation and osteogenic differentiation of mesenchyal

stem cells (MSCs) [32].

The Asp-Gly-Glu-Ala (DGEA) that is a kind of collagen peptide

can bind to a2b1 integrin, which is an extracellular matrix receptor

for collagens and/or laminins, and promote cell adhesion, spreading

and osteogenic differentiation [33]. The study of Hennessy et al.

showed that DGEA stimulated osteogenic differentiation of MSCs

[34]. In the study of Ceylan et al., they synthesized peptide nanofib-

ers with DGEA to promote the osteogenic differentiation of progeni-

tor stem cells and bone-like mineralization [35]. Moreover, it was

shown that DGEA peptide enhanced adhesion and osteogenic differ-

entiation of bone marrow stem cells [35–37].

As a cleavage product of osteopontin, the collagen-binding motif

(CBM) can promote osteogenic differentiation and migration

through some specific signalling pathways [38, 39]. For example,

the evidence provided by the study of Shin et al. indicated that CBM

could promote osteogenic differentiation through Ca2þ/CaMKII/

ERK/AP-1 signalling pathway in hMSCs. Furthermore, they also

found that CBM stimulated the migration of hMSCs by suppressing

cell proliferation [38].

In bone sialoprotein, vitronectin, fibronectin, osteopontin and

thrombospondin, researchers found that lysine-arginine-serine-

arginine (KRSR) as a heparin-binding site could increase osteogenic

gene expression and osteoblast adhesion [40–44]. Moreover, in the

study of Dettin et al. [45] and Hasenbein et al. [46] it was shown

that KRSR motif was selective for osteoblast attachment, not for

endothelial cells or fibroblasts. In addition, they also found that

KRSR could enhance osteoblast spreading.

The Phe-His-Arg-Arg-Ile-Lys-Ala (FHRRIKA) is a putative

heparin-binding domain of bone sialoprotein. It can enhance the

ability of osteoblast adhesion, spreading and mineralization [47]. In

the work of Gentile et al, they showed that FHRRIKA could induce

cell adhesion and bone mineralization [48].

Fibronectin (FN)-derived peptides could improve osteoblast ad-

hesion, spreading and mineralization [49]. Lee et al. used model of

rabbit calvarial defect to find new bone formation enhanced by a

fibrin-binding synthetic oligopeptide derived from FN [50]. In add-

ition, Martino et al. reported the regenerative effects of FN III9-10/

12-14 on enhancing platelet-derived growth factor-BB (PDGF-BB)

and BMP-2 in a critical-size bone defect model [51].

BMPs-derived peptides
BMPs are a group of growth factors to induce the formation of bone

or cartilage [52]. Bone-repairing responses of BMPs-derived peptides

have been widely studied by scholars [53]. These peptides have been

mainly derived from BMP-2, BMP-7 and BMP-9 to promote bone-
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repairing responses. BMP-2-derived peptide as residues of BMP-2,

including P17, P20 and P24, can regulate bone-repairing responses

[4, 54–59]. The effect of BMP-2-derived peptide on bone tissue re-

pair and regeneration as a key point is studied. For example, Zhang

et al. found the synthetic peptides derived from BMP-2 residues

32-48 (P17-BMP-2) could significantly upregulate bone-repairing

response [60]. In the study of Zhou et al. residues 73-92 of BMP-2

was used to induce osteogenic differentiation and bone regeneration

[61]. The study of Kim et al. [62] also revealed the positive effects of

BMP-2 peptides on osteogenic differentiation of hMSCs. Moreover,

Lin et al. [63] synthesized BMP-2-derived peptide, P24, and found

that it could promote osteogenic differentiation of BMSCs.

In order to discover the functions of other BMPs-derived pep-

tides to stimulate bone formation, Kim et al. [64] found a new BMP-

7-derived peptide, BFP-1. By adding BFP-1 into culture medium of

BMSCs, they found that BFP-1 could enhance Ca2þ content in the

cells and induced their ALP activity. In the study of Bo et al. [65],

they used BMP-7 mimetic peptide to accelerate bone regeneration.

Moreover, Lord et al. [66] used human white preadipocytes

(HWP) to determine the effects of BMP-9-derived peptide, pBMP-9,

and found that the pBMP-9 did not affect the number of apoptotic

cells along with reducing the proliferation of HWP. They also found

that the pBMP-9 inhibited the proliferation and induced osteogenic

differentiation of preosteoblasts when its content was about

400 ng/ml.

Other peptides
In addition to the peptides derived from ECM and BMPs, as shown

above, other ones shown in Table 2 have also been studied and de-

veloped to induce bone regeneration.

The calcitonin gene-related peptide (CGRP) has been widely

studied due to their positive effects on bone-repairing response.

CGRP is discovered in bone marrow, metaphysis and periosteum,

etc. Two different forms, CGRP-a and CGRP-b, are derived from

separate genes [67]. Compared with CGRP-b, CGRP-a can enhance

Table 1. In Vitro and in vivo studies presenting the osteogenic effects of ECM-derived peptides

Active peptides Abbreviation Composition Binding sites Upregulation /

Downregulation

of proteins or genes

Final

functions

References

PepGen P-15 P-15 15 amino acids type I collagens-

binding sites

upregulating the expression

of ALP, BMP-2, BMP-7;

RUNX2, COL1, OSTRX

and BSP; a2 integrin

upregulating proliferation

and osteogenic differ-

entiation; cell attach-

ment, migration and

survival; extracellular

matrix production

14–16, 20

arginyl-glycyl-

aspartic acid

RGD 3 amino acids integrin-binding

sites

upregulating the expression

of ALP, RUNX2, osteocal-

cin, osteopontin and BSP;

