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Abstract

Fucose is a 6-deoxy hexose in the L-configuration found in a large variety of different organisms.

In mammals, fucose is incorporated into N-glycans, O-glycans and glycolipids by 13 fucosyltrans-

ferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three

of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper

development in mice. Fucose modifications have also been implicated in many other biological

functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized

GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe

developmental and immune deficiencies, highlighting the important role fucose plays in these

processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for

determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to

alter many of these fucose dependent processes or as tools to better understand them. In this

review, we summarize the known roles of fucose in mammalian physiology and pathophysiology.

Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a dir-

ect result of our improved understanding of the role that fucose plays in these systems.
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Introduction

Fucose is an unusual sugar that is present in a variety of glycolipids
and glycoproteins produced by mammalian cells. It is unique in hav-
ing an L-configuration, whereas all other naturally occurring sugars
in mammals exist in the D-conformation (Figure 1). It is also struc-
turally distinct in lacking a hydroxyl group on the C-6 carbon (note
contrast with D-galactose in Figure 1). A study of 3299 mammalian
oligosaccharides revealed that fucose is found in 7.2% of oligosac-
charides studied, second only to sialic acid, making fucose a rela-
tively common component of glycan modifications on proteins and
lipids (Werz et al. 2007).

Fucose can be incorporated into the terminal portions of N-, O- or
lipid-linked oligosaccharide chains, modify the core of complex N-gly-
cans, or can be linked directly to serine or threonine residues in some
proteins. N-glycans are extremely structurally diverse, but all contain
a 5-saccharide core with an N-acetylglucosamine (GlcNAc) attached
to the amide nitrogen of asparagine within the appropriate consensus

sequence (Asn-X-Ser/Thr) of target proteins (Stanley et al. 2009). Two
types of O-glycans can be modified with fucose: mucin O-GalNAc
glycans are initiated by the attachment of N-acetylgalactosamine
(GalNAc) to the hydroxyl group of a serine or threonine; alternatively
fucose can be directly attached to serine or threonine residues within
the appropriate consensus sequence of a subset of proteins. There are
13 known fucosyltransferases responsible for the synthesis of this
group of fucosylated glycans (Figure 2). The addition of fucose by
these enzymes plays an important role in a variety of biological sys-
tems, many of which are discussed here. Knockout of three of these
fucosyltransferases, FUT8, POFUT1 and POFUT2, is lethal to mice,
demonstrating their biologic importance (Shi and Stanley 2003; Wang
et al. 2005; Du et al. 2010).

All fucosyltransferases utilize a nucleotide-charged form of
fucose, GDP-fucose, to modify target proteins or lipids. In mam-
mals, GDP-fucose is synthesized through two pathways—the de
novo synthesis pathway and the fucose salvage pathway (Figure 3).
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The de novo pathway synthesizes GDP-fucose from GDP-mannose
through a three-step reaction catalyzed by two enzymes, GDP-
mannose 4,6-dehydratase and GDP-keto-6-deoxymannose 3,5 epi-
merase (the FX protein) (Ginsburg 1960; Tonetti et al. 1996). It is
estimated that ~90% of GDP-fucose in mammals is generated by the
de novo pathway under ordinary circumstances (Yurchenco and
Atkinson 1975). The fucose salvage pathway utilizes free fucose
derived from dietary sources or added to culture medium (Coffey
et al. 1964; Kaufman and Ginsburg 1968). Fucose is transported
across the plasma membrane through a poorly understood mechan-
ism, perhaps L-fucose-specific facilitated diffusion (Wiese et al.
1994). A two-step mechanism catalyzed by two alternative enzymes
then converts fucose to GDP-fucose (Ishihara et al. 1968). Once
synthesized, GDP-fucose is transported into the lumen of the Golgi
or endoplasmic reticulum (ER) to be used by fucosyltransferases.
The Golgi transporter has been identified as SLC35C1, mutations in
which result in the human disorder leukocyte adhesion deficiency
type II (LAD2; see below) (Lühn et al. 2001). An ER-localized GDP-
fucose transporter has been identified in Drosophila (Ishikawa et al.
2010), but the human ortholog of this gene has been shown to be a
UDP-xylose/GlcNAc transporter (Ashikov et al. 2005). Identification
of a candidate for a mammalian ER GDP-fucose transporter remains
an open question. Fucose metabolism and function has been previ-
ously reviewed in detail (Becker and Lowe 2003). The remainder of
this review will summarize the physiological and pathophysiological
significance of fucose. Several very recent observations and their
potential implications not covered in the earlier review will be
emphasized.

Terminal fucosylation

Terminal fucosylation is a common modification found on many
N-glycans, mucin O-GalNAc glycans and glycolipids. The process-
ing and maturation of these glycans is quite complex and is carried
out by the concerted action of a staggering number of enzymes. Ten
fucosyltransferases (FUT1–7 and FUT9–11) are responsible for the
addition of terminal fucose to these oligosaccharide chains. These
fucosyltransferases are all localized to the Golgi apparatus and add
fucose to oligosaccharides by α(1,2)-linkage to a terminal galactose
or α(1,3/4)-linkage to a subterminal GlcNAc to generate blood
group and Lewis antigens (Figure 2). Many of these enzymes serve
redundant functions and thus, despite the biological importance of

these modifications, loss of function for any one of these enzymes is
not lethal in mice.

ABO blood groups

The ABO blood group antigens are perhaps the most well-known
fucosylated glycans. Two α(1,2)fucosyltransferases, the H-transferase
(FUT1) and the Secretor (Se) transferase (FUT2), synthesize the glycan
known as the H-antigen by adding fucose to a terminal galactose resi-
due (Lowe 1993). The H-transferase is expressed in erythroid precur-
sors and is responsible for the generation of H-antigen on red blood
cells (RBCs). The Se transferase is expressed in epithelial tissues and
salivary glands and is responsible for the formation of H-antigen in
saliva and other bodily secretions. Individuals without at least one
copy of a functional FUT2 gene are considered nonsecretors and do
not produce soluble H-antigen.

ABO locus-encoded glycosyltransferases can modify the H-
antigen to generate A and B antigens in A, B or AB blood type indivi-
duals. In O blood type individuals, only unmodified H-antigen is
expressed. These antigens are highly immunogenic and are found in
high quantities on glycoproteins and glycolipids in RBCs. As a result,
they notoriously prevent successful blood transfusion between incom-
patible individuals.

