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Abstract

Flux balance analysis (FBA) with genome-scale metabolic network models (GSMNM) allows 

systems level predictions of metabolism in a variety of organisms. Different types of predictions 

with different accuracy levels can be made depending on the applied experimental constraints 

ranging from measurement of exchange fluxes to the integration of gene expression data. 

Metabolic network modeling with model organisms has pioneered method development in this 

field. In addition, model organism GSMNMs are useful for basic understanding of metabolism, 

and in the case of animal models, for the study of metabolic human diseases. Here, we discuss 

GSMNMs of most highly used model organisms with the emphasis on recent reconstructions.

Introduction

A metabolic network is a system that converts carbon and energy sources and electron 

donors and acceptors of an organism into biomass, energy, and byproducts. Deficiencies in 

this system cause disease when biomass production or energy generation is impaired, or 

when toxic by-products accumulate. On the other side, engineering of a metabolic system 

can produce higher yields of biomass or valuable by-products. Thus, a mechanistic 

understanding of metabolism is crucial for various disciplines, from biomedical to biofuels 

research [1].

A commonly applied powerful method of metabolic analysis is constraint-based metabolic 

network modeling at the whole system level [2]. In this approach, all annotated metabolic 

genes in an organism are first matched to enzymes and then to reactions to obtain gene-

protein-reaction associations (GPRs). These GPRs are used to reconstruct a genome-scale 

metabolic network model (GSMNM), which is then used to calculate the flux distribution 

over the entire network in any defined condition for the organism (see below). For model 

organisms, high-quality genomic annotations allow the reconstruction of comprehensive 

GSMNMs that can be parameterized and validated with publically available experimental 

datasets. In addition, since many properties of metabolic networks are conserved across taxa, 
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model organism GSMNMs can be used to study human disease with animal models, while 

plant models can instruct agriculture.

Here, we first summarize the basics of genome-scale metabolic network modeling, and then 

explore GSMNMs and their applications in common model organisms [3] (Figure 1). 

GSMNMs mentioned are listed in Table 1, together with the latest human model [4*] for 

comparison.

Mathematical modeling with genome scale metabolic networks

The steps of mathematical network modeling are summarized in Figure 2A. After GPRs are 

annotated, the reaction list is complemented by necessary transport reactions that carry 

metabolites between different compartments, exchange reactions that define the input and 

output of the system, and biomass reactions that represent growth. Next, this network is 

converted to a mathematical model that describes the mass balance of each metabolite as the 

difference between the fluxes of reactions that produce and consume it. The combination of 

mass balance equations for all metabolites yields a linear algebraic equation (Figure 2A) 

where a stoichiometry matrix (S) is multiplied by the reaction flux vector (v) to obtain the 

production rates of compounds. Due to the large number of reactions in GSMNMs, kinetic 

modeling approaches that allow the prediction of metabolite concentrations are not feasible. 

Instead, the mass balance is solved for an assumed steady state, i.e., a zero sum of fluxes at 

each compound node, to obtain the flux vector, which describes the metabolic state as a flux 

distribution across the network. Importantly, the steady state assumption refers to the 

internal metabolism only, and is therefore not limited to the true steady state established for 

cells in a continuous flow reactor, but is also valid for any stable metabolic state, as in 

exponential growth, homeostasis, or growth in a small time interval that can be considered a 

quasi-steady state.

There is no single, unique solution to the governing mass balance equation, instead there is a 

distribution of possible solutions (Figure 2B). To find a biologically meaningful flux 

distribution, fluxes are constrained by reaction reversibility and any known flux such as 

uptake rates of nutrients and secretion rates of by-products. In addition, an objective is set 

for maximizing or minimizing a subset of fluxes and optimized as a linear programming 

problem (Figure 2A). A typical objective function is maximization of biomass production to 

represent growth-oriented metabolism. This mathematical method is referred to as 

constraint-based flux balance analysis (FBA). FBA should not be confused with metabolic 

flux analysis (MFA), which uses isotope labeling and derives fluxes generally in core 

pathways by best fitting the flux distribution to the pattern of labeled metabolites in the 

central carbon metabolism only [5].