Sox9, Aggrecan, fibronec-

tin and clloagen II

upregulation prolifer-

ation; osteogenic dif-

ferentiation and

mineralization; cell at-

tachment and survival

21–25

Ser-Val-Val-Tyr-

Gly-Leu-Arg

SVVYGLR 7 amino acids RGD-binding

sites

upregulating avb3 integrin;

suppressing NFAT activity

and expression of osteo-

clastogenesis-related

mRNAs

upregulating proliferation

and neovasculariza-

tion; angiogenesis and

osteogenesis; adhesion,

migration and tube for-

mation of endothelial

cells

26–28

glycine-phenylalanine-

hydroxyproline-arginine

GFOGER 4 amino acids a2b1 integrin-

binding sites

upregulating a2b1

integrin binding

upregulating differenti-

ation, bone regener-

ation and

osseointegration

29–32

Asp-Gly-Glu-Ala DGEA 4 amino acids a2b1 integrin-

binding sites

upregulating ALP cell adhesion, spreading

and osteogenic

differentiation

33–37

collagen-binding

motif

CBM 28 amino acids collagen-binding

sites

inducing sustained activation

of ERK; the transactivation

of SRE, CRE, and AP-1;

expression of type X

collagen

upregulating bone-related

cell adhesion and

growth; osteogenic

differentiation

38–39

lysine-arginine-

serine-arginine

KRSR 4 amino acids heparin-binding

sites

upregulating osteogenic

gene expression

upregulating bone-related

cell spreading, adhe-

sion and mineralization

40–46

Phe-His-Arg-Arg-

Ile-Lys-Ala

FHRRIKA 10 amino acids putative heparin-

binding sites

– upregulating bone-related

cell spreading, adhe-

sion and mineralization

47, 48

Fibronectin-derived

peptides

FN-derived

peptides

7 amino acids – – upregulating bone-related

cell spreading, adhe-

sion and mineralization

49–51
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osteoblast proliferation and bone regeneration [68–71]. The previ-

ous studies showed that CGRP could not only enhance osteoblast

proliferation and differentiation because it could bond with func-

tional receptors and transporters on the bone-related cells, but also

stimulate the production of growth factors, including BMP-2 and

IGF-1. In addition, the CGRP could reduce the apoptosis and in-

flammation [72–83]. Its positive effects on the bone-related cells and

new bone formation can be found in many studies. For instance, Lv

et al. found that CGRP was an important factor and could enhance

bone density to improve the quality of regenerated alveolar bone

[84]. Zhou et al. elucidated the important role of CGRP by spinal

fusion model, and found that expression of CGRP was located

around the interface between allograft and fibrous tissue to induce

the osteogenic differentiation of cells and new bone formation [85].

With 34 amino acids, the peptide derived from parathyroid hor-

mone (PTH1-34) is one of the earliest artificially synthesized amino

acid fragments [86]. It was shown that the PTH1-34 peptide could

upregulate proliferation and osteogenic differentiation of cells by

enhancing the expressions of Runx2 and OPN. Alkhiary et al. used

animal models to demonstrate that PTH1-34 could improve bone re-

generation by enhancing bone density, mineral content and strength

[87]. In addition, it could also increase angiogenesis and revasculari-

zation [88]. Therefore, PTH1-34 is one of effective peptides for the

improvement of fracture-healing.

As H4 histone-related peptide, osteogenic growth peptide (OGP)

is highly conserved with 14 amino acids, which was found in serum

[89, 90]. It could activate an intracellular Gi-protein-MAP kinase

signalling pathway [91, 92]. OGP have been found to increase the

proliferation, osteogenic differentiation and matrix mineralization

of bone-related cells [93–96]. Brager et al. showed that OGP regu-

lated TGF-b1, b2, b3, IGF-I, FGF-2 and aggrecan in vivo [93]. Bab

et al. found OGP increased overall bone mass and bone formation

quality by exerting an anabolic effect on bone cells [89].

With 23 amino acids, thrombin peptide 508 (TP508) is a syn-

thetic peptide that represents the non-proteolytic receptor binding

domain of thrombin. TP508 enhances not only proliferation and

osteogenic differentiation of human osteoblasts, but also increased

angiogenesis [97, 98]. For instance, Hanratty et al. [99] improved

healing effect of murine fracture by injecting the TP508 peptide into

the fracture gap. The similar result can be found in the study of

Cakarer et al., which showed that the TP508 peptide could enhance

bone consolidation in tibial distraction osteogenesis [22].

Table 2. In Vitro and in vivo studies presenting the osteogenic effects of other peptides except those derived from ECM and BMPs

Active peptides Abbreviation Composition Potential pathways Upregulation /

Downregulation

of proteins or genes

Final functions References

calcitonin gene-

related peptides

CGRP 37 amino acids the cAMP, Wnt and

AMPK-eNOS

pathways

upregulating expression

of IGF-1, IGF-1 recep-

tor and BMP-2 recep-

tor; ALP, OC and

COLLA1

upregulating cell prolifer-

ation, osteogenic differen-

tiation and angiogenesis;

downregulating apoptosis

and inflammation

67-85

Parathyroid hormone

(1-34)

PTH1-34 34 amino acids G(q)-signalling,

b-arrestin recruit-

ment, ERK1/2

phosphorylation

and phospholipase

C pathway

upregulating expression

of Runx2 and

COL2A1; downregu-

lating expression of

ALP and BMP-2

upregulating cell prolifer-

ation and chondrogenesis

86-88

osteogenic growth

peptides

OGP 14 amino acids the G1 protein-

MAPK and RhoA/

ROCK pathway

upregulating osteocalcin,

collagen, BMP-2, ALP

and mineralization;

upregulating TGF b1,

b2, b3, FGF-2, IGF-I

upregulating cell proligera-

tion and osteogenic differ-

entiation; cartilage-to-bone

transition; downregulating

adipogenic differentiation

89-96

thrombin peptide 508 TP508 23 amino acids cell cycle-G1/S check-

point, JAK/STAT,

NF-kappaB, PDGF,

PI3K/AKT, PTEN,

and ERK/MAPK

upregulating the expres-

sion of Runx2 and

OPN

upregulating cell prolifer-

ation and osteogenic differ-

entiation; chemotaxis,

angiogenesis and revascu-

larization; downregulating

apoptosis, the effect of

hypoxia

22, 97-99

NEMO-binding do-

main peptide

NBD 6 amino acids NF-jB pathway downregulating TRAP ac-

tivity, actin rings;

RANKL-induced c-Src

kinase activity

upregulating osteogenic dif-

ferentiation of cells; down-

regulating bone resorption

100-103

Cell penetrating

peptide

CPP 30 amino acids – – transcriptional factor to de-

liver bone-regenerating

related proteins or factors

into cells

104-106

AcN-

RADARADARAD-

ARADA-CONH2

RADA16-I 16 amino acids – upregulating expression

of Runx2 genes, ALP

and osteocalcin

transcriptional factor to de-

liver bone-regenerating

related proteins or factors

into cells

107-109
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Kappa-B kinase (IKK) is an inhibitor of nuclear factor with two

catalytic subunits, IKK-1 and IKK-2. Strnad et al. reported it was a

non-catalytic regulatory subunit NF-kB essential modulator

(NEMO or IKK-c), and the NEMO-binding domain (NBD) is an

interacting region with 6-amino acids where IKK subunits interacts

with NEMO [100, 101]. Furthermore, the studies of Li et al. [102]

and Jimi et al. [103] showed that this peptide could induce osteo-

genic differentiation of cells and inhibit bone resorption.