Patients lacking functional copies of both α(1,2)-FucT enzymes
(FUT1 and FUT2), display the rare “Bombay phenotype” (present
in only ~0.01% of the population) (Dipta and Hossain 2011), and
are entirely deficient in type A, type B and H blood group antigens
(Kelly et al. 1994). These individuals contain robust anti-A, anti-B
and anti-H antibody titers and can only receive blood transfusions
from other Bombay individuals (Davey et al. 1978). Similarly “para-
Bombay” individuals lack functional copies of FUT1, but still have
functional Se transferase (FUT2), resulting in the absence of blood
group antigens only in RBCs (Wang et al. 1997). These individuals
may have low titers of antibodies against the H-antigen, but can typ-
ically receive normal blood transfusions without complication (Lin-
Chu and Broadberry 1990). Aside from potential issues with blood
transfusions, these individuals appear unaffected, prompting ques-
tions about the physiological importance of these antigens.

Although the functional significance of ABO antigen expression
remains unclear, ABO blood type has been linked with other pro-
cesses, suggesting medical importance beyond blood typing. ABO
blood type and ability to secrete soluble H-antigen have been linked
with plasma von Willebrand Factor levels, a protein vital to the pro-
cess of blood coagulation (Levy and Ginsburg 2001). Consequently,
these characteristics are also related to von Willebrand disease and
other related coagulopathies. ABO blood type has also been linked
to increased risk for several types of cancer (Slater et al. 1993;
Edgren et al. 2010; Wolpin et al. 2010), possibly suggesting a role in
the immunogenicity of tumors and the associated opportunity for
host recognition. The blood groups also appear to affect susceptibil-
ity to a number of pathogens (Ilver et al. 1998; Hutson et al. 2002;
Huang et al. 2005; Wands et al. 2015) (discussed further below),
suggesting that variation in blood types among individuals in a
population might help to prevent the spread of disease.

Host–microbe interactions

Blood group antigens fucosylated by the Se transferase (FUT2) and
Lewis fucosyltransferase (FUT3) also play an important role in
mediating host–microbe interactions. Helicobacter pylori, a patho-
gen that can lead to peptic ulcer disease and gastric cancer, utilizes
host expression of the Lewisb antigen, generated by the joint action

Fig. 1. Fischer projection formula of L-fucose. The six carbons of fucose are

numbered. Note that most naturally occurring sugars, such as galactose, are

present in the D-configuration, as can be determined by the arrangement of

the hydroxyl group bound to the C-5 carbon. Note further that the C-6 carbon

of L-fucose lacks a hydroxyl group present at the C-6 position of D-galactose.

L-Fucose can also be described as 6-deoxy-L-galactose. This figure is avail-

able in black and white in print and in color at Glycobiology online.
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of the Se and Lewis fucosyltransferases, to recognize and attach to
gastric epithelial tissue (Ilver et al. 1998). Other pathogens including
Norovirus (Xu et al. 2003; Huang et al. 2005) and Vibrio cholera
(Wands et al. 2015) also take advantage of specific blood group
antigens to attach to host cells. Additionally, Bacteroides thetaiotao-
micron, a prominent resident of the human intestinal tract, can sense
low fucose availability in the gut and induce expression of host fuco-
syltransferases. It is able to harvest fucose from secreted oligosac-
charides using α-fucosidases (Xu et al. 2003). Other bacteria exploit
the release of free fucose by B. thetaiotaomicron using their own
fucose sensors (Pacheco et al. 2012).

Fucosyltransferases also play an important role in maintaining
the gut microbiome. The activity of Se fucosyltransferase (FUT2)
promotes normal microbial diversity and composition in the gut
(Kashyap et al. 2013). Its up-regulation during illness serves as a
protective mechanism to increase tolerance to infection and maintain
host-microbiome symbiosis (Pham et al. 2014; Pickard et al. 2014).
Inactivating FUT2 mutations, seen in about 20% of the human
population (Hoskins 1967; Ikehara et al. 2001), result in a non-
secretor phenotype that is associated with a distinct community of
bacteria in the gut. Among the notable distinctions in nonsecretors
is an increased association with the genus Prevotella, which can

Fig. 2. List of 13 known fucosyltransferases in humans. Major representative products of each fucosyltransferase are listed. The linkage of the fucose added by

each enzyme appears in bold. aThese enzymes can add fucose to oligosaccharide chains on glycolipids, N-glycans or mucin O-glycans. bThis enzyme only adds

the core fucose to N-glycans. cThese are putative α3-fucosyltransferases. Acceptor substrates have not been clearly defined. dThis modification is only observed

in O-fucose consensus sequences on EGF repeats (C2XXXX(S/T)C3), see Figure 4A. eThis modification is only observed in O-fucose consensus sequences on

TSRs (C1−2XX(S/T)C2−3), see Figure 4B. This figure is available in black and white in print and in color at Glycobiology online.
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promote breakdown of the gut’s mucus barrier (Rho et al. 2005;
Rausch et al. 2011). Conversely, bacteria thought to promote good
intestinal health including members of the Lactobacillus and
Bifidobacterium genera are decreased in nonsecretors (Rausch et al.
2011; Wacklin et al. 2011). Abnormal gut microbiome composition
with a disproportionately increased segment of bacteria associated
with the nonsecretor phenotype can result in dysregulation of the
local immune response (Xavier and Podolsky 2007) and is asso-
ciated with increased risk of Crohn’s disease, a chronic inflamma-
tory bowel disease (Serpa et al. 2004; van Heel et al. 2004;
McGovern et al. 2010).

Learning, memory and cognitive processes

Synaptic plasticity, neurite outgrowth and neuron morphology are
regulated by fucosylation and are responsible for many cognitive
processes including learning and memory. It was initially recognized
that fucosylation of structures in the hippocampus was a component
of learning and long-term potentiation (LTP) (Pohle et al. 1987).
Further, injections of L-fucose enhance LTP in the rat brain (Krug
et al. 1994). Additional work demonstrated that fucose α(1,2)-
linkages formed by FUT1 and FUT2 were directly involved in syn-
apse formation and neurite outgrowth (Kalovidouris et al. 2005).
These fucose modifications can also direct neurite migration and
mediate pathfinding for sensory neurons, including those in the
olfactory bulb (Lipscomb et al. 2003; St John et al. 2006).

One glycoprotein involved in these processes that has been well
characterized is Synapsin I, a protein involved in neurotransmitter
release and the formation of new synapses. Fucosylation regulates
turnover and stability of this protein (Murrey et al. 2006).
Fucosylation of neural cell adhesion molecule has also been suggested
to regulate its function (Pestean et al. 1995; Liedtke et al. 2001).