Running FBA on a draft metabolic network model can reveal gaps that prevent biomass 

production or other reactions from carrying flux. These are to be iteratively corrected before 

validating the GSMNM with experimental observations (Figure 2A). A validated GSMNM 

can be used for different types and levels of predictions by varying the constraints used 

during FBA. In the simplest case, none of the fluxes are known or only uptake or secretions 

of main metabolites are experimentally obtained. Then network properties can be analyzed 
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using FBA and flux variability analysis (FVA) for hypothesis-driven discovery [2]. In more 

advanced applications, large experimental datasets are integrated with the GSMNM, such 

that, flux predictions are constrained by global gene expression [6] or metabolomics [7*] to 

get an accurate picture of the metabolic state of the organism (Figure 2B).

Reconstructions and applications of model organism metabolic network 

models

Escherichia coli, the model bacterium

Applications of GSMNMs have been most widespread and successful with microorganisms, 

which have simple life styles accountable by FBA. This is because a bacterium in a 

bioreactor can be modeled as an open system that takes provided nutrients as the input and 

yields biomass and by-products as the output. The pioneering work on constraint-based 

metabolic network modeling in microorganisms was conducted with early E. coli 
reconstructions [8,9]. Later, E. coli GSMNMs served for the development of new methods 

such as dynamic FBA [10], parsimonious enzyme usage FBA (pFBA) [11], and regulatory 

FBA [12]. A review of most E. coli GSMNMs have recently been provided [13] and will not 

be repeated here. An example from the previous review [14] and the most recent 

reconstruction [15] are included in Table 1.

Saccharomyces cerevisiae, the budding yeast as a model eukaryote

There are more than two dozen GSMNMs reconstructed for the budding yeast 

Saccharomyces cerevisiae to date [16]. This scale of effort reflects the fact that S. cerevisiae 
is the most studied unicellular eukaryote serving as a general eukaryotic model, and that it is 

directly used as a workhorse for the production of valuable metabolites such as ethanol [17]. 

In addition, S. cerevisiae can also be easily grown in controlled bioreactors and modeled as a 

unicellular open system, although, in contrast to bacteria, the metabolism is 

compartmentalized to organelles (Table 1). As with E. coli, GSMNMs of the yeast have 

already been reviewed [16,18*,19] and we show only two representative models in Table 1 

[20,21].

Drosophila melanogaster, the fly as a model animal

Unfortunately, a genome-scale metabolic network model is not yet available for the fruit fly 

Drosophila melanogaster, although a core metabolic model to study the central metabolic 

properties of the muscle tissues of hypoxia resistant flies was published nearly a decade ago 

[22]. The model was reconstructed using metabolomics data obtained from dissected 

thoraxes, and by linking detected metabolites with GPR annotations. Later, the same model 

was expanded based on highly expressed enzymes in the thorax [23] (Table 1). These 

modeling efforts showed that FBA is a suitable method to study disease-related metabolic 

phenotypes in Drosophila. However, a genome-scale reconstruction will be needed to realize 

the full potential of metabolic network modeling with this organism.
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Mus muculus, the model mammal

Several GSMNMs are available for the mouse (Table 1). These models are useful to study 

human disease, but also have industrial relevance since mouse hybridoma cell lines are 

employed for the production of biopharmaceuticals such as monoclonal antibodies (MAb) 

and vaccines [24]. Indeed, initial mouse GSMNMs targeted the modeling of hybridoma cell 

lines for a rational engineering approach to improve the production yields of MAb [25–27]. 