Cell penetrating peptides (CPPs) can transport various molecules

into the cytoplasm through cell membranes [104, 105]. With the

above properties, CPPs can behave as a transcriptional factor to de-

liver bone-repairing relevant proteins or factors into cells. For ex-

ample, in a calvarial defect model, Park et al. used the CPPs to

transfer recombinant adenovirus expressing BMP-2 into MSCs to

promote new bone formation [106].

RADA16-I (AcN-RADARADARADARADA-CONH2) is gener-

ated by spontaneous assembly of several fragments into ordered

nanostructures [107]. The studies of Li et al. [108] and Hou et al.

[109] showed that MSCs could express higher level of Runx2 genes,

ALP and osteocalcin proteins in demineralized bone matrix (DBM)

modified with RADA16-I compared to the bare DBM.

The commonly-used methods to prepare
peptide-modified bone repair materials

The preparation method of peptide-modified bone repair materials

determines the manner, in which the peptide is bonded to the sub-

strate material, and has a significant effect on the final osteogenic

activity of the composite. Currently, the commonly-used prepar-

ation methods include electrodeposition, covalent immobilization,

physical adsorption and others.

Electrodeposition
Traditionally, electrodeposition is an electrochemically process, dur-

ing which a material is deposited from its compound aqueous solu-

tion, non-aqueous solution or molten salt. It is necessary that both

positive and negative poles should be inert because the cations in the

solution need to be introduced to the cathode. It has been shown

that this technique has been used to compound peptides with artifi-

cial biomaterials. In order to prepare peptide-modified materials by

electrodeposition, we need to take the following steps. At first, the

terminally modified polymers, containing both –NH2 and –COOH

at terminals, should be fabricated. Then, the polymers are dissolved

in the electrolyte solution (eg. NaCl, PBS, etc.), in which –NHþ3 and

–COO– are formed on the polymers by hydrolysis of –NH2 and

–COOH. And then, –NHþ3 of the polymers are combined with –OH-

of cathode by an ionic bond, N–HO under the action of an electric

field. Finally, the materials are immersed in an aqueous solution

containing peptides where –NHþ3 of the peptides are connected with

–COO– of the polymers through an ionic bond, resulting in the im-

mobilization of the peptides on the materials.

Oya et al. [18] fabricated RGD peptide-modified titanium (Ti)

materials by electrodeposition. At first, poly(ethylene glycol) (PEG)

was terminated with two kinds of functional groups, –NH2 and

–COOH, and the NH2–PEG–COOH was dissolved in a 0.5 mol/l

NaCl solution with a concentration of 0.2 mass%. Meanwhile, gly-

cine (Gly) with both –NH2 and –COOH was selected as a control,

which was dissolved in the same solution with a concentration of

0.0076 mass%. They found that the polymer could be most effect-

ively electrodeposited when pH of the solution was adjusted to 12.

Under the action of the electric field 3.0 V for 900 s at 37�C, the

NH2–PEG–COOH and glycine respectively migrated to the cathode

Ti and were immobilized on it by an ionic bond. Then, each speci-

men was immersed in a 0.001 mass% RGD aqueous solution with

pH 12 at 37�C for 24 h. After immobilization, the specimens were

rinsed and dried. The chemical structure formulae of NH2–PEG–

COOH and schematic illustration of RGD immobilization on the Ti

implant was shown in Fig. 1. The thickness of the immobilized layer

on Ti of each specimen was determined by ellipsometry, which

showed that more RGD molecules were immobilized on PEG/Ti

than on Gly/Ti, indicating that PEG is a kind of satisfactory polymer

for preparing peptide-modified materials by electrodeposition.

Moreover, it has been shown that the surface morphology of the

materials was obviously changed during the whole electrodeposi-

tion, which was observed by Park et al. with scanning probe micros-

copy [17]. The nano-scale clumps could be observed when only PEG

or RGD was introduced on Ti. However, when RGD was immobi-

lized on PEG/Ti, the surface became smooth.

Above all, it is obvious that the deposition of the polymers on

the cathode is very important for the successful preparation of the

peptide-modified materials by electrodeposition. In this process, it

Figure 1. (a) Process illustration of covalent immobilization of the RGD peptide on Ti bone repair material by electrodeposition, (b) simple description of the differ-

ence between RGD/PEG/Ti and RGD/Ti materials (adapted with permission from ref. [17]. Copyright 2011 Elsevier Ltd)
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has been shown that the terminals of polymer and the pH of the

electrolyte have significant effects on the deposition efficiency of the

polymers, which is bound to determine the final bonding results of

peptides. Tanaka et al. electrodeposited two kinds of PEG polymers

terminated with different chemical groups on titanium oxide, and

characterized the deposition efficiency by x-ray photoelectron spec-

troscopy (XPS) with an angle-resolved technique and glow discharge

optical emission spectroscopy (GD-OES), which showed that the

polymers with two kinds of terminal groups, –NH2 and –COOH,

could be deposited on the substrate more stable than those with only

one terminal group [110, 111]. They also studied the effects of the

pH of the electrolyte on the deposition efficiency of the PEG poly-

mer with two kinds of terminal groups, –NH2 and –COOH. They

selected five different pH values, 2, 4, 7, 10 and 12. Their final re-

sults showed that when the pH of the electrolyte was 12, electro-

static reactivity between the polymer and substrate was the highest

and the thickness of the polymer layer was the largest. The terminals

of PEG were oriented perpendicular to the substrate and formed sta-

ble U–shape immobilization [112]. Conformational changes in the

adsorbed RGD peptides are dependent on the surface energy and

nanotopography of the Ti surface. The RGD was more firmly immo-

bilized on the materials through PEG terminated with two kinds of

functional groups.

Covalent immobilization
The preparation of peptide-modified materials by covalent immobil-

ization generally requires the chemical reactions between functional

groups on substrate materials and aminos or carboxies of peptides.

This process normally includes two steps. Firstly, some specific func-

tional groups need to be introduced to the substrate materials. Then,

the substrate materials are immersed into the peptide solution with

or without ultrasonic treatment to form the covalent bonds between

the substrate materials and peptides. During the process of this prep-

aration method, a variety of different techniques have been used to

achieve the above effects, which include epoxy linkages, silane cou-

plings, polydopamine-assisted immobilization, and thiol-ene click

reactions, etc. [62, 113–117].