More recent work suggests that a wide array of olfactory bulb pro-
teins involved in cell adhesion, ion and solute transport, ATP binding,
synaptic vesicle formation, and cell signaling are all modified with α
(1,2)-fucose (Murrey et al. 2009). Fucosylation of these proteins con-
tributes to olfactory bulb development (Murrey et al. 2009).

Leukocyte rolling and extravasation

Leukocyte trafficking is a process mediated by selectins and their
counter-receptors (reviewed previously in Lowe (1997)). E-, P- and L-
selectins are expressed in platelets (P-selectin), leukocytes (L-selectin)
and endothelial cells (E- and P-selectins) allowing for their adhe-
sion to oligosaccharide-containing ligands expressed by specialized
endothelial cells lining postcapillary venules. Mucin O-GalNAc
glycans can make up ~70% of these ligands by mass and are heav-
ily decorated with fucose (Imai et al. 1991; Lowe 1997). Two α
(1,3) fucosyltransferases, encoded by the FUT4 and FUT7 genes,
are responsible for the addition of these fucose residues (Homeister
et al. 2001). Inactivation of FUT7, in particular, causes a severe
deficit in selectin-dependent endothelial cell adhesion and lympho-
cyte homing (Malý et al. 1996). Fucose modifications on glycolipid
E-selectin receptors are required for neutrophil extravasation dur-
ing inflammation (Malý et al. 1996; Nimrichter et al. 2008).

LAD2, a rare congenital disorder of glycosylation caused by
mutation of the gene encoding a GDP-fucose transporter in the
Golgi apparatus (SLC35C1), exemplifies the importance of fucose in
leukocyte trafficking. LAD2 is characterized by immunodeficiency,
leukocytosis without pus formation, mental retardation and growth
retardation, all directly attributed to the absence of neutrophil sialyl
LewisX, of which fucose is an essential component (Yakubenia et al.
2008). Dietary supplementation with fucose can reduce symptoms of
LAD2 in some patients (Marquardt et al. 1999; Etzioni et al. 2002),

Fig. 3. Fucose metabolism pathways and variation in types of fucosylated glycans. This figure illustrates the de novo fucose synthesis pathway, which converts

GDP-mannose to GDP-fucose and the fucose salvage pathway, which converts free fucose taken up from outside the cell to GDP-fucose. GDP-fucose can then

be taken up into the Golgi apparatus by the GDP-fucose transporter (SLC35C1) and possibly into the ER by an as yet unknown transporter. Proteins are then

modified with GDP-fucose and other carbohydrates within the Golgi and ER and can then be secreted or expressed on the cell surface. This figure is available in

black and white in print and in color at Glycobiology online.
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including some with mutations causing complete inactivation of
SLC35C1 (Hidalgo et al. 2003), suggesting that at high concentra-
tions GDP-fucose might be transported to the Golgi by the more
recently described SLC35C2 (Lu et al. 2010) or other as yet unknown
transporters (Figure 3).

Cancer metastasis

As a byproduct of their role in promoting selectin-mediated roll-
ing and adhesion, Sialyl Lewis antigens play an important role in
promoting cancer migration and metastasis (Kannagi 1997).
These antigens are upregulated in a variety of cancer types includ-
ing lung (Zenita et al. 1988), breast (Jeschke et al. 2005) and
colorectal (Kudo et al. 1998; Zipin et al. 2004) cancers and serve
as prognostic factors for increased risk of metastasis (Itai et al.
1991). Studies have shown that elimination of terminal fucose
from these antigens with an α-L-fucosidase can impair their ability
to roll within endothelial tissue and decrease cancer cell invasion
(Yuan et al. 2008). Additionally, one study demonstrated that
preventing terminal fucosylation by knocking down FUT1 and
FUT4 inhibits tumor growth (Zhang et al. 2008). Similarly,
endogenous fucosidases have been shown to play a role in pre-
venting cancer cell proliferation. Decreased expression of α-L-
fucosidase 1 (FUCA1) has been identified in a number of different
cancer types including colorectal (Otero-Estévez et al. 2013;
Ezawa et al. 2016), gastric (Liu et al. 2009) and breast (Cheng
et al. 2015) cancers.

Altered fucosylation has also been implicated in affecting TNF-
related apoptosis inducing ligand activity in colon cancer, a ligand
important for promoting destruction of transformed cells. Although
the precise role for fucose in the regulation of this signaling pathway

remains unclear (Haltiwanger 2009), defects in the de novo synthe-
sis of GDP-fucose cause increased tumor growth and metastasis of
colon cancer in mice (Moriwaki et al. 2009).

Fertilization and development

Fucosylated N-glycans in the zona pellucida facilitate sperm binding
in a variety of mammalian species (Lefebvre et al. 1997; Yonezawa
et al. 1997; Johnston et al. 1998), including humans (Pang et al.
2011). Fucosylated LewisX antigens also promote cell–cell adhesion
in early stage embryos (Bird and Kimber 1984). Fuc-TIX encoded
by the FUT9 gene and responsible for the generation of LewisX in
the brain plays an important role in neural development and pro-
motes normal migration of motor neuron progenitors (Ohata et al.
2009). Fut9 knockout in mice results in development of anxiety-like
behavior (Kudo et al. 2007). Additionally, knockout of Fut2 in mice
resulted in altered hepatic vasculature and hepatic fibrosis resulting
in microcirculatory disturbances and sensitivity toward bile salt tox-
icity (Maroni et al. 2017).

Core fucosylation

Fucosylation on the GlcNAc linked to asparagine in the core of
N-glycans (core fucosylation) is the most common type of fucose
modification. It occurs exclusively on N-glycans. Like terminal fuco-
sylation, core fucosylation occurs in the Golgi and is characterized
by α(1,6)-linkage to the innermost GlcNAc of the N-glycan core
(Figure 2). However, while enzymes responsible for terminal fucosy-
lation may catalyze the formation of redundant linkages, FUT8 is
the sole enzyme responsible for catalyzing this reaction. Fut8 knock-
out mice lack core fucose, and while born with no apparent

A

B

Fig. 4. Key features of EGF repeats and TSRs. (A) Cartoon showing a single EGF repeat. Each circle represents one amino acid. Conserved cysteines (yellow) are

numbered and disulfide bonds are indicated. O-Glucose and O-GlcNAc sites are shaded blue and the O-fucose site is shaded red. Enzymes responsible for the

addition of each sugar are indicated. Modified from Rana and Haltiwanger (2011). Used with permission. Elsevier. (B) Cartoon showing a typical TSR.