These models were tested using batch or continuous cultures of hybridoma cell lines. FBA-

based prediction of growth rates and by-products, constrained by metabolomics 

measurements, were validated and improved over time. These models have further served as 

knowledge bases for other studies that used the provided biomass composition [28], 

maintenance energy [29], and other network properties [30].

Another lineage of mouse models was based on a human reconstruction [31]. Reactions in 

the human network associated with genes that had mouse orthologs were first extracted, 

which was followed by the arrangement of transport reactions and filling of the created gaps 

[32]. The final model, called iMM1415, included eight compartments (Table 1). In a later 

study [33], iMM1415 was not only updated but also extended to include intestine-specific 

transport and exchange reactions, and was combined with a Bacteroides reconstruction to 

develop a unified host-microbiota model. This interspecies model was useful in the analysis 

of synergistic and competitive interactions between the host and bacterial metabolism. The 

most recent mouse model was developed using a similar approach to iMM1415 

reconstruction and was subsequently converted to a germ cell-specific model by integration 

of transcription levels in germ cells during spermatogenesis [34]. Using FBA constrained by 

gene expression levels throughout a spermatogenesis period, the authors determined 

metabolic genes and reactions that are critical for the germ cell differentiation for 

commitment to meiosis.

In addition to the above GSMNMs, an independent mouse model was semi-automatically 

reconstructed using the information stored in publicly available databases [35] (Table 1). 

Although only half of the reactions in this model are able to carry flux because of network 

gaps, it has been useful as a resource [36*,37].

Arabidopsis thaliana, the model plant

Flux analysis using FBA and MFA has been particularly popular in plant research, which is 

not surprising given the broad interest in engineering plant metabolism to improve yields of 

agriculturally and industrially valuable products [5,38,39]. A relatively large number of 

GSMNMs are available for the model plant Arabidopsis thaliana (Table 1) [40*,41,42]. The 

first reconstruction was targeted at and validated by heterotrophic plant cells grown in 

suspension [43]. This model was later expanded by GPR annotations and compartmentalized 

into plant organelles [44]. With these modifications the model was able to represent both 

heterotrophic and photoautotrophic metabolism, which was recently exploited to develop a 

model capable of simulating metabolism in day-night cycles with two separate 

compartments [45].
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Another lineage of plant GSMNMs was started with the first photosynthetic A. thaliana 
model, AraGEM [46]. This reconstruction was updated in a study that compared A. thaliana 
and Zea mays metabolism [47] (Table 1). AraGEM was recently used to create a multi-tissue 

network that represents a whole plant [48**]. Metabolic networks for multiple plant tissues 

were derived from the generic model and combined in an organism framework. FBA was 

done by minimizing photon usage as the objective function for the entire network.

Two additional Arabidopsis GSMNMs have been developed. The most compartmentalized 

plant model [49] (Table 1) was used to derive the metabolic states of multiple plant organs 

using organ-specific protein expression datasets. The most recent reconstruction of A. 
thaliana focused on central metabolism (Table 1) [50]. This small but robust model of leaf 

cells consisted of manually curated GPRs, and was used to estimate the energetic cost of 

amino acid and enzyme synthesis during photoautotrophic growth conditions that employed 

carbon fixation by Rubisco, the most abundant protein in the world.

Caenorhabditis elegans, the nematode as a model animal

The nematode C. elegans (the worm) is a self-reproducing hermaphrodite with a relatively 

short life cycle. Although the worm has been widely used to study development, 

neurobiology and aging, it has recently also emerged as a powerful model for studying the 

effects of diet on metabolism and growth [51]. The laboratory diet of C. elegans typically 

consists of a pure bacterial culture. Different bacterial species can be fed to the worm, and 

can be combined with easy genetic screening in both the animal and its diet [52–54]. In 

addition, C. elegans can be uniquely used to model some human diseases or specific 

components of the human diet. For instance, the two vitamin B12 dependent enzymes, 

methionine synthase and methylmalonyl-CoA mutase, are present in both humans and the 

nematode, but not in flies or yeast (Figure 3). We have recently discovered an alternative 

pathway to propionic acid breakdown that does not depend on vitamin B12, illustrating the 

power of this model [55].