For the preparation by epoxy linkages, there are normally two

different procedures to follow. The first one is that the chemical re-

actions between some specific epoxy compounds and substrate ma-

terials with –COOH are launched to produce O-acylurea on the

substrate materials, -C¼O- of which is then made to react with –

NH2 of the peptides to form amido bond, thereby achieving cova-

lent immobilization of the peptides on the substrate materials. Seo

et al. [113] fabricated RGD peptide covalently modified titanium

surface by this procedure. The titanium surface, which has been

modified by polyacrylic acid (PAA) to graft the carboxyl group

(Ti/COOH), was immersed in 100 mg of EDC (1-Ethyl-3-[3dimethy-

laminopropyl] carbodiimide hydrochloride) with NHS (N-hydroxy-

succinimide) mixture and 10 ml of phosphate-buffered saline (PBS)

for 24 h with gentle shaking at 0–4�C to generate O-acylurea. Then,

the modified materials were immersed in 0.1 mg/ml RGD solution

for 36 h with mild stirring at 0–4�C to achieve a covalent bond be-

tween RGD peptide and Ti substrate. Attenuated total reflectance

Fourier transform infrared spectroscopy (ATR-FTIR) showed N-H

peak and the weak C¼O peak of the Ti/COOH/RGD at 3400 cm�1

and 1700 cm�1 respectively, which was related to the amide carb-

oxyl group. The strong C¼O peak near 1700 cm�1 of the

Ti/COOH substrate was related to carboxyl groups. The result

showed that the –NH2 groups of the RGD peptide had effectively

reacted with the –COOH group on the Ti/COOH surface.

The other procedure to prepare covalently modified material by

epoxy linkages is that epoxy polymer are deposited on the substrate,

and then their epoxy groups are made to react with –NH2 of the

peptides to achieve covalent bonds. Kim et al. [62] fabricated BMP-

2 peptide covalently modified nanopatterned polyurethane acrylate

(PUA) substrates by this procedure. Firstly, they coated an epoxy

compound, poly(glycidyl methacrylate) (pGMA) on PUA through

initiated chemical vapor deposition (iCVD) technique, thereby

achieving the polymerization of the epoxy compound and substrate.

Then, epoxy groups of the pGMA-PUA substrates were covalently

bonded with –NH2 of BMP-2 peptides by immersing the substrates

in BMP-2 peptide solution (100 mM) for 2 h at room temperature,

which is shown in Fig. 2. XPS analysis showed a strong nitrogen

(N1s) atomic elemental peak at 401 eV, which confirmed that the

BMP-2 peptide was successfully covalently conjugated to the

substrate.

For the preparation by silane couplings, it is normally performed

by means of a three-step reaction. At first, materials are silanized

with silane coupling agent. Then, –NH2 of silylated modified mater-

ials are made to react with –COOH of a crosslinker. Finally, the

outer maleimide groups of the crosslinker are made to react with the

thiolgroups of the peptide. Acharya et al. [115] prepared matrix

extracellular phosphoglycoprotein (MEPE) peptide covalently modi-

fied hydroxyapatite/b-tricalcium phosphate (HA/b-TCP) composites

by this method. At first, the HA/b-TCP composite particles were

soaked in a silane coupling agent, 3-aminopropyl-triethoxysilane

(APTES) solution to be silanized. Then, –NH2 of the silanized par-

ticles were made to react with –COOH of a crosslinker, polyethyl-

ene glycol disuccinimidyl succinate (SS-PEG-SS), by soaking them in

the 10 mM SS-PEG-SS solution. Finally, the modified HA/b-TCP

was soaked in MEPE peptide solution to achieve the covalent reac-

tion between the outer maleimide groups of the SS-PEG-SS and thiol

groups of MEPE peptides. FTIR analysis showed that the absorb-

ance peak of NH2, C¼C, COO-, and C¼O bonds increased in the

MEPE peptide-immobilized HA/b-TCP, which confirmed that the

MEPE peptides were successfully immobilized to the HA/b-TCP via

covalent bonding.

For the fabrication by polydopamine-assisted immobilization,

there are usually two steps to follow. The first step is the dopamine

Figure 2. Preparation of poly(glycidyl methacrylate)-polyurethane acrylate

(pGMA-PUA) nanopatterned substrate materials. pGMA was deposited onto

the PUA substrates via the initiated chemical vapor deposition (iCVD) poly-

merization process, which was synthesized with GMA monomer and initiator

(TBPO) (adapted with permission from ref. [62]. Copyright 2013 Elsevier Ltd)
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crosslinking on the surface of substrate materials. The cross-linking

principle is that the phenolic structure of dopamine is oxidized into

the quinone structure, and then crosslinked by Michael addition re-

actions between the quinone structure with the primary amine group

of dopamine. The second step is the quinone structure of the cross-

linked dopamine are reacted with the –NH2 of the peptide through

Michael addition reactions. Pan et al. [116] prepared BMP-2-

derived peptide (P24) covalently modified poly(lactic-co-glycolic

acid (PLGA)-[Asp-PEG]n scaffolds by this method. At first, the

PLGA-[Asp-PEG]n scaffolds were soaked in a DA solution (2 mg/mL

10 mM Tris–HCl, pH 8.5) overnight, in order to be crosslinked.

Then, the scaffolds were immersed in the P24 peptide solution

(1 mg/mL in10 mM Tris–HCl, pH 8.5) for 4 h, with shaking at room

temperature, thereby achieving the covalent bond between the dopa-

mine and peptide. HPLC analysis showed that this method, com-

pared with physical adsorption, could load more peptides, and that

the peptides could be released more slowly and continuously.

For the preparation by thiol-ene click reactions, at first some spe-

cial polymers containing C¼C need to be attached to the substrate

materials by radical polymerization, and then the propionamide

group on the polymers is reacted with the thiol group at the terminal

of the peptide. Yang et al. [117] fabricated Arg-Glu-Asp-Val

(REDV) peptide covalently modified polycarbonate urethane (PCU)

materials by this method. Firstly, the PCU materials were immersed

in a mixed solution of N-(2-hydroxypropyl)methacrylamide

(HPMA) and eugenyl methacrylate (EgMA) at 30�C to achieve co-

polymers by radical polymerization. Then, the REDV peptide was

directly covalently immobilized onto the substrate surface by a

thiol–ene click reaction, which was carried out at 30�C in a nitrogen

atmosphere for 30 min under the exposure of a 365 nm UVlamp

(300 W) from a distance of 30 cm. The results showed the copoly-

mer with higher EgMA content could immobilize a larger amount of

REDV peptide. The result indicates that copolymer with high EgMA

content contributes to the immobilization of the peptides because

EgMA contains catechol.