Conserved cysteines (yellow) and disulfide bonds are indicated. C-Mannose sites are shown in green and the O-fucose site is shaded red. (S) Serine; (T)

Threonine; (G) Glycine; (W) Tryptophan; (X) any amino acid, (a) any aromatic amino acid. Modified with permission from Haltiwanger (2004). ©Elsevier. This fig-

ure is available in black and white in print and in color at Glycobiology online.
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anomalies, about 70% die within three days of birth due to major
developmental growth and respiratory defects (Wang et al. 2005,
2006b). Survivors display severe growth retardation and
emphysema-like changes in the lungs. Core fucosylation of α3β1
integrin also plays a critical role in kidney and lung organogenesis
(Kreidberg et al. 1996).

Inflammation and the immune system

Core fucosylation of N-glycans plays several important roles in regu-
lating the immune system. Perhaps of greatest interest is the observa-
tion that antibody dependent cellular cytotoxicity (ADCC) is inhibited
by the presence of fucose on the Fc region of IgG1 antibodies. Core
fucose on IgG1 N-glycans causes a 50- to 100-fold reduction in bind-
ing to FcγRIIIa (CD16), an Fc receptor found on the surface of natural
killer cells and macrophages that is partially responsible for crosslink-
ing these immune effector cells with antibody-bound cells targeted for
destruction (Shields et al. 2002). A co-crystal structure demonstrated
that the addition of this core fucose causes a steric clash that weakens
carbohydrate–carbohydrate interactions required for high affinity
receptor recognition (Ferrara et al. 2011). This observation is of par-
ticular importance because therapeutic antibodies, used in the treat-
ment of cancer and other diseases, can be generated without this core
fucose to significantly enhance their potency (Shields et al. 2002;
Shinkawa et al. 2003).

Several pharmaceutical companies have begun to take advantage
of this knowledge and glycoengineered monoclonal antibodies
(mAb) are being developed for therapeutic purposes (Yamane-
Ohnuki and Satoh 2009). Two afucosylated mAbs have already
been approved by the FDA for use in cancer patients: mogamulizu-
mab and obinutuzumab. Mogamulizumab targets chemokine recep-
tor 4, an important signal transducer that is upregulated in T-cell
leukemia and lymphoma (Ishii et al. 2010; Beck and Reichert 2012).
Obinutuzumab is an afucosylated mAb against CD20, an antigen
found on developing B-cells, and has been effective for the treatment
of chronic lymphocytic leukemia (CLL). Rituximab, a mAb also tar-
geting CD20, has been approved for use in autoimmune diseases
and CLL since 1997. However, obinutuzumab has been shown to
be more effective in CLL treatment due to more efficient promotion
of ADCC (Illidge et al. 2015). Inspired by these successes, drug com-
panies have continued development of similarly glycoengineered
mAbs and have more than 20 currently in clinical trials (Hamadani
et al. 2013; Wei et al. 2013; Sathish 2014; Gardai et al. 2015).

While enhanced activation of ADCC by afucosylated antibodies
has proven useful in the development of cancer therapeutics, in the
setting of dengue virus infection the same phenomenon contributes
to antibody dependent enhancement of disease. Only about 15% of
individuals infected by dengue virus progress to more severe hemo-
lytic disease (dengue hemorrhagic fever or dengue shock syndrome)
(Vaughn et al. 2000). A recent report has demonstrated that patients
with a high percentage of afucosylated antibodies targeting a dengue
envelope protein are more likely to develop acute hemolytic disease
(Wang et al. 2017).

Additionally, inflammatory cytokines TGFβ1 and α3β1 require
core fucose to function (Kreidberg et al. 1996; Wang et al. 2005).
Down-regulation of these signaling pathways causes enhanced
matrix metalloproteinase expression and inflammation. Lack of core
fucosylation also disrupts epidermal growth factor receptor (Wang
et al. 2006a) and vascular endothelial growth factors mediated sig-
naling (Wang et al. 2009). Core fucosylation is vital for appropriate
growth factor receptor signaling (Wang et al. 2005, 2006b).

Cancer and cancer biomarkers

Many fucosylated glycans on glycoproteins serve as important can-
cer biomarkers (Miyoshi et al. 2008; Adamczyk et al. 2012).
Elevated α-fetoprotein (AFP) levels are a well-established marker for
hepatocellular carcinoma. Unfortunately, elevated AFP is not
entirely specific for cancer, and may also be associated with other
forms of benign liver disease (i.e., cirrhosis or hepatitis). Only in
hepatocellular carcinoma, however, is the fraction of core fucosy-
lated AFP elevated, making this a more reliable biomarker for can-
cer (Aoyagi et al. 1998; Flores and Marrero 2014). In prostate
cancer, prostate-specific antigen (PSA) is another well-established
“tumor-specific” biomarker that lacks true specificity as it may also
be elevated in benign prostatic hyperplasia (BPH), a very common
diagnostic confounder. In patients with prostate cancer, the fraction
of core fucosylated PSA is significantly increased relative to patients
with BPH (Saldova et al. 2011), again increasing the value of this
biomarker. Increases in core fucosylation of serum proteins have
also been associated with increased risk of metastasis in prostate
cancer (Kyselova et al. 2007). In pancreatic cancer, core fucosylated
haptoglobin is another potential biomarker for cancer detection
(Okuyama et al. 2006; Miyoshi and Nakano 2008). Pancreatic can-
cer has a very poor prognosis largely due to a lack of reliable early
detection methods, so the discovery and development of more reli-
able detection biomarkers would be of tremendous clinical utility
(Goggins 2005).

Additionally, increased core fucosylation of N-glycans on E-cadherin
and integrins has been shown to decrease cell adhesion and promote
cell migration and metastasis in cancer (Zhao et al. 2006, 2008).
Increased expression of FUT8 promotes this mechanism causing
increased tumor growth and metastasis in nonsmall cell lung cancer
and ovarian cancer (Yan et al. 2010; Chen et al. 2013). FUT8 inhi-
bitors might rationally be developed as antineoplastic agents in this
context.