The overall function of C. elegans metabolism can be seen as the conversion of bacterial 

biomass into worm biomass. Unlike any other animal model, C. elegans can be easily grown 

in liquid cultures as a dense population (hundreds of animals per ml) with both the bacterial 

diet and a chemically well-defined diet called axenic medium [56]. Thus, the nematode is a 

unique model animal in its suitability for metabolic network modeling and FBA, and a 

candidate for repeating the success of GSMNMs with microorganisms in an animal model. 

Two GSMNMs of C. elegans were recently published [57,58] (Table 1). Both models are 

able to represent growth with the bacterial and axenic diet and involve peculiar traits of C. 
elegans metabolism known so far, such as the presence of a glyoxylate shunt in an animal 

and the absence of a de novo NAD biosynthesis pathway. However, the focus of 

reconstruction and validation was different for each model.

The first model in Table 1, iCEL1273 [58], was shown to quantitatively account for the 

growth of C. elegans at pseudo-steady states in two different stages of life, the L4 growing 

larvae and egg-laying adults. Gene essentiality for growth at any life stage was 

systematically analyzed based on assumptions on animal physiology, such as the non-

redundant functioning of paralogs in different tissues and the minimization of enzyme usage 
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for an optimal metabolic state (implemented by pFBA). In addition, specific phenotypes 

were shown to be predictable, including the slow-down of growth in the absence of 

methionine synthase or the lack of vitamin B12 (Figure 3). The utility of this model was 

shown by analyzing the metabolic state of dormant dauer larvae in comparison to growing 

larvae. Integration of gene expression data was sufficient for iCEL1273 to predict the 

observed differences in these states such as low energetic activity, lack of growth, and 

dependence on stored carbon resources in the dauer state, but reverse in the other. iCEL1273 

is available at a dedicated website named WormFlux (http://wormflux.umassmed.edu). This 

webtool is relatively unique because it shows the systematic annotation of all genes in the 

organism with a pipeline that uses multiple resources [58], and all metabolic reactions used 

in the reconstruction. Genes, enzymes, metabolites, and pathways are interlinked, 

searchable, and linked to other databases.

The second C. elegans GSMNM in Table 1 [57] was also quantitatively challenged, this time 

using measured amino acid concentrations in wild-type versus perturbed worms. The effect 

of knocking out bcat-1, which codes an enzyme responsible for the initial step of branched 

chain amino acid breakdown, was simulated to indirectly deduce the changes in amino acid 

levels using FBA, and verified by experimental observations. The utility of this model was 

shown by focusing on aging. Integration of gene expression in a time series dataset from 

younger to older worms successfully predicted the decreasing overall activity of metabolism, 

and revealed the specific metabolic advantages of long-lived mutants such as the improved 

activity of the TCA-cycle and ubiquinone biosynthesis at later stages of life. The effective 

start of metabolic network modeling with the nematode opens up an exciting new field for 

studying the mechanistic relationships between diet, genotypes, phenotypes and aging at the 

systems level.

Conclusions and future perspectives

We derived four important conclusions from our review to provide perspective for future 

GSMNM reconstructions of model organisms and their applications. First, although most of 

the older GSMNMs in Table 1 are highly cited, the direct use of these models by other 

groups is rare. The lack of usage may be attributed to the required expertise to run 

GSMNMs. We believe this can be changed by building devoted web-based tools that allow 

user-friendly and interactive FBA with GSMNMs. WormFlux [58] has been developed for 

C. elegans with this purpose and efforts to implement FBA, FVA, and gene expression 

integration on this webtool are underway.