It is obvious that peptides can be bonded to substrates firmly by

this method. The modified materials have good stability. Peptides

can be released slowly, the rate of which can be controlled.

However, this method requires the participation of reagents with

special functional groups, and the reaction mechanism is

complicated.

Physical adsorption
Physical Adsorption means that molecules or ions are attracted and

attached to the surface of substrates in liquid or gas mediums by

electrostatic force or Van der Waals force [118]. Using this method

to prepare peptide-modified materials, we need to prepare substrates

with high surface energy, and then immerse them in a supersaturated

solution of the peptides. For example, Feng et al. [65] prepared

chitosan/nano-hydroxyapatite/collagen (nHAC) composites modi-

fied by BMP-7 derived peptides by physical adsorption. Firstly, they

prewetted the chitosan/nHAC composites in pure ethanol. Then, the

ethanol was replaced with excess water. Subsequently, the samples

were shaken continuously for 24 hours in the water. Finally the pre-

wetted composites were impregnated with 1 mg of the BMP-7

derived peptide in 100 lL water to adsorb the peptide, followed by

vacuum dried. Their subsequent in vivo study showed that signifi-

cantly improved bone regeneration and better bone repair effective-

ness were achieved with the composites loaded with BMP-7 derived

peptide compared to the original composites.

In addition, Reyes et al. [29] coated tissue culture-treated poly-

styrene dishes with 300 Å of pure titanium using an electron beam

evaporator, and then put 20 mg/ml GFOGER (Gly-Phe-Hyp-Gly-

Glu-Arg) peptide solution (the peptide in PBS) into the dishes, which

were incubated for 1 hour to make the titanium surface adsorb the

peptide. Their subsequent in vitro study showed that the peptide

treated material surface significantly enhanced osteogenic differenti-

ation and mineralization of bone marrow stromal cells, compared to

the unmodified titanium surface.

Others
In addition to the above-mentioned methods, there are other ways

to prepare peptide-modified materials for bone tissue repair, such as

solvent extraction technique, molecular plasma deposition, etc.

Extraction means the separation of a substance from a mixture

or solvent. In order to prepare peptide-modified materials by this

technique, we need to take the following steps. The peptide is dis-

solved in water and the material, which is to be modified, is dis-

solved in an organic solvent. Then, the two solutions are mixed and

emulsified to form a water/oil emulsion, which is then transferred to

another aqueous phase containing an emulsifier to prepare water/

oil/water emulsion. And then, the emulsion is constantly stirred to

vaporize the organic solvent, which causes that the material is solidi-

fied into microspheres with the peptide inside. Finally the peptide-

modified microspheres are washed and dried. For example, Hedberg

et al. [119] fabricated thrombin peptide 508 (TP508)-modified

PLGA/PEG microsphere using the solvent extraction technique.

Firstly, PLGA and PEG were dissolved in 1 ml of CH2Cl2 solution.

Then, 125 ll of TP508 solution was added into the PLGA/PEG solu-

tions, and the two solutions were mixed to form a water/oil emul-

sion, which was then added to 1.5 ml 0.3% poly(vinyl alcohol)

(PVA, an emulsifier) aqueous solution to produce a water/oil/water

emulsion. And then, the water/oil/water emulsion was added to

100 ml of 0.2% aqueous isopropanol and 98.5 ml of 0.3% aqueous

PVA, and stirred rapidly for one hour, which led to the formation of

PLGA/PEG microspheres with the TP508 peptide inside. At last, the

microspheres were separated from the solution by centrifuged at

180� g for one min, followed by washed and dried. Their subse-

quent study on release kinetics indicated that the TP508 peptide-

modified microspheres could release the peptide slowly and steadily,

the rate of which could be well controlled by changing the prepar-

ation parameters of the microspheres.

The molecular plasma deposition (MPD) enables the deposition

of uniform coatings onto substrates using corona discharge under

high voltage. Peptide-modified bone repair materials can be pre-

pared with this method by the steps as follows. First, the substrate is

placed inside of a vacuum chamber, and the peptide solution is put

into a reservoir, which is then added to a metallic needle. Then, the

peptide solution is dispensed under a high voltage between the sub-

strate and needle that induces a corona discharge, which then ionizes

the peptide solution. And then, the ionized solution is introduced

onto the substrate (positive pole) inside the vacuum chamber under

the high voltage. Finally, the peptide-modified material is removed

from the chamber, followed by washed and dried. For example,

Balasundaram et al. [120] deposited arginine-glycine-aspartic acid-

serine (RGDS), lysine-arginine-serine-arginine (KRSR), and

isoleucinelysine-valine-alanine-valine (IKVAV) peptides on the sur-

face of anodized titanium substrate respectively by this method.

A high voltage of 20 kV was applied between the substrate and the

needle. Electrospray ionization data demonstrated that the ioniza-

tion process did not alter the original characters of the peptides.
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Their subsequent in vitro study showed that the peptide-modified

anodized titanium substrates improved osteoblast adhesion and pro-

liferation compared to the substrate without the introduction of the

peptides.

The current research progress of peptide-
modified materials for bone tissue repair

Usually, after the preparation of bone repair materials, some in vitro

and in vivo experiments need to be carried out to research its impact

on cellular functions and new bone formation, thereby evaluating

their osteogenic activity. In this section, we will review and discuss

the current in vitro and in vivo research progress of peptide-

modified composites used as potential bone repair materials.

In vitro evaluations
In this subsection, we will mainly present and discuss the recent

researches on the in vitro evaluations of peptide-modified compos-

ites used as potential bone repair materials, focusing on the effects

of the materials on the functions of cultured cells in vitro, such as

adhesion, spreading, proliferation, differentiation and mineraliza-

tion, etc.

ECM-derived peptides modified materials

Numerous studies have indicated that the ECM-derived peptides

modified materials can significantly improve the desired functions of

bone-related cells in vitro. To date, calcium phosphate modified by

ECM-derived peptides have attracted more and more attention.

Hennessy et al. [34] studied that the efficacy of hydroxyapatite (HA)

disks coated with a kind of ECM-derived peptide, DGEA, in pro-

moting the osteogenic-related functions of MSCs, the results of

which showed that cells grown on HA disks coated with DGEA (test

group) exhibited greater ALP activity and OCN secretion than those

on bare HA disks (control group). However, there was no obvious

difference on cell adhesion between test group and control group.