O-Fucosylation

Fucose is also added directly to serine or threonine residues on pro-
teins by two protein O-fucosyltransferases: POFUT1 (FUT12) or
POFUT2 (FUT13). Both POFUT1 and POFUT2 are essential for
development in mice and are widely expressed in embryonic and
adult tissues (Shi and Stanley 2003; Du et al. 2010). POFUT1 is
responsible for the addition of fucose to epidermal growth factor-like
(EGF) repeats containing the consensus sequence C2XXXX(S/T)C3,
where C2 and C3 are the second and third conserved cysteines of the
EGF repeat and X represents any amino acid (Shao et al. 2003;
Müller et al. 2014) (Figure 4A). EGF repeats can also be modified
with O-glucose and O-GlcNAc at distinct consensus sequences.
POFUT2 is responsible for transferring fucose to serine or threonine
on thrombospondin type 1 repeats (TSRs) with the consensus
sequence C1XX(S/T)C2 in group 1 TSRs and C2XX(S/T)C3 in group
2 TSRs (Luo et al. 2006a; 2006b; Valero-González et al. 2016)
(Figure 4B). TSRs can also be modified with C-mannosylation of
tryptophans (de Peredo et al. 2002). Both EGF repeats and TSRs con-
tain six conserved cysteines, which form three disulfide bonds that are
crucial for the structure of these motifs. POFUT1 and POFUT2 only
modify properly folded EGF repeats and TSRs, respectively (Wang
and Spellman 1998; Luo et al. 2006). Over 100 proteins contain EGF
repeats with consensus sequences for O-fucose modification by
POFUT1 (Rampal et al. 2007) (Table I) and about 50 proteins con-
tain TSRs with O-fucose consensus sequences for modification by
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POFUT2 (Leonhard-Melief and Haltiwanger 2010) (Table II).
Modification of many of these proteins remains unconfirmed and
much remains to be determined about roles of O-fucose on these pro-
teins. Unlike the other fucosyltransferases in Figure 2, the protein O-
fucosyltransferases are localized in the ER (Luo and Haltiwanger
2005; Okajima et al. 2005; Luo et al. 2006). The fact that POFUT1
and POFUT2 only modify properly folded modules and are ER-
localized has led to the hypothesis that both enzymes participate in
quality control (Vasudevan and Haltiwanger 2014).

O-Fucosylation of EGF repeats

The Notch family of receptors has more predicted O-fucose sites
than any other protein (see Table I) (Moloney et al. 2000b).
Pofut1 knockout is embryonic lethal in mice (Shi and Stanley
2003; Okamura and Saga 2008). These knockout mice show
severe growth retardation during early embryogenesis, particularly
in somite formation. Neural tube, cardiac and blood vessel defects
are also evident in these mice—all phenotypes associated with
defects in Notch signaling. POFUT1 also plays a critical role in
mediating other Notch dependent processes including promotion
of T-cell differentiation during lymphopoiesis (Yao et al. 2011).
Results from many groups reveal that POFUT1 is essential for
normal Notch-ligand binding and Notch signaling (Shi and
Stanley 2003; Okajima et al. 2005; Rampal et al. 2005; Stahl
et al. 2008; Kakuda and Haltiwanger 2017). Recently reported
Notch1-DLL4 (Luca et al. 2015) and Notch1-JAG1 (Luca et al.
2017) cocrystal structures have additionally shown that the fucose
on EGF repeat 12 of the extracellular domain of Notch1 directly
interacts with the Notch activating ligand DLL4, and the fucose
on EGF repeats 8 and 12 interact with JAG1, demonstrating the
potential importance of these fucose residues at the interface of
protein-protein interactions. In addition to its fucosyltransferase
activity, the Drosophila homolog of POFUT1, Ofut1, also acts as
a chaperone for Notch protein folding (Okajima et al. 2005),
although it is not clear that this function is conserved in mamma-
lian systems (Stahl et al. 2008).

Fringe enzymes can elongate O-fucose residues with a GlcNAc
to further regulate Notch signaling (Figure 4A) (Moloney et al.
2000a). Fringe was originally described in Drosophila, where it was
recognized that mutations in fringe caused a Notching phenotype in
wings (Irvine and Wieschaus 1994). Further work demonstrated
that Fringe is an important regulator of Notch signaling (Panin et al.
1997; Klein and Arias 1998). While Drosophila expresses only one
Fringe enzyme, there are three mammalian homologs (Lunatic
Fringe, Manic Fringe and Radical Fringe) (Johnston et al. 1997).
Fucose elongation by any of the three Fringes causes an increase in
Notch signaling mediated by members of the Delta-like ligand
(DLL) family, but can have variable effects on signaling initiated by
the Jagged (JAG) family of ligands in mammals (LeBon et al. 2014;
Kakuda and Haltiwanger 2017). These enzymes play extremely
important roles in regulating Notch signaling throughout develop-
ment. For instance, Lunatic Fringe is required for normal somitogen-
esis (Evrard et al. 1998; Zhang and Gridley 1998). Recent work has
demonstrated that addition of GlcNAc by Fringe to Notch’s extra-
cellular domain creates a “Fringe-mediated Notch code,” where
modifications at specific EGF repeats can either enhance DLL-
mediated signaling or inhibit JAG-mediated Notch signaling
(Harvey et al. 2016; Kakuda and Haltiwanger 2017).

While POFUT1 is predicted to modify many other proteins based
on consensus sequences, modification of most of these proteins has

not been confirmed (Table I). Dysregulation of POFUT1 activity
has, however, been shown to play an important role in several disor-
ders and processes involving other proteins. Heterozygous muta-
tions in POFUT1 have been associated with a rare dermatologic
condition, Dowling-Degos disease, characterized by pigmentation
abnormalities (Li et al. 2013; Chen et al. 2014). O-Fucosylation of
EGF repeats also appears to play an important role in regulating the
clustering of acetylcholine receptors by agrin (Kim et al. 2008).
Amplification of POFUT1 has also been implicated as a prognostic
marker and potential drug target for several cancer types including
breast cancer (Milde-Langosch et al. 2014), oral squamous cell car-
cinoma (Yokota et al. 2013) and hepatocellular carcinoma (Sawey
et al. 2011; Ma et al. 2016).