Second, the repeated use of GSMNMs for a particular organism generally involves a 

modification, or even a brand new reconstruction, as is clear from the timeline of mouse and 

Arabidopsis reconstructions (Table 1). We think that modeling modifications are often 

related to the feedback loops from validation and application stages in Figure 2A. Each time 

a model is challenged with new research questions or experimental data, potential 

reconstruction handicaps or false predictions lead to repairs, which improves not only the 

models but also our understanding of the metabolic network. It is reasonable to expect the 

same trend for other model organisms for which GSMNMs have recently been 

reconstructed.
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Third, organism-level compartmentalization is needed for multi-cellular organisms and there 

are advancements towards this direction [59]. The multi-organ framework developed for A. 
thaliana [48**] is the closest we have to a whole organism model. An additional, more 

focused multi-compartment model for mouse has become available to simultaneously 

represent metabolism in liver, muscle and adipose tissue cells [60], although it is important 

to note that this model was based on a human GSMNM [31]. We advocate the development 

of compartmentalized models for other organisms, notably C. elegans, because these model 

organisms are more suitable to high-throughput and large-scale genetic perturbations. 

Another adequate model system for tissue frameworks would be Drosophila, should 

GSMNMs become available for this organism.

Finally, other compartmentalized modeling efforts need to consider interspecies metabolic 

interactions, as exemplified by the host-microbiota model in the mouse [61]. To this end, C. 
elegans, together with its bacterial diet, provide an ideal model system [51], which has 

already been used with genetic screening approaches [54]. In the future, our understanding 

of metabolism will likely continue to be transformed by GSMNMs that characterize multi-

cellular model organisms from cellular to whole-organism level and their commensal 

interactions with other species.
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HIGHLIGHTS

• A genome-scale metabolic network model (GSMNM) represents all 

metabolism.

• GSMNMs in model organisms help basic understanding and method 

development.

• Recently, two GSMNMs were developed for Caenorhabditis elegans.

• GSMNs of animal models are useful for studying human disease.

• A multi-tissue framework of Arabidopsis thaliana inspires whole organism 

modeling.
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Figure 1. 
Model organisms reviewed. Percentage of genes in a human genome scale metabolic 

network model [4*] that have orthologs to each model organism is shown based on [31]. 

This number is not available for E. coli. Bold letters indicate whether the metabolic network 

modeling with the indicated organism is relevant to basic understanding (B), human disease 

(D), industrial applications (I), or agricultural (A) applications.
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Figure 2. 
Genome-scale metabolic network modeling. (A) Metabolic network modeling is an iterative 

procedure. Main steps of model development are shown. (B) Cartoon representation of a 

GSMNM (top) and flux balance analysis (middle and bottom). In the absence of 

experimental constraints, pure theoretical analyses can be done (middle left). A flux 

distribution is found but alternate pathways exist. Integration of gene expression data guides 

the flux distribution to choose from alternate pathways (middle right). Still, alternate 

solutions may exist. Inclusion of experimental measurements for exchange fluxes can 

constrain the solution further (bottom left).
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Figure 3. 
C. elegans is an adequate model to study vitamin B12 metabolism but S. cerevisiae and D. 
melanogaster are not. Left panel shows two vitamin B12-dependent pathways. C. elegans 
genes encoding the enzymes are indicated. Recently discovered propionate shunt is also 

drawn without the details. For the genes in bold font, phylogenetic protein sequence trees are 

provided on the right panel. Trees were obtained from WormFlux (http://

wormflux.umassmed.edu/) and edited for clarity. All reasonable best hits (B) and reciprocal 

best hits (R) (if available) from human (HSA), S. cerevisiae (SCE), and D. melanogaster 
(DME) were included in these trees [58]. Thus, S. cerevisiae (SCE) and D. melanogaster 
(DME) do not have the vitamin B12 enzyme homologs but they have an ortholog for 

methionine adenosyltransferase. Hits from A. thaliana (ATH) and C. elegans paralogs (P) are 

also shown. Identities of other organism genes are hidden except for the taxonomy.
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