Hydrogel composites modified by ECM-derived peptides are an-

other kind of materials, which have been researched widely by cell

culture in vitro to evaluate the possibility of their application as

bone repair materials. For example, Stile et al. [121] modified

poly(N-isopropyl acrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)]

hydrogels with FHRRIKA peptide and studied the effects of

FHRRIKA peptide addition on the cell viability of rat calvarial

osteoblasts (RCO) in vitro. Their results showed that more cells at-

tached and spread on the peptide-modified hydrogels than on the

untreated ones, indicating that the FHRRIKA peptide addition im-

proved the cell viability of the [P(NIPAAm-co-AAc)] hydrogels.

Moreover, Cavalcanti-Adam et al. [122] investigated into the effects

of the RGD peptide-modified silicone membranes on the osteogenic-

related functions of osteoblast-like MC3T3-E1 cells in vitro. Their

results showed that cells exhibited higher level of ALP activity after

8 days cultured on the RGD peptide-modified silicone membrane

surface, indicating that the cells differentiated further into osteo-

genic ones better. Meanwhile, based on alizarin red staining and

FTIR analysis, the cells cultured on the RGD-modified silicone

membrane have better ability to generate biological apatite mineral

deposition. Therefore, their results indicated that the RGD peptide

addition significantly enhanced the osteogenic functions of the cells.

In addition to the above-mentioned studies, researchers have investi-

gated into metal biomaterials modified by ECM-derived peptides by

cell culture in vitro. For example, Liu et al. [123] investigated into

the osteogenic functions of preosteocyte MLO-A5 cells and mesen-

chymal cell (MSC) C3H10T1/2 on titanium surface modified by the

P15 peptide with microscopies, real-time reverse transcription-

polymerase chain reaction (qRT-PCR) analysis, western blotting

and immunohistochemical analysis, etc., the results of which

showed that the modification of titanium with P15 significantly

increased not only the adhesion, spreading, and proliferation but

also the maturation and osteogenic differentiation of the cells.

Similarly, Reyes et al. [29] investigated into the osteogenic functions

of bone marrow stromal cells on the titanium surfaces modified by

GFOGER peptide in vitro. Their results showed that the cells cul-

tured on titanium surfaces coated with the peptide achieved signifi-

cantly higher expression of multiple osteoblast-specific genes

(Fig. 3a), greater ALP activity (Fig. 3b), and biomineralized better

(Fig. 3c) than those on untreated titanium surfaces.

Besides the pure peptide-modified materials as described above,

composites of them and other materials have been also widely re-

searched by cell culture in vitro to evaluate the possibility of their

application as bone repair materials. For instance, Nguyen et al.

[20] modified anorganic bovine-derived mineral (ABM) with a typ-

ical ECM-derived peptide, P15, and then suspended them into hya-

luronate (Hy) hydrogels, thereby preparing ABM/P15/Hy

composites. Subsequently, they studied the effects of the P15 add-

ition on the behaviours of osteoblast-like HOS cells in vitro. Their

results showed that more cells adhered to ABM/P-15/Hy composites

compared to ABM/Hy ones, and that the cells on ABM/P-15/Hy

formed better surface coverage and had more stress fibers, suggest-

ing that the P-15 addition promoted and strengthened cell adhesion.

Most importantly, the cells cultured on ABM/P-15/Hy achieved sig-

nificantly higher osteogenic gene expression of alkaline phosphatase

and bone morphogenetic proteins, and biomineralized better

(Fig. 4), indicating that the P-15 addition successfully enhanced the

osteogenic differentiation and biomineralization of the cells.

BMPs-derived peptides modified materials

Up to now, many scholars have confirmed that BMPs-derived pep-

tides modified materials could promote desired osteogenic functions

of cultured cells in vitro. In their studies, single polymer modified by

BMP-derived peptides is one kind of main material. For example,

Luo et al. [124] investigated into behaviours of osteoblast-like MG-

63 cells cultured on porous alginate scaffolds (PAS) modified by

BMP-7-derived peptide, BFP-1, with scanning electron microscope

(SEM), confocal laser scanning microscopy (CLSM), and ALP activ-

ity assay, etc., the results of which showed that the peptide introduc-

tion significantly increased not only the adhesion, spreading,

proliferation, and aggregation but also osteogenic differentiation

(Fig. 5) of the cells.

Besides single polymers, copolymers have also been used as sub-

strates for the preparation of BMP-derived peptide-modified bone

repair materials. For example, using PEG, amino acid units (ASP)

and PLGA, Lin et al. [63] synthesized the PLGA-(PEG-ASP)n co-

polymer, which was then modified by P24. Their results showed

that P24/PLGA-(PEG-ASP)n could improve better attachment of the

bone MSCs and increase more significantly the expression of their

osteogenic genes than PLGA-(PEG-ASP)n and PLGA groups.

Moreover, composites modified by BMP-derived peptides have

recently attracted more and more attention. For instance, Zhang

et al.[60] investigated the effects of nHAC scaffolds modified by

BMP-2-derived peptides, P17-BMP-2, on rabbit marrow stromal

cells in vitro, the results of which showed that P17-BMP-2 com-

pounded into the nHAC not only retained its activity, but also
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significantly upregulated the expression level ofosteogenic-related

genes of the cells, such as OPN and OCN. Meanwhile, the cells

could attach better on P17-BMP-2/nHAC than on nHAC.

Moreover, Li et al. [125] in vitro studied true bone ceramics (TBC)/

collagen I composites modified by another BMP-2-derived peptides,

P24, by culturing bone marrow stromal cells. Based on SEM, energy

dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD)

analysis, etc., they found that the P24 addition significantly

enhanced the level of hydroxylapatite crystal mineralization with a

Ca/P molar ratio of 1.63.

In addition to the above-mentioned studies, researchers have

investigated into particles modified by BMP-derived peptides as a

delivery system to find out their potentials as bone repair materials.