O-Fucosylation of TSRs

Like Pofut1, knockout of Pofut2 in mice is embryonic lethal with
severe defects in gastrulation, indicating its importance in develop-
ment (Du et al. 2010). A recent report strongly suggests that
ADAMTS9 is the target protein responsible for these defects, as
knockout of Adamts9 resulted in a phenotype essentially identical to
Pofut2 knockout (Benz et al. 2016). Other target proteins play an
important role in regulating cell proliferation, migration and differ-
entiation. O-Fucosylation of CCN1, which is required for its secre-
tion, has been shown to be vital to these processes (Perbal 2004;
Niwa et al. 2015). Additionally, members of the A Disintegrin and
Metalloproteinase with ThromboSpondin motifs (ADAMTS) family
of metalloproteinases play critical roles in mediating angiogenesis,
extracellular structuring, inflammation and other developmental
processes (Dubail and Apte 2015). Several proteins in this family
also depend on O-fucosylation for their secretion (Ricketts et al.
2007; Wang et al. 2007; Vasudevan et al. 2015; Benz et al. 2016;
Dubail et al. 2016). One of the affected proteins, ADAMTS13, is
particularly noteworthy as its deficiency results in thrombotic
thrombocytopenic purpura (TTP), a life threatening hematologic
disorder (Ricketts et al. 2007). More work will be needed to deter-
mine the importance of O-fucosylation for processes mediated by
other specific proteins.

O-Fucose residues on TSRs can be elongated with glucose by β3-
glucosyltransferase (B3GLCT) (Figure 4B) further promoting secre-
tion of target proteins. Mutations in this enzyme cause the human
disease Peters plus syndrome, characterized by a number of defects
in the eye chambers, limbs and intellectual development (Oberstein
et al. 2006). Elimination of B3GLCT activity results in reduced
secretion of some, but not all of the proteins regulated by POFUT2
modification (Vasudevan et al. 2015). A recent report from our lab
suggests that the carbohydrate modifications added by POFUT2 and
B3GLCT serve as a novel quality control system that recognizes and
stabilizes properly folded TSRs. POFUT2 recognizes and sequen-
tially fucosylates properly folded TSRs in the ER allowing B3GLCT
to bind and add glucose to these TSRs. The data suggest that add-
ition of these sugars stabilizes the folded form of the TSR, removing
it from a folding cycle in the ER. Once all TSRs on a protein have
been processed the protein can exit the ER (Vasudevan et al. 2015).

Fucose analogs

The development of chemically modified fucose analogs has revolu-
tionized the study of fucose and fucosyltransferases by providing a
valuable tool for modifying, tracking and inhibiting fucosylation of
proteins. As early as 1992, it was recognized that the Lewis
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Table I. List of putative human gene targets of POFUT1

Name and UNIPROT
ID

Consensus/
total

Known human pathology (if any)

AGRIN (O00468) 2/4 Myasthenia, limb-girdle, familial (Huze et al. 2009; Maselli et al. 2012)
ATRAID (Q6UW56) 1/1 —

CD93 (Q9NYP3) 1/5 —

CD97 (P48960) 1/5 —

CELSR1 (Q9NYQ6) 2/8 Neural tube defects (Robinson et al. 2012)
CELSR2 (Q9HCU4) 2/7 —

CELSR3 (Q9NYQ7) 2/8 —

CFC1 (P0CG37) 1/1 Heterotaxy, visceral, 2, autosoma; transposition of the great arteries dextro-looped 2; Conotruncal
heart malformations (Bamford et al. 2000; Goldmuntz et al. 2002)

CFC1B (P0CG36) 1/1 —

CNTNAP5 (Q8WYK1) 1/2 —

CRB1 (P82279) 8/19 Retinitis pigmentosa 12; Leber congenital amaurosis 8; Pigmented paravenouschorioretinal atrophy
(den Hollander et al. 1999, 2001; McKay et al. 2005)

CRB2 (Q5IJ48) 8/15 —

CSPG2 (P13611) 2/2 Wagner vitreoretinopathy (Miyamoto et al. 2005; Kloeckener-Gruissem et al. 2013)
CUBN (O60494) 4/7 Recessive hereditary megaloblastic anemia 1 (Aminoff et al. 1999; Kristiansen et al. 2000)
DLK1 (P80370) 3/6 —

DLK2 (Q6UY11) 1/6 —

DLL1 (O00548) 4/8 —

DLL3 (Q9NYJ7) 2/6 Spondylocostaldysostosis 1, autosomal recessive (Bulman et al. 2000)
DLL4 (Q9NR61) 5/8 —

DNER (Q8NFT8) 6/10 —

EDIL3 (O43854) 1/3 —

EGF (P01133) 1/9 Hypomagnesemia 4 (Groenestege et al. 2007)
EGFL7 (Q9UHF1) 1/2 —

EGFLAM (Q63HQ2) 2/3 —

EMR1 (Q14246) 4/6 —

EMR2 (Q9UHX3) 1/5 —

EYS (Q5T1H1) 11/27 Retinitis pigmentosa 25 (Abd El-Aziz et al. 2008; Collin et al. 2008; Audo et al. 2010; Huang et al. 2010)
F7 (P08709) 1/2 Factor VII deficiency (O’Brien et al. 1991; Bernardi et al. 1994; Leonard et al. 1998; Girelli et al. 2000;

Landau et al. 2009; Jiang et al. 2011)
F9 (P00740) 1/2 Hemophilia B; Thrombophilia, X-linked, due to factor IX defect (Green et al. 1989; Suehiro et al. 1989;

de la Salle et al. 1993; Simioni et al. 2009)
F12 (P00748) 1/2 Factor XII deficiency; Hereditary angioedema 3 (Bernardi et al. 1987; Schloesser et al. 1995; Cichon et al.

2006; Dewald and Bork 2006)
FAT1 (Q14517) 2/5 —

FAT2 (Q9NYQ8) 1/2 —

FAT3 (Q8TDW7) 3/4 —

FAT4 (Q6V0I7) 5/6 Van Maldergem syndrome 2 (Cappello et al. 2013)
FBLN1 (P23142) 1/9 Complex type of synpolydactyly; associated with human breast cancer (Debeer et al. 2002; Greene et al. 2003)
FBLN7 (Q53RD9) 1/3 —

FBN2 (P35556) 1/47 Arthrogryposis, distal 9 (Putnam et al. 1995; Babcock et al. 1998; Park et al. 1998; Belleh et al. 2000;
Gupta et al. 2002; Callewaert et al. 2009)

FBN3 (Q75N90) 1/44 —

HABP2 (Q14520) 1/3 —

HGFAC (Q04756) 2/2 —

JAG1 (P78504) 11/16 Alagille syndrome 1; Tetralogy of Fallot (Oda et al. 1997; Krantz et al. 1998; Eldadah et al. 2001)
JAG2 (Q9Y219) 9/16 —