For example, Bergeron et al. [126] compounded pBMP-9 peptide

into collagen/45S5 BioglassVR microspheres for their controlled re-

lease, the results of which showed that the collagen/45S5 BioglassVR

group could release proteins more slowly than the pure collagen

group (control). Moreover, the collagen/45S5 BioglassVR micro-

spheres containing the pBMP-9 peptide could induce the osteogenic

differentiation of MC3T3-E1 preosteoblasts better than those com-

pounded with rhBMP-2. Similarly, Zhou et al. [61] synthesized the

residues 73-92 of BMP-2 covalently functionalized mesoporous sil-

ica (MSNs-pep) via an aminosilane linker. The cell viability of

MSNs-pep was tested by bone MSCs exposure to different particle

concentrations in vitro. The results revealed that the modified

MSNs had better cytocompatibility, and that the cellular uptake

Figure 3. Compared to untreated titanium (Ti), GFOGER peptide coated Ti much more significantly promoted specific osteogenic gene expression (a), enhanced

ALP activity (B) and biomineralization (C) of the cultured bone marrow stromal cells (adapted with permission from ref. [29]. Copyright 2007 Elsevier Ltd)

Figure 4. Alizarin red staining images of ABM/hy(a) and ABM/P-15/hy (B) cultured with HOS cells for 2 weeks. Bar¼500 lm (adapted with permission from ref.

[20]. Copyright 2003 Elsevier Ltd)
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efficiency of MSNs-pep was significantly larger than that of bare

MSNs. Moreover, it was shown that the peptide addition signifi-

cantly enhanced the osteogenic differentiation of the bone MSCs,

based on the data of ALP activity, calcium deposition, and expres-

sion of bone-related proteins, etc.

Materials modified by other peptides

Compared to the materials modified by ECM or BMP-derived pep-

tides, those modified by other active peptides were researched less

in vitro. Recently, calcium phosphate minerals modified by other

peptides have been used as coatings of bone repair materials. For ex-

ample, Chen et al. [127] prepared OGP modified mixture of CaO

and HA coatings on titanium substrates, and then investigated into

the effects of the coatings on the behaviours of MSCs with XPS,

SEM, and CLSM, etc., the results of which showed that the OGP

addition significantly increased not only the adhesion and prolifer-

ation but also the maturation and osteogenic differentiation of the

cells. Moreover, collagen matrix composites modified by self-

assembly peptides have recently attracted more and more attention.

For instance, Li et al. [108] developed RADA16-I peptide-modified

demineralized bone matrix (DBM) material for bone repair, and

studied them in vitro by culturing MSCs, which showed that the lev-

els of expression of ALP, OCN, and Runx2 gene in DBM modified

by RADA16-I were significantly higher than those in unmodified

DBM at 14 days. Besides the above studies, biomacromoleculars

modified by other active peptides have also researched in vitro to

evaluate the potential of their application as bone repair materials.

For instance, Suh et al. [128] prepared CPP peptide-modified a typ-

ical protein, PDZ-binding motif (TAZ), and then studied the effects

of the CPP addition on the osteogenic differentiation of hMSCs.

Their results showed that the cells cultured on the TAZ protein

modified by CPP peptide achieved significantly higher expression of

multiple osteoblast-specific genes (ALP, OCN, and Runx2), and bio-

mineralized better than those on the untreated TAZ.

In vivo evaluations
Currently, besides the in vitro studies, many researchers have inves-

tigated into peptide-modified materials by animal experiments

in vivo to find out their potentials as bone repair materials, provid-

ing more direct data for their possible further clinical applications.

ECM-derived peptides modified materials

In recent years, many researchers have tried their best to heal bone

defects of animals using calcium phosphate modified by ECM-

derived peptides. For instance, Lindley et al. [129] created 4 mm

diameter defects by drill bits in the tibiae of rabbits. Then, the ani-

mals were divided into four groups, which were respectively

implanted with ABM/P-15/hyaluronate hydrogel, ABM/hyaluronate

hydrogel, hyaluronate hydrogel alone, and nothing.

Histomorphometric analyses showed that defects treated with

ABM/P-15 had significantly larger areas of new bone formation

than the other three groups at 2, 6, and 8 weeks after surgery.

However, some other researchers got opposite outcomes of repairing

bone defects with ABM/P-15. For example, Sarahrudi et al. [130]

created 5 mm defects by high-speed oscillating saw in the femur of

rabbits. Then, the animals were divided into two groups, which

were respectively implanted with ABM/P-15 and nothing (control).

Histomorphometry analyses showed that the ABM/P-15 groups

have a smaller amount of new bone formation (1.56 6 0.27 mm2)

than the control group (2.5 6 0.2 mm2) at 12 weeks after operation.

Beside the above studies, researchers have also investigated the

osteogenic activity in vivo of collagen modified by ECM-derived

peptides. For example, Egusa et al. [27] implanted atelocollagen

sponge containing either 10 mg SVVYGLR peptide or PBS (as con-

trol) into the calvaria defects (5 mm in diameter and 0.5 mm in

depth) of rats created by dental round burr. Their results showed

that the number of osteoblasts in the SVVYGLR modified implants

at 3 weeks after surgery was significantly higher than that in the con-

trol group. Meanwhile, newly formed blood vessels in the peptide-

modified graft groups were more evident than those in the control

group. Moreover, at five weeks after surgery, although both groups

showed new bone formation in the cavity surrounding the sponge

graft, more compact woven-like bone formed in animals treated

with the atelocollagen sponge modified by SVVYGLR peptide.

In addition to pure peptide-modified materials as described

above, composites containing them have been also researched

in vivo. For example, Bitschnau et al. [131] prepared RGD-modified

HA coatings on stainless steel K-wires, and then investigated into

the effects of their implantation into the intramedullary canal of the

rabbit tibia on the new bone formation and implant bone contact

with quantitative and qualitative histology analysis, the results of

which showed that RGD-HA and pure HA coated K-wires displayed

higher new bone formation and implant bone contact than the un-

coated ones after 12 weeks. There were no significant differences be-

tween the RGD-HA and the pure HA coated K-wires in new bone

formation and implant bone contact after 4 and 12 weeks, the rea-

son of which might be that the strong osteoconductive effect of the

HA coating ‘‘over-whelms’’ the potential RGD effect.

BMPs-derived peptides modified materials

To date, many scholars have also studied the potential of in vivo re-

pairing bone defects in animals of BMP-derived peptide-modified

materials. For instance, Bergeron et al. [132] evaluated the bone re-

pair ability of the pBMP-9 peptide bonded to type I collagen and

chitosan by injecting them into mouse quadriceps. Histological ana-

lyses clearly demonstrated that more lamellar bone formed in ani-

mals treated with the chitosan modified by pBMP-9.

Figure 5. ALP Activity of MG-63 cells cultured on pure PAS and peptide-modi-

fied PAS with different incorporated concentrations for 7 and 14 days

(adapted with permission from ref. [124]. Copyright 2016 Elsevier Ltd)
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Besides single polymers, copolymers modified by BMPs-derived

peptides have also been researched in vivo. For example, Lin et al.