LRP1 (Q07954) 5/22 —

LRP1B (Q9NZR2) 4/14 —

LTBP2 (Q14767) 1/20 Glaucoma 3, primary congenital, D; Microspherophakia and/or megalocornea, with ectopialentis
and with or without secondary glaucoma; Weill-Marchesani syndrome 3 (Ali et al. 2009; Kumar et al. 2010;
Haji-Seyed-Javadi et al. 2012)

MEGF6 (O75095) 1/27 —

MEGF8 (Q7Z7M0) 2/5 Carpenter syndrome 2 (Twigg et al. 2012)
MEGF10 (Q96KG7) 2/15 Myopathy, early-onset, areflexia, respiratory distress, and dysphagia

(Logan et al. 2011; Boyden et al. 2012)
MEGF11 (A6BM72) 2/14 —

MMRN1 (Q13201) 1/1 Factor V Quebec (Hayward et al. 1996)
NCAN (O14594) 2/2 —

Continued
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fucosyltransferase could tolerate GDP-fucose modified at the C-6 pos-
ition by even a large addition, and that this could be used as a powerful
tool for labeling lipids and proteins that incorporated this modified
form of fucose (Srivastava et al. 1992). Taking advantage of this enzym-
atic promiscuity, researchers have developed strategies to use fucose
analogs with an azide or alkyne group at the C-6 position to metabolic-
ally incorporate fucose analogs producing labeled fucosylated glycopro-
teins. Once incorporated into target proteins, “click”-chemistry can be
used to attach fluorophores or other groups to the fucose analog. This
strategy has allowed for successful in vivo imaging of fucose in several
model organisms (Laughlin et al. 2008; Laughlin and Bertozzi 2009),
plants (Anderson et al. 2012) and cell cultures (Sawa et al. 2006;

Hsu et al. 2007). Others have used this strategy to tag fucosylated pro-
teins with biotin allowing for their identification using anti-biotin or
streptavidin probes for detection by Western blot or isolation using a
streptavidin pulldown (Liu et al. 2012; Al-Shareffi et al. 2013), poten-
tially allowing for the identification of unknown fucosylated glycopro-
teins. These tools continue to develop, as one group recently showed
that 7-alkynyl fucose is more efficiently utilized by FUT8 than 6-alkynyl
fucose (Kizuka et al. 2016). This type of development could ultimately
allow for more efficient and/or targeted labeling of glycoproteins.

In addition to their utility for identifying and tracking fucosy-
lated proteins, fucose analogs have also been investigated as poten-
tial inhibitors of fucosyltransferases. Monosaccharide analogs have

Table I. Continued

Name and UNIPROT
ID

Consensus/
total

Known human pathology (if any)

NELL1 (Q92832) 1/5 —

NID2 (Q14112) 1/5 —

NOTCH1 (P46531) 20/36 Aortic valve disease 1 (Garg et al. 2005)
NOTCH2 (Q04721) 20/36 Alagille syndrome 2; Hajdu-Cheney syndrome (McDaniell et al. 2006; Isidor et al. 2011;

Simpson et al. 2011)
NOTCH2NL (Q7Z3S9) 5/6 —

NOTCH3 (Q9UM47) 14/34 Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy; Myofibromatosis, infantile 2
(Joutel et al. 1997; Dichgans et al. 1999; Fouillade et al. 2008; Martignetti et al. 2013)

NOTCH4 (Q99466) 18/29 —

PAMR1 (Q6UXH9) 1/1 —

PEAR1 (Q5VY43) 1/9 —

PGBM (P98160) 3/4 Schwartz-Jampel syndrome; Dyssegmental dysplasia Silverman-Handmaker type
(Nicole et al. 2000; Arikawa-Hirasawa et al. 2001)

PGCB (Q96GW7) 1/1 —

PROC (P04070) 1/2 Thrombophilia due to protein C deficiency, autosomal dominant and autosomal recessive
(Romeo et al. 1987; Miyata et al. 1995; Couture et al. 1998)

PROZ (P22891) 1/2 —

RELN (P78509) 2/8 Lissencephaly 2 (Hong et al. 2000)
SLIT1 (O75093) 2/9 —

SLIT2 (O94813) 3/7 —

SLIT3 (O75094) 3/9 —

SNED1 (Q8TER0) 10/15 —

SREC2 (Q96GP6) 1/7 Van den Ende-Gupta syndrome (Anastasio et al. 2010)
STAB1 (Q9NY15) 3/16 —

STAB2 (Q8WWQ8) 6/17 —

SUSD1 (Q6UWL2) 2/3 —

SVEP1 (Q4LDE5) 4/9 —

TEN1 (Q9UKZ4) 1/8 —

TEN2 (Q9NT68) 2/8 —

TEN4 (Q6N022) 2/8 —

TIE1 (P35590) 1/3 —

TPA (P00750) 1/1 Increased activity results in excessive bleeding; Defective release results in thrombosis or embolism
(Degen et al. 1986).

TSP3 (P49746) 1/3 —

UMOD (P07911) 3/3 Familial juvenile hyperuricemic nephropathy 1; Medullary cystic kidney disease 2; Glomerulocystic
kidney disease with hyperuricemia and isosthenuria (Hart et al. 2002; Rampoldi et al. 2003)

UMODL1 (Q5DID0) 1/3 —

UROK (P00749) 1/1 Quebec platelet disorder (Paterson et al. 2010)
VASN (Q6EMK4) 1/1 —

VWA2 (Q5GFL6) 2/2 —

VWDE (Q8N2E2) 3/7 —

WIF1 (Q9Y5W5) 2/5 —

Potential targets of POFUT1 are listed based on a ScanProsite database search of all human proteins containing EGF repeats that contain the C2XXXX(S/T)C3

consensus sequence for O-fucosylation cross-referenced with the Uniprot database. Splice variants were not considered. The number of EGF repeats containing
the consensus sequence/total number of EGF domains is listed, as well as any known human pathologies associated with the putative targets. Confirmed POFUT1
targets are listed in boldface.
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already been approved for the treatment of lysosomal storage disor-
ders, diabetes and are being developed for potential use in other dis-
eases (Gloster and Vocadlo 2012). As discussed above, fucose plays
an important role in many cancer types and other disorders, so the
development of fucosyltransferase inhibitors might serve as a

valuable clinical tool. Several groups have begun screening and
developing inhibitors toward this end (Fuster and Esko 2005;
Hosoguchi et al. 2010; Rillahan et al. 2011; Dalziel et al. 2014).
One group used click chemistry to generate fucose analogs with a
variety of different groups and screened them as potential

Table II. List of putative human gene targets of POFUT2

Name and UNIPROT ID Consensus/total Known human pathology (if any)