[63] respectively implanted P24/PLGA-(PEG-ASP)n, PLGA-(PEG-

ASP)n and gelatin sponge into the dorsal muscle of rats.

Radiographic examination showed that the P24/PLGA-(PEG-ASP)n

group had block-like shadows on the CT image at 12 weeks after the

surgery (Fig. 6a–d) while no high-density shadows were observed in

groups of PLGA-(PEG-ASP)n (Fig. 6e) and gelatin sponge (Fig. 6f).

Subsequently, histological examinations confirmed that new bone

formed at the subcutaneous layers, where high-density shadows

were shown by the CT scans.

Moreover, BMP-derived peptide-modified composites have also

been tried to repair bone defects in vivo. For example, Li et al. [125]

created 10 mm unilateral segmental bone defect with burr drill in

rabbit radius. Then, the animals were divided into three groups,

which were respectively implanted with P24/(true bone ceramics)

TBC/collagen I composite (Group A), TBC/collagen I composite

(Group B), and TBC (Group C). Based on histological examination

at 8 and 12 weeks after surgery, more newly formed bone was

observed in Group A (Fig. 7a and b) than those in Group B (Fig. 7c

and d) and Group C (Fig. 7e and f). In addition, Li et al. [133] im-

planted nHAC/PLLA containing either P24, rhBMP-2, or nothing

into the cranial bone defects (5 mm diameter) of rats created by tre-

phine drill. The results of the radiographic and three-dimensional

CT evaluations and the histological examinations showed that the

P24 addition much more significantly enhanced the bone defect re-

pair effectiveness.

Materials modified by other peptides

At present, in vivo bone repair ability of materials modified by other

active peptides, besides ECM or BMPs-derived ones, have been also

studied. For example, Sheller et al. [134] prepared PLGA micro-

spheres modified by TP508 peptide, and implanted them into the de-

fects of rabbit forelimbs (0.5 cm in length) to evaluate their bone

repair ability. The radiographs showed a significantly higher degree

of bone repair in the animals treated with PLGA microspheres modi-

fied by the peptide. Three-dimensional synchrotron tomography

showed that the new bone in animal treated with the peptide-

modified PLGA microspheres had a less porous surface appearance

and more open marrow spaces than that in the animal treated with

unmodified PLGA microspheres, indicating that the implantation of

the peptide-modified material could get a better result of bone re-

modeling. In addition, Ma et al. [135] created 1.5 cm defects by saw

in the rabbit radius. Then, the animals were divided into two

groups, which were respectively implanted with OGP/PLGA scaf-

fold and bare PLGA scaffold. Radiographic images and histomor-

phological analysis showed that more new bone formed in animals

treated with the PLGA scaffolds modified by the OGP peptide.

Figure 6. CT Images of P24/PLGA-(PEG-ASP)n (a-d), PLGA-(PEG-ASP)n (e), and gelatin sponge (f) after implanted into the dorsal muscle of rats for 12 weeks after

operation. Arrows indicated the new bone formation (adapted with permission from ref. [63]. Copyright 2010 Elsevier Ltd)
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Moreover, hydrogels modified by other peptides have been re-

searched in vivo. For instance, Jung et al. [136] synthesized the poly-

ethylene glycol (PEG) hydrogel, which was then modified by PTH1-

34 and RGD peptides. In their study, circumferential bone defects

were created in foxhound mandibular premolar, and then the ani-

mals were randomly divided into four groups, which were respect-

ively implanted with PEG containing PTH1-34 and RGD peptides,

PEG, autogenous bone, and nothing (control). Histomorphometric

analysis showed that newly formed bone in the peptide-modified

graft groups were much more evident than that in the groups of

PEG or control at 4 and 12 weeks after surgery. Furthermore, it was

indicated that the peptide-modified materials could get almost the

same bone repair effectiveness compared with autogenous bone.

Conclusion and perspective

In this article, recent studies on bioactive peptide-modified materials

for bone tissue repair have been generally reviewed. Currently,

many kinds of peptides, including ECM-derived ones, BMPs-derived

ones, etc., have been developed and investigated as valid candidates

for bone healing. These peptides can activate some specific sig-

nalling pathways that control osteogenic-related cellular functions.

Meanwhile, a lot of studies have been launched to modify bone re-

pair materials with these peptides with many different methods,

such as electrodeposition, covalent immobilization, physical adsorp-

tion, etc. In combination with the peptides, the materials have been

generally shown to possess enhanced osteogenic ability, presenting

to induce osteogenic-related cellular responses and further promote

new bone formation and osseointegration. Generally speaking, the

recent related studies have fully suggested that the modification of

bone repair materials with osteogenic-related peptides provide

promising strategies for the development of bioactive materials and

substrates for enhanced bone regeneration and the therapy of bone

tissue diseases.

Although great achievements have been got, there is still a lot of

work to do. Firstly, more detailed systematic studies to figure out

more specific characteristics and potential functions of each related

peptide are necessary. Secondly, more satisfactory techniques need

to be developed to prepare the bioactive peptide-modified materials

for different applications, in which the amount of loaded peptides

can be flexibly controlled. Furthermore, the loaded peptides should

be able to release at a controllable rate. Thirdly, since it has been

shown that the preparation method of the peptide-modified mater-

ials has significant effects on the bioactivity of the peptides, the

Figure 7. The histological images of the implanted materials at two time points: (a) P24/TBC/collagen I, (c) TBC/collagen I, (e) TBC at 8 weeks; (b) P24/TBC/collagen

I, (d) TBC/collagen I, and (f) TBC at 12 weeks (magnification: 200�) (adapted with permission from ref. [125]. Copyright 2010 Elsevier Ltd)
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systematic investigations into the possible influential mechanisms

should be launched. Especially, although there have been already

many methods to covalently bond peptides to materials, hardly any

publication on how the different covalent bonding methods affect

the bioactivity of the same peptide can be found. Fifthly, there are

many factors that influence the function realization of the peptide-

modified materials, among which degradation of the substrate

materials is a crucial one. Future studies on this aspect are very ne-

cessary. Sixthly, for the bone repair materials, it is well recognized

that their positive effects on the biomineralization is one of most im-

portant evaluation standards of their quality. However, the current

investigations into the effects of peptide-modified materials for bone

repair on the biomineralization in vitro and in vivo are very inad-

equate. Finally, the efforts to ensure the loaded peptides on the bone

repair materials to entirely reach the targeted sites to utmostly pro-

mote new bone formation still need to be made in future studies.
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