ADAMTS1 (Q9UHI8) 3/3 —

ADAMTS2 (O95450) 2/4 Ehlers-Danlos syndrome 7 C (Colige et al. 1999)
ADAMTS3 (O15072) 2/4 —

ADAMTS4 (O75173) 1/1 —

ADAMTS5 (Q9UNA0) 2/2 —

ADAMTS6 (Q9UKP5) 3/5 —

ADAMTS7 (Q9UKP4) 5/8 —

ADAMTS8 (Q9UP79) 2/2 —

ADAMTS9 (Q9P2N4) 12/15 —

ADAMTS10 (Q9H324) 3/5 Weill-Marchesani syndrome 1 (Dagoneau et al. 2004; Kutz et al. 2008)
ADAMTS12 (P58397) 6/8 —

ADAMTS13 (Q76LX8) 7/8 TTP, congenital (Levy et al. 2001; Kokame et al. 2002; Antoine et al. 2003;
Schneppenheim et al. 2003; Ricketts et al. 2007)

ADAMTS14 (Q8WXS8) 2/4 —

ADAMTS15 (Q8TE58) 3/3 —

ADAMTS16 (Q8TE57) 6/6 —

ADAMTS17 (Q8TE56) 4/5 Weill-Marchesani-like syndrome (Morales et al. 2009)
ADAMTS18 (Q8TE60) 4/5 Microcornea, myopic chorioretinal atrophy, and telecanthus (Aldahmesh et al. 2013)
ADAMTS19 (Q8TE59) 4/5 —

ADAMTS20 (P59510) 11/15 —

ADAMTSL1 (Q8N6G6) 8/9 —

ADAMTSL2 (Q86TH1) 6/7 Geleophysic dysplasia 1 (Le Goff et al. 2008)
ADAMTSL3 (P82987) 8/10 —

ADAMTSL4 (Q6UY14) 2/6 Ectopialentis 2, isolated (Ahram et al. 2009); Ectopialentis et pupillae (Christensen et al. 2010)
ADAMTSL5 (Q6ZMM2) 1/1 —

BAI1 (O14514) 4/5 —

BAI2 (O60241) 4/4 —

BAI3 (O60242) 4/4 —

C-6 (P13671) 1/3 Complement component 6 deficiency (Ikinciogullari et al. 2005)
CILP2 (Q8IUL8) 1/1 —

CTGF (P29279) 1/1 —

CYR61 (O0062) 1/1 —

HMCN1 (Q96RW7) 6/6 Age-related macular degeneration 1 (Schultz et al. 2003)
ISM1 (B1AKI9) 1/1 —

NOV (P48745) 1/1 —

PPN (O95428) 4/5 —

PROP (P27918) 4/7 Properdin deficiency (Fredrikson et al. 1996; Fredrikson et al. 1998; van den Bogaard et al. 2000)
SEM5A (Q13591) 2/7 —

SEM5B (Q9P283) 2/5 —

SPON1 (Q9HCB6) 5/6 —

SSPO (A2VEC9) 10/24 —

THS7A (Q9UPZ6) 4/15 —

THS7B (Q9C0I4) 4/18 —

THSD1 (Q9NS62) 1/1 —

THSD4 (Q6ZMP0) 3/6 —

TSP1 (P07996) 3/3 —

TSP2 (P35442) 3/3 Intervertebral disc disease (Hirose et al. 2008)
WISP1 (O95388) 1/1 —

WISP2 (O76076) 1/1 —

WISP3 (O95389) 1/1 Progressive pseudorheumatoidarthropathy of childhood (Hurvitz et al. 1999)

Potential targets of POFUT2 are listed based on a ScanProsite database search of all human proteins containing TSRs that also contain the CX2−3(S/T)C con-
sensus sequence for O-fucosylation cross-referenced with the Uniprot database. Splice variants were not considered. The number of TSRs containing the consen-
sus sequence/total number of TSR domains is listed, as well as any known human pathologies associated with the putative targets. Confirmed POFUT2 targets
are indicated in boldface.
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fucosyltransferase inhibitors, identifying several candidates (Lee
et al. 2003). Fucose analogs that inhibit transfer of fucose by several
fucosyltransferases including FUT4, FUT7 and FUT8 can be used to
prevent selectin-mediated cell migration, a process that plays an
important role in cancer metastasis (Rillahan et al. 2012; Villalobos
et al. 2015). These fucose analog inhibitors are orally active and
slow tumor cell proliferation in mice (Okeley et al. 2013).
Additionally, taking advantage of the role fucosylation plays in
regulating learning and memory, fucose analogs have been used to
cause reversible amnesia and inhibition of long-term memory forma-
tion (Rose and Jork 1987; Krug et al. 1991; Lorenzini et al. 1997).

In addition to their use as fucosyltransferase inhibitors, fucose
analogs that are tolerated by fucosyltransferases can be incorporated
into target proteins and potentially alter protein behavior. For
example, fucose analogs that are efficiently utilized by POFUT1
(Al-Shareffi et al. 2013) can be used to alter Notch signaling. Notch
receptors are a major POFUT1 target, as discussed above, and can
be activated by two different ligand families: DLL and JAG ligands.
Modification of attached fucose residues at the 6-carbon with alkyne
or alkene groups causes an inhibition of Notch activation that pref-
erentially affects DLLs (Schneider et al. In Review). This ability to
discriminate between ligands provides a potentially very useful tool
for evaluating Notch signaling. Similar strategies might be developed
into targeted therapeutics for disease.
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Abbreviations

ADAMTS A Disintegrin and Metalloproteinase with
ThromboSpondin motifs

ADCC Antibody dependent cellular cytotoxicity
AFP α-Fetoprotein
B3GLCT β3-glucosyltransferase
BPH Benign prostatic hyperplasia
CLL Chronic lymphocytic leukemia
DLL Delta-like ligand
EGF Epidermal growth factor-like
FUT Fucosyltransferase
FX protein GDP-keto-6-deoxymannose 3,5 epimerase
GalNAc N-acetylgalactosamine
GlcNAc N-acetylglucosamine
JAG Jagged
LAD2 Leukocyte adhesion deficiency II
LTP Long-term potentiation
mAb Monoclonal antibody
POFUT Protein O-fucosyltransferase
PPS Peters Plus Syndrome
PSA Prostate-specific antigen
RBC Red blood cell

TSR Thrombospondin type 1 repeat
TTP Thrombotic thrombocytopenic purpura
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